# Vector Calculus. 1 Line Integrals

Size: px
Start display at page:

Transcription

1 Vector lculus 1 Line Integrls Mss problem. Find the mss M of very thin wire whose liner density function (the mss per unit length) is known. We model the wire by smooth curve between two points P nd Q in 3-spce. Given ny point (x, y, z) on, we let f(x, y, z) denote the corresponding vlue of the density function. 1. Divide into n smll sections. Let M k be the mss of the kth section, nd let s k be the length of the rc between P k 1 nd P k. 2. hoose P k (x k, y k, z k ) on the kth rc M k f(x k, y k, z k) s k 3. The mss M of the entire wire is M M k f(x k, yk, zk) s k 4. Tke mx s k 0, nd get M lim f(x k, yk, zk) s k mx s k 0 f(x, y, z) ds The lst term is the nottion for the limit of the Riemnn sum, nd it is clled the line integrl of f(x, y, z) with respect to s long. The sme definition is for f(x, y). 1

2 The mss M of the wire is M f(x, y, z) ds The length L of the wire is L ds If is curve in the xy-plne nd f(x, y) is nonnegtive function on, then f(x, y) ds is equl to the re of the sheet tht is swept out by verticl line segment tht extends upwrd from (x, y) to height f(x, y) nd moves long A k f(x k, y k) s k A f(x, y) ds 2

3 Evluting line integrls Let be smoothly prmetrised r x(t) i + y(t) j, t b. Then s k t k t k 1 r (t) r (t k ) t k nd f(x, y) ds lim mx s k 0 lim mx t k 0 b b f(x k, yk) s k f(x(t k), y(t k)) r (t k) t k f(x(t), y(t)) r (t) (dx ) 2 f(x(t), y(t)) + ( ) 2 dy The line integrl does not depend on prmetristion of, in prticulr on n orienttion of. Exmple. Find (1 + x2 y)ds for 1. : 1 2 (t + t2 ) i (t + t2 ) j, 0 t 1 2. : (2 2t) i + (1 t) j, 0 t 1 3

4 Similrly, if is curve in 3-spce smoothly prmetrised r x(t) i + y(t) j + z(t) k, then f(x, y, z) ds b b f(x(t), y(t), z(t)) r (t) (dx ) 2 f(x(t), y(t), z(t)) + ( ) 2 dy + ( ) 2 dz Exmple. Find (xy + z3 )ds for : cos t i + sin t j + t k, 0 t π Answer : 2π 4 /4 Line integrls with respect to x, y nd z Let s replce s k by x k ( or y k or z k ) in the definition of the line integrl. Then, we get the line integrl of f(x, y, z) with respect to x long f(x, y, z) dx lim mx s k 0 f(x k, yk, zk) x k f(x, y, z) dy f(x, y, z) dz lim mx s k 0 lim mx s k 0 f(x k, yk, zk) y k f(x k, yk, zk) z k 4

5 The sign of these line integrls depends on the orienttion of. Reversing the orienttion chnges the sign. Thus, one should find prmetric equtions for in which the orienttion of is in the direction of incresing t, nd then f(x, y, z) dx b Exmple. Find (1 + x2 y)dy for 1. : 1 2 (t + t2 ) i (t + t2 ) j, 0 t 1 2. : (2 2t) i + (1 t) j, 0 t 1 f(x(t), y(t), z(t)) x (t) Let be smooth oriented curve, nd let denote the oriented curve with opposite orienttion but the sme points s. Then f(x, y) dx f(x, y) dx, f(x, y) dy f(x, y) dy while f(x, y) ds + f(x, y) ds onvention f(x, y) dx + g(x, y) dy f(x, y) dx + g(x, y) dy We hve f(x, y) dx+g(x, y) dy b (f(x(t), y(t)) x (t) + g(x(t), y(t)) y (t)) 5

6 Integrting vector field long curve Definition. A vector field in plne is function tht ssocites with ech point P in the plne unique vector F (P ) prllel to the plne F (P ) F (x, y) f(x, y) i + g(x, y) j Similrly, vector field in 3-spce is function tht ssocites with ech point P in the 3-spce unique vector F (P ) in the 3-spce F (P ) F (x, y, z) f(x, y, z) i + g(x, y, z) j + h(x, y, z) k One cn sy tht vector field is vector-vlued function with the number of components equl to the number of independent vribles (coordintes). Introduce d r dx i + dy j + dz k If F (x, y, z) f(x, y, z) i + g(x, y, z) j + h(x, y, z) k is continuous vector field, nd is smooth oriented curve, then the line integrl of F long is F d r (f i + g j + h k) (dx i + dy j + dz k) f(x, y, z) dx + g(x, y, z) dy + h(x, y, z) dz If r r(t) x(t) i + y(t) j + z(t) k, then b F d r F ( r(t)) r (t) 6

7 Exmple. The curve is line segment connecting the points ( π/2, π) nd (3π/2, 2π/3). Prmeterise, nd evlute F d r where Answer : F (x, y) ( 6xy + 3π 3 sin 3x) i (3x 2 + 2π 3 cos 3y 2 ) j F d r π Let t s, where s is n rc length prmeter. Then F d r b F ( r(s)) r (s) ds F T ds b where T r (s) is unit tngent vector long. F ( r(s)) T ds F T F cos θ F F T F 7

8 Line integrls long piecewise smooth curves If is curve formed from finitely mny smooth curves 1, 2,..., n joined end to end, then n Exmple. Let the curve between the points ( π/2, π) nd (3π/2, 2π/3) be curve formed from two line segments 1 nd 2, where 1 is joining ( π/2, π) nd (3π/2, π), nd 2 is joining (3π/2, π) nd (3π/2, 2π/3). Prmeterise 1 nd 2, nd evlute F d r where F (x, y) ( 6xy + 3π 3 sin 3x) i (3x 2 + 2π 3 cos 3y 2 ) j 8

### Lecture 20. Intro to line integrals. Dan Nichols MATH 233, Spring 2018 University of Massachusetts.

Lecture 2 Intro to line integrls Dn Nichols nichols@mth.umss.edu MATH 233, Spring 218 University of Msschusetts April 12, 218 (2) onservtive vector fields We wnt to determine if F P (x, y), Q(x, y) is

### Example. Check that the Jacobian of the transformation to spherical coordinates is

lss, given on Feb 3, 2, for Mth 3, Winter 2 Recll tht the fctor which ppers in chnge of vrible formul when integrting is the Jcobin, which is the determinnt of mtrix of first order prtil derivtives. Exmple.

### Section 17.2: Line Integrals. 1 Objectives. 2 Assignments. 3 Maple Commands. 1. Compute line integrals in IR 2 and IR Read Section 17.

Section 7.: Line Integrls Objectives. ompute line integrls in IR nd IR 3. Assignments. Red Section 7.. Problems:,5,9,,3,7,,4 3. hllenge: 6,3,37 4. Red Section 7.3 3 Mple ommnds Mple cn ctully evlute line

### Chapter 12 Vectors and the Geometry of Space 12.1 Three-dimensional Coordinate systems

hpter 12 Vectors nd the Geometry of Spce 12.1 Three-dimensionl oordinte systems A. Three dimensionl Rectngulr oordinte Sydstem: The rtesin product where (x, y, z) isclled ordered triple. B. istnce: R 3

### b = and their properties: b 1 b 2 b 3 a b is perpendicular to both a and 1 b = x = x 0 + at y = y 0 + bt z = z 0 + ct ; y = y 0 )

***************** Disclimer ***************** This represents very brief outline of most of the topics covered MA261 *************************************************** I. Vectors, Lines nd Plnes 1. Vector

### Study Guide # Vectors in R 2 and R 3. (a) v = a, b, c = a i + b j + c k; vector addition and subtraction geometrically using parallelograms

Study Guide # 1 MA 26100 - Fll 2018 1. Vectors in R 2 nd R 3 () v =, b, c = i + b j + c k; vector ddition nd subtrction geometriclly using prllelogrms spnned by u nd v; length or mgnitude of v =, b, c,

### 9.4. ; 65. A family of curves has polar equations. ; 66. The astronomer Giovanni Cassini ( ) studied the family of curves with polar equations

54 CHAPTER 9 PARAMETRIC EQUATINS AND PLAR CRDINATES 49. r, 5. r sin 3, 5 54 Find the points on the given curve where the tngent line is horizontl or verticl. 5. r 3 cos 5. r e 53. r cos 54. r sin 55. Show

### STUDY GUIDE, CALCULUS III, 2017 SPRING

TUY GUIE, ALULU III, 2017 PING ontents hpter 13. Functions of severl vribles 1 13.1. Plnes nd surfces 2 13.2. Grphs nd level curves 2 13.3. Limit of function of two vribles 2 13.4. Prtil derivtives 2 13.5.

### 10.4 AREAS AND LENGTHS IN POLAR COORDINATES

65 CHAPTER PARAMETRIC EQUATINS AND PLAR CRDINATES.4 AREAS AND LENGTHS IN PLAR CRDINATES In this section we develop the formul for the re of region whose oundry is given y polr eqution. We need to use the

### Independent of path Green s Theorem Surface Integrals. MATH203 Calculus. Dr. Bandar Al-Mohsin. School of Mathematics, KSU 20/4/14

School of Mathematics, KSU 20/4/14 Independent of path Theorem 1 If F (x, y) = M(x, y)i + N(x, y)j is continuous on an open connected region D, then the line integral F dr is independent of path if and

### Section 16.3 Double Integrals over General Regions

Section 6.3 Double Integrls over Generl egions Not ever region is rectngle In the lst two sections we considered the problem of integrting function of two vribles over rectngle. This sitution however is

### WI1402-LR Calculus II Delft University of Technology

WI402-LR lculus II elft University of Technology Yer 203 204 Michele Fcchinelli Version.0 Lst modified on Februry, 207 Prefce This summry ws written for the course WI402-LR lculus II, tught t the elft

### Polar Coordinates. July 30, 2014

Polr Coordintes July 3, 4 Sometimes it is more helpful to look t point in the xy-plne not in terms of how fr it is horizontlly nd verticlly (this would men looking t the Crtesin, or rectngulr, coordintes

### Triangles and parallelograms of equal area in an ellipse

1 Tringles nd prllelogrms of equl re in n ellipse Roert Buonpstore nd Thoms J Osler Mthemtics Deprtment RownUniversity Glssoro, NJ 0808 USA uonp0@studentsrownedu osler@rownedu Introduction In the pper

### 1. Vector Fields. f 1 (x, y, z)i + f 2 (x, y, z)j + f 3 (x, y, z)k.

HAPTER 14 Vector alculus 1. Vector Fields Definition. A vector field in the plane is a function F(x, y) from R into V, We write F(x, y) = hf 1 (x, y), f (x, y)i = f 1 (x, y)i + f (x, y)j. A vector field

### Double Integrals over Rectangles

Jim Lmbers MAT 8 Spring Semester 9- Leture Notes These notes orrespond to Setion. in Stewrt nd Setion 5. in Mrsden nd Tromb. Double Integrls over etngles In single-vrible lulus, the definite integrl of

### Lecture 16. Double integrals. Dan Nichols MATH 233, Spring 2018 University of Massachusetts.

Leture 16 Double integrls Dn Nihols nihols@mth.umss.edu MATH 233, Spring 218 University of Msshusetts Mrh 27, 218 (2) iemnn sums for funtions of one vrible Let f(x) on [, b]. We n estimte the re under

### 2.1 Partial Derivatives

.1 Partial Derivatives.1.1 Functions of several variables Up until now, we have only met functions of single variables. From now on we will meet functions such as z = f(x, y) and w = f(x, y, z), which

### 13.1 Double Integral over Rectangle. f(x ij,y ij ) i j I <ɛ. f(x, y)da.

CHAPTE 3, MULTIPLE INTEGALS Definition. 3. Double Integrl over ectngle A function f(x, y) is integrble on rectngle [, b] [c, d] if there is number I such tht for ny given ɛ>0thereisδ>0 such tht, fir ny

### Math 116 Calculus II

Mth 6 Clculus II Contents 7 Additionl topics in Integrtion 7. Integrtion by prts..................................... 7.4 Numericl Integrtion.................................... 7 7.5 Improper Integrl......................................

### Test Yourself. 11. The angle in degrees between u and w. 12. A vector parallel to v, but of length 2.

Test Yourself These are problems you might see in a vector calculus course. They are general questions and are meant for practice. The key follows, but only with the answers. an you fill in the blanks

### Independence of Path and Conservative Vector Fields

Independence of Path and onservative Vector Fields MATH 311, alculus III J. Robert Buchanan Department of Mathematics Summer 2011 Goal We would like to know conditions on a vector field function F(x, y)

### Differentiable functions (Sec. 14.4)

Math 20C Multivariable Calculus Lecture 3 Differentiable functions (Sec. 4.4) Review: Partial derivatives. Slide Partial derivatives and continuity. Equation of the tangent plane. Differentiable functions.

### Fubini for continuous functions over intervals

Fuini for ontinuous funtions over intervls We first prove the following theorem for ontinuous funtions. Theorem. Let f(x) e ontinuous on ompt intervl =[, [,. Then [, [, [ [ f(x, y)(x, y) = f(x, y)y x =

### (CATALYST GROUP) B"sic Electric"l Engineering

(CATALYST GROUP) B"sic Electric"l Engineering 1. Kirchhoff s current l"w st"tes th"t (") net current flow "t the junction is positive (b) Hebr"ic sum of the currents meeting "t the junction is zero (c)

### Polar coordinates 5C. 1 a. a 4. π = 0 (0) is a circle centre, 0. and radius. The area of the semicircle is π =. π a

Polr coordintes 5C r cos Are cos d (cos + ) sin + () + 8 cos cos r cos is circle centre, nd rdius. The re of the semicircle is. 8 Person Eduction Ltd 8. Copying permitted for purchsing institution only.

### Convolutional Networks. Lecture slides for Chapter 9 of Deep Learning Ian Goodfellow

Convolutionl Networks Lecture slides for Chpter 9 of Deep Lerning In Goodfellow 2016-09-12 Convolutionl Networks Scle up neurl networks to process very lrge imges / video sequences Sprse connections Prmeter

LECTURE 9: QUADRATIC RESIDUES AND THE LAW OF QUADRATIC RECIPROCITY 1. Bsic roerties of qudrtic residues We now investigte residues with secil roerties of lgebric tye. Definition 1.1. (i) When (, m) 1 nd

### WESI 205 Workbook. 1 Review. 2 Graphing in 3D

1 Review 1. (a) Use a right triangle to compute the distance between (x 1, y 1 ) and (x 2, y 2 ) in R 2. (b) Use this formula to compute the equation of a circle centered at (a, b) with radius r. (c) Extend

### Practice problems from old exams for math 233

Practice problems from old exams for math 233 William H. Meeks III January 14, 2010 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

### i + u 2 j be the unit vector that has its initial point at (a, b) and points in the desired direction. It determines a line in the xy-plane:

1 Directional Derivatives and Gradients Suppose we need to compute the rate of change of f(x, y) with respect to the distance from a point (a, b) in some direction. Let u = u 1 i + u 2 j be the unit vector

### FUNCTIONS OF SEVERAL VARIABLES AND PARTIAL DIFFERENTIATION

FUNCTIONS OF SEVERAL VARIABLES AND PARTIAL DIFFERENTIATION 1. Functions of Several Variables A function of two variables is a rule that assigns a real number f(x, y) to each ordered pair of real numbers

### Geometric quantities for polar curves

Roerto s Notes on Integrl Clculus Chpter 5: Bsic pplictions of integrtion Section 10 Geometric quntities for polr curves Wht you need to know lredy: How to use integrls to compute res nd lengths of regions

### Solutions to the problems from Written assignment 2 Math 222 Winter 2015

Solutions to the problems from Written assignment 2 Math 222 Winter 2015 1. Determine if the following limits exist, and if a limit exists, find its value. x2 y (a) The limit of f(x, y) = x 4 as (x, y)

### Exam 2 Review Sheet. r(t) = x(t), y(t), z(t)

Exam 2 Review Sheet Joseph Breen Particle Motion Recall that a parametric curve given by: r(t) = x(t), y(t), z(t) can be interpreted as the position of a particle. Then the derivative represents the particle

### Mesh and Node Equations: More Circuits Containing Dependent Sources

Mesh nd Node Equtions: More Circuits Contining Dependent Sources Introduction The circuits in this set of problems ech contin single dependent source. These circuits cn be nlyzed using mesh eqution or

### Exam 2 Summary. 1. The domain of a function is the set of all possible inputes of the function and the range is the set of all outputs.

Exam 2 Summary Disclaimer: The exam 2 covers lectures 9-15, inclusive. This is mostly about limits, continuity and differentiation of functions of 2 and 3 variables, and some applications. The complete

### MATH 8 FALL 2010 CLASS 27, 11/19/ Directional derivatives Recall that the definitions of partial derivatives of f(x, y) involved limits

MATH 8 FALL 2010 CLASS 27, 11/19/2010 1 Directional derivatives Recall that the definitions of partial derivatives of f(x, y) involved limits lim h 0 f(a + h, b) f(a, b), lim h f(a, b + h) f(a, b) In these

### Exercise 1-1. The Sine Wave EXERCISE OBJECTIVE DISCUSSION OUTLINE. Relationship between a rotating phasor and a sine wave DISCUSSION

Exercise 1-1 The Sine Wve EXERCISE OBJECTIVE When you hve completed this exercise, you will be fmilir with the notion of sine wve nd how it cn be expressed s phsor rotting round the center of circle. You

### Mock final exam Math fall 2007

Mock final exam Math - fall 7 Fernando Guevara Vasquez December 5 7. Consider the curve r(t) = ti + tj + 5 t t k, t. (a) Show that the curve lies on a sphere centered at the origin. (b) Where does the

### Review guide for midterm 2 in Math 233 March 30, 2009

Review guide for midterm 2 in Math 2 March, 29 Midterm 2 covers material that begins approximately with the definition of partial derivatives in Chapter 4. and ends approximately with methods for calculating

### 4 to find the dimensions of the rectangle that have the maximum area. 2y A =?? f(x, y) = (2x)(2y) = 4xy

Optimization Constrained optimization and Lagrange multipliers Constrained optimization is what it sounds like - the problem of finding a maximum or minimum value (optimization), subject to some other

### VectorPlot[{y^2-2x*y,3x*y-6*x^2},{x,-5,5},{y,-5,5}]

hapter 16 16.1. 6. Notice that F(x, y) has length 1 and that it is perpendicular to the position vector (x, y) for all x and y (except at the origin). Think about drawing the vectors based on concentric

### METHOD OF LOCATION USING SIGNALS OF UNKNOWN ORIGIN. Inventor: Brian L. Baskin

METHOD OF LOCATION USING SIGNALS OF UNKNOWN ORIGIN Inventor: Brin L. Bskin 1 ABSTRACT The present invention encompsses method of loction comprising: using plurlity of signl trnsceivers to receive one or

### 33. Riemann Summation over Rectangular Regions

. iemann Summation over ectangular egions A rectangular region in the xy-plane can be defined using compound inequalities, where x and y are each bound by constants such that a x a and b y b. Let z = f(x,

### Partial Differentiation 1 Introduction

Partial Differentiation 1 Introduction In the first part of this course you have met the idea of a derivative. To recap what this means, recall that if you have a function, z say, then the slope of the

### NEW OSTROWSKI-TYPE INEQUALITIES AND THEIR APPLICATIONS IN TWO COORDINATES

At Mth Univ Comenine Vol LXXXV, (06, pp 07 07 NEW OSTROWSKI-TYPE INEQUALITIES AND THEIR APPLICATIONS IN TWO COORDINATES G FARID Abstrt In this pper, new Ostrowski-type inequlities in two oordintes re estblished

### Notes on Spherical Triangles

Notes on Spheril Tringles In order to undertke lultions on the elestil sphere, whether for the purposes of stronomy, nvigtion or designing sundils, some understnding of spheril tringles is essentil. The

### Lecture 19. Vector fields. Dan Nichols MATH 233, Spring 2018 University of Massachusetts. April 10, 2018.

Lecture 19 Vector fields Dan Nichols nichols@math.umass.edu MATH 233, Spring 218 University of Massachusetts April 1, 218 (2) Chapter 16 Chapter 12: Vectors and 3D geometry Chapter 13: Curves and vector

### CS 135: Computer Architecture I. Boolean Algebra. Basic Logic Gates

Bsic Logic Gtes : Computer Architecture I Boolen Algebr Instructor: Prof. Bhgi Nrhri Dept. of Computer Science Course URL: www.ses.gwu.edu/~bhgiweb/cs35/ Digitl Logic Circuits We sw how we cn build the

### Ch13 INTRODUCTION TO NUMERICAL TECHNIQUES FOR NONLINEAR SUPERSONIC FLOW

Ch13 INTRODUCTION TO NUMERICAL TECHNIQUES FOR NONLINEAR SUPERSONIC FLOW Goerning Eqtions for Unste Iniscid Compressible Flow Eler's eqtion Stte eqtions finite-difference nmericl techniqes Goerning Eqtions

### Multivariable integration. Multivariable integration. Iterated integration

Multivrible integrtion Multivrible integrtion Integrtion is ment to nswer the question how muh, depending on the problem nd how we set up the integrl we n be finding how muh volume, how muh surfe re, how

### Calculus II Fall 2014

Calculus II Fall 2014 Lecture 3 Partial Derivatives Eitan Angel University of Colorado Monday, December 1, 2014 E. Angel (CU) Calculus II 1 Dec 1 / 13 Introduction Much of the calculus of several variables

### Synchronous Machine Parameter Measurement

Synchronous Mchine Prmeter Mesurement 1 Synchronous Mchine Prmeter Mesurement Introduction Wound field synchronous mchines re mostly used for power genertion but lso re well suited for motor pplictions

### This exam contains 9 problems. CHECK THAT YOU HAVE A COMPLETE EXAM.

Math 126 Final Examination Winter 2012 Your Name Your Signature Student ID # Quiz Section Professor s Name TA s Name This exam contains 9 problems. CHECK THAT YOU HAVE A COMPLETE EXAM. This exam is closed

### Practice problems from old exams for math 233

Practice problems from old exams for math 233 William H. Meeks III October 26, 2012 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

### First Round Solutions Grades 4, 5, and 6

First Round Solutions Grdes 4, 5, nd 1) There re four bsic rectngles not mde up of smller ones There re three more rectngles mde up of two smller ones ech, two rectngles mde up of three smller ones ech,

### VECTOR CALCULUS Julian.O 2016

VETO ALULUS Julian.O 2016 Vector alculus Lecture 3: Double Integrals Green s Theorem Divergence of a Vector Field Double Integrals: Double integrals are used to integrate two-variable functions f(x, y)

### REVIEW QUESTIONS. Figure For Review Question Figure For Review Question Figure For Review Question 10.2.

HAPTE 0 Sinusoidl Stedy-Stte Anlysis 42 EVIEW QUESTIONS 0. The voltge cross the cpcitor in Fig. 0.43 is: () 5 0 V () 7.07 45 V (c) 7.07 45 V (d) 5 45 V Ω 0.5 efer to the circuit in Fig. 0.47 nd oserve

### NONCLASSICAL CONSTRUCTIONS II

NONLSSIL ONSTRUTIONS II hristopher Ohrt UL Mthcircle - Nov. 22, 2015 Now we will try ourselves on oncelet-steiner constructions. You cn only use n (unmrked) stright-edge but you cn ssume tht somewhere

### Kirchhoff s Rules. Kirchhoff s Laws. Kirchhoff s Rules. Kirchhoff s Laws. Practice. Understanding SPH4UW. Kirchhoff s Voltage Rule (KVR):

SPH4UW Kirchhoff s ules Kirchhoff s oltge ule (K): Sum of voltge drops round loop is zero. Kirchhoff s Lws Kirchhoff s Current ule (KC): Current going in equls current coming out. Kirchhoff s ules etween

### Compared to generators DC MOTORS. Back e.m.f. Back e.m.f. Example. Example. The construction of a d.c. motor is the same as a d.c. generator.

Compred to genertors DC MOTORS Prepred by Engr. JP Timol Reference: Electricl nd Electronic Principles nd Technology The construction of d.c. motor is the sme s d.c. genertor. the generted e.m.f. is less

### Math 148 Exam III Practice Problems

Math 48 Exam III Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture, all homework problems, all lab

### Calculus IV Math 2443 Review for Exam 2 on Mon Oct 24, 2016 Exam 2 will cover This is only a sample. Try all the homework problems.

Calculus IV Math 443 eview for xam on Mon Oct 4, 6 xam will cover 5. 5.. This is only a sample. Try all the homework problems. () o not evaluated the integral. Write as iterated integrals: (x + y )dv,

### CHAPTER 2 LITERATURE STUDY

CHAPTER LITERATURE STUDY. Introduction Multipliction involves two bsic opertions: the genertion of the prtil products nd their ccumultion. Therefore, there re two possible wys to speed up the multipliction:

### PB-735 HD DP. Industrial Line. Automatic punch and bind machine for books and calendars

PB-735 HD DP Automtic punch nd bind mchine for books nd clendrs A further step for the utomtion of double loop binding. A clever nd flexible mchine ble to punch nd bind in line up to 9/16. Using the best

### MATH Review Exam II 03/06/11

MATH 21-259 Review Exam II 03/06/11 1. Find f(t) given that f (t) = sin t i + 3t 2 j and f(0) = i k. 2. Find lim t 0 3(t 2 1) i + cos t j + t t k. 3. Find the points on the curve r(t) at which r(t) and

### (d) If a particle moves at a constant speed, then its velocity and acceleration are perpendicular.

Math 142 -Review Problems II (Sec. 10.2-11.6) Work on concept check on pages 734 and 822. More review problems are on pages 734-735 and 823-825. 2nd In-Class Exam, Wednesday, April 20. 1. True - False

### CHAPTER 11 PARTIAL DERIVATIVES

CHAPTER 11 PARTIAL DERIVATIVES 1. FUNCTIONS OF SEVERAL VARIABLES A) Definition: A function of two variables is a rule that assigns to each ordered pair of real numbers (x,y) in a set D a unique real number

### Mixture of Discrete and Continuous Random Variables

Mixture of Discrete and Continuous Random Variables What does the CDF F X (x) look like when X is discrete vs when it s continuous? A r.v. could have a continuous component and a discrete component. Ex

### MEASURE THE CHARACTERISTIC CURVES RELEVANT TO AN NPN TRANSISTOR

Electricity Electronics Bipolr Trnsistors MEASURE THE HARATERISTI URVES RELEVANT TO AN NPN TRANSISTOR Mesure the input chrcteristic, i.e. the bse current IB s function of the bse emitter voltge UBE. Mesure

### Algebra Practice. Dr. Barbara Sandall, Ed.D., and Travis Olson, M.S.

By Dr. Brr Sndll, Ed.D., Dr. Melfried Olson, Ed.D., nd Trvis Olson, M.S. COPYRIGHT 2006 Mrk Twin Medi, Inc. ISBN 978-1-58037-754-6 Printing No. 404042-EB Mrk Twin Medi, Inc., Pulishers Distriuted y Crson-Dellos

### MATH Exam 2 Solutions November 16, 2015

MATH 1.54 Exam Solutions November 16, 15 1. Suppose f(x, y) is a differentiable function such that it and its derivatives take on the following values: (x, y) f(x, y) f x (x, y) f y (x, y) f xx (x, y)

### ABB STOTZ-KONTAKT. ABB i-bus EIB Current Module SM/S Intelligent Installation Systems. User Manual SM/S In = 16 A AC Un = 230 V AC

User Mnul ntelligent nstlltion Systems A B 1 2 3 4 5 6 7 8 30 ma 30 ma n = AC Un = 230 V AC 30 ma 9 10 11 12 C ABB STOTZ-KONTAKT Appliction Softwre Current Vlue Threshold/1 Contents Pge 1 Device Chrcteristics...

### Definitions and claims functions of several variables

Definitions and claims functions of several variables In the Euclidian space I n of all real n-dimensional vectors x = (x 1, x,..., x n ) the following are defined: x + y = (x 1 + y 1, x + y,..., x n +

### Math Circles Finite Automata Question Sheet 3 (Solutions)

Mth Circles Finite Automt Question Sheet 3 (Solutions) Nickols Rollick nrollick@uwterloo.c Novemer 2, 28 Note: These solutions my give you the nswers to ll the prolems, ut they usully won t tell you how

### Lecture 4 : Monday April 6th

Lecture 4 : Monday April 6th jacques@ucsd.edu Key concepts : Tangent hyperplane, Gradient, Directional derivative, Level curve Know how to find equation of tangent hyperplane, gradient, directional derivatives,

### Math 5BI: Problem Set 1 Linearizing functions of several variables

Math 5BI: Problem Set Linearizing functions of several variables March 9, A. Dot and cross products There are two special operations for vectors in R that are extremely useful, the dot and cross products.

### MATH 259 FINAL EXAM. Friday, May 8, Alexandra Oleksii Reshma Stephen William Klimova Mostovyi Ramadurai Russel Boney A C D G H B F E

MATH 259 FINAL EXAM 1 Friday, May 8, 2009. NAME: Alexandra Oleksii Reshma Stephen William Klimova Mostovyi Ramadurai Russel Boney A C D G H B F E Instructions: 1. Do not separate the pages of the exam.

### University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009

Problem 1: Using DC Mchine University o North Crolin-Chrlotte Deprtment o Electricl nd Computer Engineering ECGR 4143/5195 Electricl Mchinery Fll 2009 Problem Set 4 Due: Thursdy October 8 Suggested Reding:

### 47. Conservative Vector Fields

47. onservative Vector Fields Given a function z = φ(x, y), its gradient is φ = φ x, φ y. Thus, φ is a gradient (or conservative) vector field, and the function φ is called a potential function. Suppose

### Understanding Basic Analog Ideal Op Amps

Appliction Report SLAA068A - April 2000 Understnding Bsic Anlog Idel Op Amps Ron Mncini Mixed Signl Products ABSTRACT This ppliction report develops the equtions for the idel opertionl mplifier (op mp).

### Experiment 3: The research of Thevenin theorem

Experiment 3: The reserch of Thevenin theorem 1. Purpose ) Vlidte Thevenin theorem; ) Mster the methods to mesure the equivlent prmeters of liner twoterminl ctive. c) Study the conditions of the mximum

### Lecture XII: Ideal filters

BME 171: Signals and Systems Duke University October 29, 2008 This lecture Plan for the lecture: 1 LTI systems with sinusoidal inputs 2 Analog filtering frequency-domain description: passband, stopband

### SOLVING TRIANGLES USING THE SINE AND COSINE RULES

Mthemtics Revision Guides - Solving Generl Tringles - Sine nd Cosine Rules Pge 1 of 17 M.K. HOME TUITION Mthemtics Revision Guides Level: GCSE Higher Tier SOLVING TRIANGLES USING THE SINE AND COSINE RULES

### ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 6 - Tues 17th Oct 2017 Functions of Several Variables and Partial Derivatives

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 6 - Tues 17th Oct 2017 Functions of Several Variables and Partial Derivatives So far we have dealt with functions of the form y = f(x),

### (1) Primary Trigonometric Ratios (SOH CAH TOA): Given a right triangle OPQ with acute angle, we have the following trig ratios: ADJ

Tringles nd Trigonometry Prepred y: S diyy Hendrikson Nme: Dte: Suppose we were sked to solve the following tringles: Notie tht eh tringle hs missing informtion, whih inludes side lengths nd ngles. When

### Diffraction and Interference. 6.1 Diffraction. Diffraction grating. Diffraction grating. Question. Use of a diffraction grating in a spectrometer

irction nd Intererence 6.1 irction irction grting Circulr dirction irction nd intererence re similr phenomen. Intererence is the eect o superposition o 2 coherent wves. irction is the superposition o mny

### Functions of several variables

Chapter 6 Functions of several variables 6.1 Limits and continuity Definition 6.1 (Euclidean distance). Given two points P (x 1, y 1 ) and Q(x, y ) on the plane, we define their distance by the formula

### INTRODUCTION TO TRIGONOMETRY AND ITS APPLICATIONS

CHAPTER 8 INTRODUCTION TO TRIGONOMETRY AND ITS APPLICATIONS (A) Min Concepts nd Results Trigonometric Rtios of the ngle A in tringle ABC right ngled t B re defined s: sine of A = sin A = side opposite

### Math Final Exam - 6/11/2015

Math 200 - Final Exam - 6/11/2015 Name: Section: Section Class/Times Instructor Section Class/Times Instructor 1 9:00%AM ( 9:50%AM Papadopoulos,%Dimitrios 11 1:00%PM ( 1:50%PM Swartz,%Kenneth 2 11:00%AM

### Math 32A Discussion Session Week 9 Notes November 28 and 30, 2017

Math 3A Discussion Session Week 9 Notes November 8 an 30, 07 This week we ll explore some of the ieas from chapter 5, focusing mostly on the graient. We ll motivate this exploration with an example that

### Multiple Integrals. Advanced Calculus. Lecture 1 Dr. Lahcen Laayouni. Department of Mathematics and Statistics McGill University.

Lecture epartment of Mathematics and Statistics McGill University January 4, 27 ouble integrals Iteration of double integrals ouble integrals Consider a function f(x, y), defined over a rectangle = [a,

### [f(t)] 2 + [g(t)] 2 + [h(t)] 2 dt. [f(u)] 2 + [g(u)] 2 + [h(u)] 2 du. The Fundamental Theorem of Calculus implies that s(t) is differentiable and

Midterm 2 review Math 265 Fall 2007 13.3. Arc Length and Curvature. Assume that the curve C is described by the vector-valued function r(r) = f(t), g(t), h(t), and that C is traversed exactly once as t

### Section 3: Functions of several variables.

Section 3: Functions of several variables. Compiled by Chris Tisdell S1: Motivation S2: Function of two variables S3: Visualising and sketching S4: Limits and continuity S5: Partial differentiation S6:

### Chapter 16. Partial Derivatives

Chapter 16 Partial Derivatives The use of contour lines to help understand a function whose domain is part of the plane goes back to the year 1774. A group of surveyors had collected a large number of

### ECE 274 Digital Logic. Digital Design. Datapath Components Shifters, Comparators, Counters, Multipliers Digital Design

ECE 27 Digitl Logic Shifters, Comprtors, Counters, Multipliers Digitl Design..7 Digitl Design Chpter : Slides to ccompny the textbook Digitl Design, First Edition, by Frnk Vhid, John Wiley nd Sons Publishers,

### Alternating-Current Circuits

chpter 33 Alternting-Current Circuits 33.1 AC Sources 33.2 esistors in n AC Circuit 33.3 Inductors in n AC Circuit 33.4 Cpcitors in n AC Circuit 33.5 The LC Series Circuit 33.6 Power in n AC Circuit 33.7