33. Riemann Summation over Rectangular Regions

Size: px
Start display at page:

Download "33. Riemann Summation over Rectangular Regions"

Transcription

1 . iemann Summation over ectangular egions A rectangular region in the xy-plane can be defined using compound inequalities, where x and y are each bound by constants such that a x a and b y b. Let z = f(x, y) be a continuous function defined over a rectangular region in the xy-plane. The notation f(x, y) da represents the double integral of z = f(x, y) over. The da represents area element, and is either dy dx or dx dy. Thus, we can write f(x, y) da a b = f(x, y) dy dx = f(x, y) a b b b a a dx dy. Note that the bounds a and a agree with the differential dx, and bounds b and b agree with dy. Example.: Use iemann Sums to approximate the value of x y da where is the rectangle x and y. Subdivide the region into subregions each with length to a side, and from each subregion, choose x and y to be the upper right corner. Solution: The rectangular region is shown below at left, subdivided into subregions, so that A = x y = ()() =. There are such subregions, shown below at right: 79

2 We then choose a representative point (x i, y i ) from within each subregion. In this example, we choose (x i, y i ) to be the upper right point within each subregion (this is an arbitrary choice. We could choose the lower left or the middle point, and so on). In the image below, each of the upper right points are listed: Next, we evaluate the integrand z = f(x, y) = x y at the representative points (x i, y i ): f(,) = f(,) = f(,) = f(,) = f(,) = 6 f(,) = 6 f(,) = f(,) = f(,) = 7 f(,) = f(,) = 8 f(,) = 8 Visually, we have a surface z = f(x, y) = x y above the xy-plane. Each of subregions in are the base of a rectangular box whose height is the function value shown in the table above. Each box has a volume of f(x i, y i ) da. Since da = dx dy = ()() = in each case, each box has volume f(x i, y i ), or simply f(x i, y i ). The value of x y da is approximated by the sum of the volumes of the rectangular boxes contained within it. Thus, x y da = 96. Note that if we chose the representative point to be the lower-left corner of each subregion, we would find that x y da. The mean, 96+ =, is a reasonable approximation of x y da where is the rectangle x and y. 8

3 Example.: Use iemann Sums to approximate g(x, y) da, where g is shown by the contour map below. Let the region of integration be given by x, 6 y 6, and let x = and y =. Use the middle point within each subregion. Solution: The region is identified and then subdivided into subregions (lower left, boldfaced). Then the middle point (x i, y i ) from within each subregion is identified (lower right): The values of z = g(x, y) are estimated from the contour map. For example, in the top tier of subregions, reading left to right and using the middle points, the values of g are approximately g(,) = 7, g(,) = 6, g(,) = and g(,) = 6. 8

4 Each of these subregions is the base of a rectangular box whose heights are given by the z i = g(x i, y i ) values. Each box then has a volume of g(x i, y i ) da. Since da = ()() =, each box has a volume of g(x i, y i ). The approximate values of g(x i, y i ) are shown below in an array that matches the orientation of the subregions in the previous figure: The approximate value of contained within it: g(x, y) da is the sum of the volumes of each rectangular box g(x, y) da 7() + 6() + () + 6() +. Note that the can be factored to the front. Thus, the approximate value of sum of all the g(x i, y i ) values in the array above, multiplied by : g(x, y) da is the g(x, y) da which is about,98 cubic units ( ), 8

5 . Double Integration over ectangular egions Example.: Evaluate x y da where is the rectangle x and y. Solution: We can choose either the dy dx ordering or the dx dy ordering. Let s choose da = dx dy. Thus, we have x y da = x y dx dy. Integrate the inner integral with respect to x: x y dx Now we integrate the result with respect to y: 9y dy If we chose da = dy dx, we have the following: The inner integral is determined first: x y dy This result is now integrated with respect to x: = [ x y] = y[ ] = 9y. = [ 9 y ] = 9 ( ) = 8. x y dy dx. = x [ y ] = x [() () ] = x () = x. x dx = [x ] = [() () ] = (7) = 8. Both orderings of the differentials gives the same result, 8, as expected. This is the volume of the solid bounded below by and above by the surface x y. 8

6 If the region is infinite in one direction, the integral is improper and may be evaluated using limits. Example.: Evaluate x + y dx dy. Solution: The inner integral is determined first, with +y x + y dx = + y x dx = + y [ x ] moved outside the integral: = ( + y ) [() ( ) ] = ( + y ). This is then integrated with respect to y. The constant can be moved outside the integral, and the upper bound,, is replaced with b, where b is allowed to approach infinity as a limit: + y dy = lim ( b + y dy ) = lim b [arctan y] b b = lim [arctan b arctan ] b = (π ) = π 8. ecall that as an angle θ approaches π radians from below, tan θ approaches positive. Thus, if θ = arctan b, then arctan b approaches π as b approaches. 8

7 Example.: Evaluate π (x + cos y) dy π 6 dx. Solution: The inner integral is determined first: π (x + cos y) dy π 6 π = [x y + sin y] π 6 = [x ( π ) + sin (π )] [x ( π 6 ) + sin (π 6 )]. ecall that sin ( π ) = and that sin (π) = sin 6 (π ) =. Thus we have, [x ( π ) + ( )] [x ( π 6 ) + ()] = x ( π π 6 ) = π x. This is then integrated: ( π x ) dx = [ π 9 x x] = [ π 9 () ()] [π 9 () ()] Example.: Evaluate = 6π 9 8. xye x+y dx dy. Solution: We can simplify the integrand using algebra first: xye x+y = xye x e y = xe x ye y. Note that since this is a single term, we may group the factors as desired. The factor xe x will be integrated using integration by parts, while the factor ye y can be integrated using u-du substitution. It does not make a difference in which order we integrate, but it may be simpler to integrate with respect to y first. Thus, we rewrite the iterated integral as xe x ye y dy dx. 8

8 Integrating the inside integral with respect to y, we have xe x ye y dy = xe x [ ey ] = xex [e () e () ] = xex [e ]. This is now integrated with respect to x. Note that (e ) is a constant and can be moved outside the integral: e xe x dx. To antidifferentiate xe x, use integration by parts. Let u = x and dv = e x dx. Thus, du = dx and v = e x. Since u dv = uv v du, we have e xe x dx = e [xe x e x dx] = e [xe x e x ] = e [(e e ) (e e )] = e (e ) = e 7 e. Example.: The density of a city s population is given by P(x, y) =.x +.y, where x and y are in miles, and P is on thousands of people per square mile. Assume that the city is a rectangle measuring 6 miles east to west (x), and miles north to south (y), and that x = and y = is the southwestern corner of the city s boundaries. Find the city s population. Solution: The city s population is given by the double integral: 6 (.x +.y ) dx dy. 86

9 Evaluating the inside integral with respect to x first, we have 6 (.x +.y ) dx = [. 6 x +.xy ] = (. (6) +.(6)y ) (. () +.()y ) =. +.6y. This is then integrated with respect to y: (. +.6y ) dy = [.y +.6 y ] = (.() +.6 () ) (.() +.6 () ) =.96. Thus, the city has about,96 people within its boundaries. The average value of a multivariable function z = f(x, y) over a region is given by f av = f(x, y) da, where A() represents the area of region. A() Example.6: Find the average value of the result in the previous example, and explain its meaning in context. Solution: The region has an area of (6)() = square miles. Thus, the average value of P(x, y) =.x +.y over is P av = (.96) =.. The city has an average density of about, people per square mile. 87

10 . Double Integration over Non-ectangular egions of Type I Consider the region shown below. The region is bounded by the lines y = (the x-axis), x = (the y-axis), and y = x +. If we set up a double integral is the dy dx ordering of integration, we draw an arrow in the positive y direction (see image, above right). It enters the region at y = and exits through y = x +, where the subscripts help us remember the order in which the boundaries are crossed. The double integral is y = ( )x+ y = f(x, y) dy ( )x+ dx = f(x, y) dy dx. As a dx dy integral, draw an arrow drawn in the positive x direction (see image at right). It enters the region at x = and exits through x = y + (which is the equation y = x + that has been solved for x). The resulting y bounds are to, and the double integral is ( )x+ f(x, y) dx dy. There is no ambiguity where an arrow enters or exits the region. Such a region is called a Type I region. If there is ambiguity, then the region is called a Type II region. Below, at left, are regions of Type I. At right are regions of Type II. Integrals over a region of Type I usually require one iterated integral. For regions of Type II, more than one iterated integral is required. 88

11 Example.: Find the volume below z = f(x, y) = xy + x over the region, which is a triangle with vertices (,), (,) and (,). Solution. The sketch below shows this to be a region of Type I. Identify all vertex points and the equation of all boundaries. If we choose to integrate in the dy dx ordering, visualize an arrow drawn in the positive y direction. It enters the region at the x-axis, which is y =, and exits through y = x +. The x bounds are to, and the iterated integral is x+ (xy + x ) dy dx. Integrating with respect to y, we have x+ (xy + x ) dy = [ x+ xy + x y] = ( x( x + ) + x ( x + )) ( x() + x ()). The expression above simplifies to x + x. This is the integrand to be integrated with respect to x now: ( x + x) dx = [ x + x ] = ( () + () ) = 6. 89

12 Example.: Evaluate xy da, where is in the first quadrant bounded by the x-axis, the y-axis and the parabola y = x. Solution: Sketch the region and decide on an ordering of integration. The region is shown to the right. If we choose a dy dx ordering, visualize an arrow drawn in the positive y direction. It enters the region at the x-axis, which is y =, and exits through y = x. The bounds for x are to, and the double integral is x xy dy dx. The inside integral is determined: x xy dy = [ x xy ] = x( x ). This is then integrated with respect to x using a u-du substitution, with u = x : x( x ) dx = [ ( x ) ] = ( ( () ) ) ( ( () ) ) = ( () ) = 9,6. If we use a dx dy ordering, the double integral is written y xy dx dy. It also evaluates to 9,6. 9

13 Example.: Given e e x g(x, y) dy dx, everse the order of integration (that is, rewrite this double integral as a dx dy integral). Solution: The ordering of integration tells us that if we visualize an arrow in the positive y direction, it will enter the region at y = e x and exit at the line y = e, with the x bounds being to. The region is shown below, with all vertices and boundaries identified: To reverse the ordering, now visualize an arrow in the positive x direction. It enters at x = (the y-axis) and exits at x = ln y. The bounds for y are to e. We have ln y g(x, y) dx dy. e 9

14 Example.: everse the order of integration of 9 y h(x, y) dx dy. y Solution: Visualize an arrow in the positive x direction. It enters the region at x = y and exits at x = y. The two graphs meet at (,) and (,9), and the region is shown below: Observe that we redefined the bounds in y as a function in terms of x. Viewing the region, now visualize an arrow in the positive y direction. It will enter at y = x and exit at y = x. These become the bounds for the dy integral. The bounds for x are to, and the equivalent double integral in the dy dx ordering is x h(x, y) dy dx. x 9

15 Example.: Evaluate + x dx y dy. Solution: If we attempt to evaluate the integrals as written (inside first with respect to x, then outside with respect to y), we discover that finding the antiderivative of + x with respect to x is challenging (it would require a trigonometric substitution). Instead, we reverse the order of integration. The double integral, as written, suggests that the region is bounded by the line x = y and the line x =, with the bounds for y being to. This region is sketched below, and all vertices and boundaries are identified: eversing the order of integration, we visualize an arrow in the positive y-direction. It enters at y = and exits at y = x. The bounds for x will be to, and the double integral in the dy dx ordering is x + x dy dx. Now, the inside integral is determined. Note that the antiderivative of + x with respect to y is y + x. Thus, we have x + x dy = [y + x ] x = x + x. Now we integrate x + x with respect to x. The antiderivative of x + x is found by a u-du substitution. We have x + x dx = [ ( + x ) ] = ( ). 9

Double Integrals over More General Regions

Double Integrals over More General Regions Jim Lambers MAT 8 Spring Semester 9-1 Lecture 11 Notes These notes correspond to Section 1. in Stewart and Sections 5.3 and 5.4 in Marsden and Tromba. ouble Integrals over More General Regions We have

More information

MATH Exam 2 Solutions November 16, 2015

MATH Exam 2 Solutions November 16, 2015 MATH 1.54 Exam Solutions November 16, 15 1. Suppose f(x, y) is a differentiable function such that it and its derivatives take on the following values: (x, y) f(x, y) f x (x, y) f y (x, y) f xx (x, y)

More information

Mathematics 205 HWK 19b Solutions Section 16.2 p750. (x 2 y) dy dx. 2x 2 3

Mathematics 205 HWK 19b Solutions Section 16.2 p750. (x 2 y) dy dx. 2x 2 3 Mathematics 5 HWK 9b Solutions Section 6. p75 Problem, 6., p75. Evaluate (x y) dy dx. Solution. (x y) dy dx x ( ) y dy dx [ x x dx ] [ ] y x dx Problem 9, 6., p75. For the region as shown, write f da as

More information

INTEGRATION OVER NON-RECTANGULAR REGIONS. Contents 1. A slightly more general form of Fubini s Theorem

INTEGRATION OVER NON-RECTANGULAR REGIONS. Contents 1. A slightly more general form of Fubini s Theorem INTEGRATION OVER NON-RECTANGULAR REGIONS Contents 1. A slightly more general form of Fubini s Theorem 1 1. A slightly more general form of Fubini s Theorem We now want to learn how to calculate double

More information

Final Exam Review Problems. P 1. Find the critical points of f(x, y) = x 2 y + 2y 2 8xy + 11 and classify them.

Final Exam Review Problems. P 1. Find the critical points of f(x, y) = x 2 y + 2y 2 8xy + 11 and classify them. Final Exam Review Problems P 1. Find the critical points of f(x, y) = x 2 y + 2y 2 8xy + 11 and classify them. 1 P 2. Find the volume of the solid bounded by the cylinder x 2 + y 2 = 9 and the planes z

More information

Definitions and claims functions of several variables

Definitions and claims functions of several variables Definitions and claims functions of several variables In the Euclidian space I n of all real n-dimensional vectors x = (x 1, x,..., x n ) the following are defined: x + y = (x 1 + y 1, x + y,..., x n +

More information

Estimating Areas. is reminiscent of a Riemann Sum and, amazingly enough, will be called a Riemann Sum. Double Integrals

Estimating Areas. is reminiscent of a Riemann Sum and, amazingly enough, will be called a Riemann Sum. Double Integrals Estimating Areas Consider the challenge of estimating the volume of a solid {(x, y, z) 0 z f(x, y), (x, y) }, where is a region in the xy-plane. This may be thought of as the solid under the graph of z

More information

MATH 20C: FUNDAMENTALS OF CALCULUS II FINAL EXAM

MATH 20C: FUNDAMENTALS OF CALCULUS II FINAL EXAM MATH 2C: FUNDAMENTALS OF CALCULUS II FINAL EXAM Name Please circle the answer to each of the following problems. You may use an approved calculator. Each multiple choice problem is worth 2 points.. Multiple

More information

Functions of several variables

Functions of several variables Chapter 6 Functions of several variables 6.1 Limits and continuity Definition 6.1 (Euclidean distance). Given two points P (x 1, y 1 ) and Q(x, y ) on the plane, we define their distance by the formula

More information

Practice problems from old exams for math 233

Practice problems from old exams for math 233 Practice problems from old exams for math 233 William H. Meeks III January 14, 2010 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

Review guide for midterm 2 in Math 233 March 30, 2009

Review guide for midterm 2 in Math 233 March 30, 2009 Review guide for midterm 2 in Math 2 March, 29 Midterm 2 covers material that begins approximately with the definition of partial derivatives in Chapter 4. and ends approximately with methods for calculating

More information

Calculus IV Math 2443 Review for Exam 2 on Mon Oct 24, 2016 Exam 2 will cover This is only a sample. Try all the homework problems.

Calculus IV Math 2443 Review for Exam 2 on Mon Oct 24, 2016 Exam 2 will cover This is only a sample. Try all the homework problems. Calculus IV Math 443 eview for xam on Mon Oct 4, 6 xam will cover 5. 5.. This is only a sample. Try all the homework problems. () o not evaluated the integral. Write as iterated integrals: (x + y )dv,

More information

2.1 Partial Derivatives

2.1 Partial Derivatives .1 Partial Derivatives.1.1 Functions of several variables Up until now, we have only met functions of single variables. From now on we will meet functions such as z = f(x, y) and w = f(x, y, z), which

More information

Chapter 2: Functions and Graphs Lesson Index & Summary

Chapter 2: Functions and Graphs Lesson Index & Summary Section 1: Relations and Graphs Cartesian coordinates Screen 2 Coordinate plane Screen 2 Domain of relation Screen 3 Graph of a relation Screen 3 Linear equation Screen 6 Ordered pairs Screen 1 Origin

More information

Test Yourself. 11. The angle in degrees between u and w. 12. A vector parallel to v, but of length 2.

Test Yourself. 11. The angle in degrees between u and w. 12. A vector parallel to v, but of length 2. Test Yourself These are problems you might see in a vector calculus course. They are general questions and are meant for practice. The key follows, but only with the answers. an you fill in the blanks

More information

WESI 205 Workbook. 1 Review. 2 Graphing in 3D

WESI 205 Workbook. 1 Review. 2 Graphing in 3D 1 Review 1. (a) Use a right triangle to compute the distance between (x 1, y 1 ) and (x 2, y 2 ) in R 2. (b) Use this formula to compute the equation of a circle centered at (a, b) with radius r. (c) Extend

More information

Practice problems from old exams for math 233

Practice problems from old exams for math 233 Practice problems from old exams for math 233 William H. Meeks III October 26, 2012 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

University of California, Berkeley Department of Mathematics 5 th November, 2012, 12:10-12:55 pm MATH 53 - Test #2

University of California, Berkeley Department of Mathematics 5 th November, 2012, 12:10-12:55 pm MATH 53 - Test #2 University of California, Berkeley epartment of Mathematics 5 th November, 212, 12:1-12:55 pm MATH 53 - Test #2 Last Name: First Name: Student Number: iscussion Section: Name of GSI: Record your answers

More information

F13 Study Guide/Practice Exam 3

F13 Study Guide/Practice Exam 3 F13 Study Guide/Practice Exam 3 This study guide/practice exam covers only the material since exam 2. The final exam, however, is cumulative so you should be sure to thoroughly study earlier material.

More information

Math 148 Exam III Practice Problems

Math 148 Exam III Practice Problems Math 48 Exam III Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture, all homework problems, all lab

More information

MATH 105: Midterm #1 Practice Problems

MATH 105: Midterm #1 Practice Problems Name: MATH 105: Midterm #1 Practice Problems 1. TRUE or FALSE, plus explanation. Give a full-word answer TRUE or FALSE. If the statement is true, explain why, using concepts and results from class to justify

More information

MATH Review Exam II 03/06/11

MATH Review Exam II 03/06/11 MATH 21-259 Review Exam II 03/06/11 1. Find f(t) given that f (t) = sin t i + 3t 2 j and f(0) = i k. 2. Find lim t 0 3(t 2 1) i + cos t j + t t k. 3. Find the points on the curve r(t) at which r(t) and

More information

MATH 8 FALL 2010 CLASS 27, 11/19/ Directional derivatives Recall that the definitions of partial derivatives of f(x, y) involved limits

MATH 8 FALL 2010 CLASS 27, 11/19/ Directional derivatives Recall that the definitions of partial derivatives of f(x, y) involved limits MATH 8 FALL 2010 CLASS 27, 11/19/2010 1 Directional derivatives Recall that the definitions of partial derivatives of f(x, y) involved limits lim h 0 f(a + h, b) f(a, b), lim h f(a, b + h) f(a, b) In these

More information

Joint Distributions, Independence Class 7, Jeremy Orloff and Jonathan Bloom

Joint Distributions, Independence Class 7, Jeremy Orloff and Jonathan Bloom Learning Goals Joint Distributions, Independence Class 7, 8.5 Jeremy Orloff and Jonathan Bloom. Understand what is meant by a joint pmf, pdf and cdf of two random variables. 2. Be able to compute probabilities

More information

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 6 - Tues 17th Oct 2017 Functions of Several Variables and Partial Derivatives

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 6 - Tues 17th Oct 2017 Functions of Several Variables and Partial Derivatives ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 6 - Tues 17th Oct 2017 Functions of Several Variables and Partial Derivatives So far we have dealt with functions of the form y = f(x),

More information

Math 122: Final Exam Review Sheet

Math 122: Final Exam Review Sheet Exam Information Math 1: Final Exam Review Sheet The final exam will be given on Wednesday, December 1th from 8-1 am. The exam is cumulative and will cover sections 5., 5., 5.4, 5.5, 5., 5.9,.1,.,.4,.,

More information

Multiple Integrals. Advanced Calculus. Lecture 1 Dr. Lahcen Laayouni. Department of Mathematics and Statistics McGill University.

Multiple Integrals. Advanced Calculus. Lecture 1 Dr. Lahcen Laayouni. Department of Mathematics and Statistics McGill University. Lecture epartment of Mathematics and Statistics McGill University January 4, 27 ouble integrals Iteration of double integrals ouble integrals Consider a function f(x, y), defined over a rectangle = [a,

More information

Chapter 3 Exponential and Logarithmic Functions

Chapter 3 Exponential and Logarithmic Functions Chapter 3 Exponential and Logarithmic Functions Section 1 Section 2 Section 3 Section 4 Section 5 Exponential Functions and Their Graphs Logarithmic Functions and Their Graphs Properties of Logarithms

More information

Directions: Show all of your work. Use units and labels and remember to give complete answers.

Directions: Show all of your work. Use units and labels and remember to give complete answers. AMS II QTR 4 FINAL EXAM REVIEW TRIANGLES/PROBABILITY/UNIT CIRCLE/POLYNOMIALS NAME HOUR This packet will be collected on the day of your final exam. Seniors will turn it in on Friday June 1 st and Juniors

More information

Lesson 6.1 Linear Equation Review

Lesson 6.1 Linear Equation Review Name: Lesson 6.1 Linear Equation Review Vocabulary Equation: a math sentence that contains Linear: makes a straight line (no Variables: quantities represented by (often x and y) Function: equations can

More information

MATH 259 FINAL EXAM. Friday, May 8, Alexandra Oleksii Reshma Stephen William Klimova Mostovyi Ramadurai Russel Boney A C D G H B F E

MATH 259 FINAL EXAM. Friday, May 8, Alexandra Oleksii Reshma Stephen William Klimova Mostovyi Ramadurai Russel Boney A C D G H B F E MATH 259 FINAL EXAM 1 Friday, May 8, 2009. NAME: Alexandra Oleksii Reshma Stephen William Klimova Mostovyi Ramadurai Russel Boney A C D G H B F E Instructions: 1. Do not separate the pages of the exam.

More information

Exam 2 Summary. 1. The domain of a function is the set of all possible inputes of the function and the range is the set of all outputs.

Exam 2 Summary. 1. The domain of a function is the set of all possible inputes of the function and the range is the set of all outputs. Exam 2 Summary Disclaimer: The exam 2 covers lectures 9-15, inclusive. This is mostly about limits, continuity and differentiation of functions of 2 and 3 variables, and some applications. The complete

More information

10.1 Curves defined by parametric equations

10.1 Curves defined by parametric equations Outline Section 1: Parametric Equations and Polar Coordinates 1.1 Curves defined by parametric equations 1.2 Calculus with Parametric Curves 1.3 Polar Coordinates 1.4 Areas and Lengths in Polar Coordinates

More information

Math 2321 Review for Test 2 Fall 11

Math 2321 Review for Test 2 Fall 11 Math 2321 Review for Test 2 Fall 11 The test will cover chapter 15 and sections 16.1-16.5 of chapter 16. These review sheets consist of problems similar to ones that could appear on the test. Some problems

More information

VECTOR CALCULUS Julian.O 2016

VECTOR CALCULUS Julian.O 2016 VETO ALULUS Julian.O 2016 Vector alculus Lecture 3: Double Integrals Green s Theorem Divergence of a Vector Field Double Integrals: Double integrals are used to integrate two-variable functions f(x, y)

More information

Independent of path Green s Theorem Surface Integrals. MATH203 Calculus. Dr. Bandar Al-Mohsin. School of Mathematics, KSU 20/4/14

Independent of path Green s Theorem Surface Integrals. MATH203 Calculus. Dr. Bandar Al-Mohsin. School of Mathematics, KSU 20/4/14 School of Mathematics, KSU 20/4/14 Independent of path Theorem 1 If F (x, y) = M(x, y)i + N(x, y)j is continuous on an open connected region D, then the line integral F dr is independent of path if and

More information

MATH 12 CLASS 9 NOTES, OCT Contents 1. Tangent planes 1 2. Definition of differentiability 3 3. Differentials 4

MATH 12 CLASS 9 NOTES, OCT Contents 1. Tangent planes 1 2. Definition of differentiability 3 3. Differentials 4 MATH 2 CLASS 9 NOTES, OCT 0 20 Contents. Tangent planes 2. Definition of differentiability 3 3. Differentials 4. Tangent planes Recall that the derivative of a single variable function can be interpreted

More information

Review Sheet for Math 230, Midterm exam 2. Fall 2006

Review Sheet for Math 230, Midterm exam 2. Fall 2006 Review Sheet for Math 230, Midterm exam 2. Fall 2006 October 31, 2006 The second midterm exam will take place: Monday, November 13, from 8:15 to 9:30 pm. It will cover chapter 15 and sections 16.1 16.4,

More information

Maxima and Minima. Terminology note: Do not confuse the maximum f(a, b) (a number) with the point (a, b) where the maximum occurs.

Maxima and Minima. Terminology note: Do not confuse the maximum f(a, b) (a number) with the point (a, b) where the maximum occurs. 10-11-2010 HW: 14.7: 1,5,7,13,29,33,39,51,55 Maxima and Minima In this very important chapter, we describe how to use the tools of calculus to locate the maxima and minima of a function of two variables.

More information

PREREQUISITE/PRE-CALCULUS REVIEW

PREREQUISITE/PRE-CALCULUS REVIEW PREREQUISITE/PRE-CALCULUS REVIEW Introduction This review sheet is a summary of most of the main topics that you should already be familiar with from your pre-calculus and trigonometry course(s), and which

More information

FUNCTIONS OF SEVERAL VARIABLES AND PARTIAL DIFFERENTIATION

FUNCTIONS OF SEVERAL VARIABLES AND PARTIAL DIFFERENTIATION FUNCTIONS OF SEVERAL VARIABLES AND PARTIAL DIFFERENTIATION 1. Functions of Several Variables A function of two variables is a rule that assigns a real number f(x, y) to each ordered pair of real numbers

More information

Module 5 Trigonometric Identities I

Module 5 Trigonometric Identities I MAC 1114 Module 5 Trigonometric Identities I Learning Objectives Upon completing this module, you should be able to: 1. Recognize the fundamental identities: reciprocal identities, quotient identities,

More information

Practice Test 3 (longer than the actual test will be) 1. Solve the following inequalities. Give solutions in interval notation. (Expect 1 or 2.

Practice Test 3 (longer than the actual test will be) 1. Solve the following inequalities. Give solutions in interval notation. (Expect 1 or 2. MAT 115 Spring 2015 Practice Test 3 (longer than the actual test will be) Part I: No Calculators. Show work. 1. Solve the following inequalities. Give solutions in interval notation. (Expect 1 or 2.) a.

More information

REVIEW SHEET FOR MIDTERM 2: ADVANCED

REVIEW SHEET FOR MIDTERM 2: ADVANCED REVIEW SHEET FOR MIDTERM : ADVANCED MATH 195, SECTION 59 (VIPUL NAIK) To maximize efficiency, please bring a copy (print or readable electronic) of this review sheet to the review session. The document

More information

A General Procedure (Solids of Revolution) Some Useful Area Formulas

A General Procedure (Solids of Revolution) Some Useful Area Formulas Goal: Given a solid described by rotating an area, compute its volume. A General Procedure (Solids of Revolution) (i) Draw a graph of the relevant functions/regions in the plane. Draw a vertical line and

More information

Amplitude, Reflection, and Period

Amplitude, Reflection, and Period SECTION 4.2 Amplitude, Reflection, and Period Copyright Cengage Learning. All rights reserved. Learning Objectives 1 2 3 4 Find the amplitude of a sine or cosine function. Find the period of a sine or

More information

This exam contains 9 problems. CHECK THAT YOU HAVE A COMPLETE EXAM.

This exam contains 9 problems. CHECK THAT YOU HAVE A COMPLETE EXAM. Math 126 Final Examination Winter 2012 Your Name Your Signature Student ID # Quiz Section Professor s Name TA s Name This exam contains 9 problems. CHECK THAT YOU HAVE A COMPLETE EXAM. This exam is closed

More information

Honors Algebra 2 w/ Trigonometry Chapter 14: Trigonometric Identities & Equations Target Goals

Honors Algebra 2 w/ Trigonometry Chapter 14: Trigonometric Identities & Equations Target Goals Honors Algebra w/ Trigonometry Chapter 14: Trigonometric Identities & Equations Target Goals By the end of this chapter, you should be able to Identify trigonometric identities. (14.1) Factor trigonometric

More information

This early Greek study was largely concerned with the geometric properties of conics.

This early Greek study was largely concerned with the geometric properties of conics. 4.3. Conics Objectives Recognize the four basic conics: circle, ellipse, parabola, and hyperbola. Recognize, graph, and write equations of parabolas (vertex at origin). Recognize, graph, and write equations

More information

Solutions to the problems from Written assignment 2 Math 222 Winter 2015

Solutions to the problems from Written assignment 2 Math 222 Winter 2015 Solutions to the problems from Written assignment 2 Math 222 Winter 2015 1. Determine if the following limits exist, and if a limit exists, find its value. x2 y (a) The limit of f(x, y) = x 4 as (x, y)

More information

Calculus II Fall 2014

Calculus II Fall 2014 Calculus II Fall 2014 Lecture 3 Partial Derivatives Eitan Angel University of Colorado Monday, December 1, 2014 E. Angel (CU) Calculus II 1 Dec 1 / 13 Introduction Much of the calculus of several variables

More information

Pre-Calculus. Riemann Sums. Slide 1 / 163 Slide 2 / 163. Slide 3 / 163. Slide 4 / 163. Slide 5 / 163. Slide 6 / 163. Intro to Integrals

Pre-Calculus. Riemann Sums. Slide 1 / 163 Slide 2 / 163. Slide 3 / 163. Slide 4 / 163. Slide 5 / 163. Slide 6 / 163. Intro to Integrals Slide 1 / 163 Slide 2 / 163 Pre-alculus Intro to Integrals 2015-03-24 www.njctl.org Slide 3 / 163 Table of ontents Riemann Sums Trapezoid Rule ccumulation Function & efinite Integrals Fundamental Theorem

More information

VectorPlot[{y^2-2x*y,3x*y-6*x^2},{x,-5,5},{y,-5,5}]

VectorPlot[{y^2-2x*y,3x*y-6*x^2},{x,-5,5},{y,-5,5}] hapter 16 16.1. 6. Notice that F(x, y) has length 1 and that it is perpendicular to the position vector (x, y) for all x and y (except at the origin). Think about drawing the vectors based on concentric

More information

Differentiable functions (Sec. 14.4)

Differentiable functions (Sec. 14.4) Math 20C Multivariable Calculus Lecture 3 Differentiable functions (Sec. 4.4) Review: Partial derivatives. Slide Partial derivatives and continuity. Equation of the tangent plane. Differentiable functions.

More information

You could identify a point on the graph of a function as (x,y) or (x, f(x)). You may have only one function value for each x number.

You could identify a point on the graph of a function as (x,y) or (x, f(x)). You may have only one function value for each x number. Function Before we review exponential and logarithmic functions, let's review the definition of a function and the graph of a function. A function is just a rule. The rule links one number to a second

More information

MATH 1040 CP 15 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

MATH 1040 CP 15 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. MATH 1040 CP 15 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) (sin x + cos x) 1 + sin x cos x =? 1) ) sec 4 x + sec x tan x - tan 4 x =? ) ) cos

More information

Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan. Review Problems for Test #3

Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan. Review Problems for Test #3 Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan Review Problems for Test #3 Exercise 1 The following is one cycle of a trigonometric function. Find an equation of this graph. Exercise

More information

Mock final exam Math fall 2007

Mock final exam Math fall 2007 Mock final exam Math - fall 7 Fernando Guevara Vasquez December 5 7. Consider the curve r(t) = ti + tj + 5 t t k, t. (a) Show that the curve lies on a sphere centered at the origin. (b) Where does the

More information

Logs and Exponentials Higher.notebook February 26, Daily Practice

Logs and Exponentials Higher.notebook February 26, Daily Practice Daily Practice 2.2.2015 Daily Practice 3.2.2015 Today we will be learning about exponential functions and logs. Homework due! Need to know for Unit Test 2: Expressions and Functions Adding and subtracng

More information

11.2 LIMITS AND CONTINUITY

11.2 LIMITS AND CONTINUITY 11. LIMITS AND CONTINUITY INTRODUCTION: Consider functions of one variable y = f(x). If you are told that f(x) is continuous at x = a, explain what the graph looks like near x = a. Formal definition of

More information

Instructions: Good luck! Math 21a Second Midterm Exam Spring, 2009

Instructions: Good luck! Math 21a Second Midterm Exam Spring, 2009 Your Name Your Signature Instructions: Please begin by printing and signing your name in the boxes above and by checking your section in the box to the right You are allowed 2 hours (120 minutes) for this

More information

Section 7.2 Logarithmic Functions

Section 7.2 Logarithmic Functions Math 150 c Lynch 1 of 6 Section 7.2 Logarithmic Functions Definition. Let a be any positive number not equal to 1. The logarithm of x to the base a is y if and only if a y = x. The number y is denoted

More information

Basic Trigonometry You Should Know (Not only for this class but also for calculus)

Basic Trigonometry You Should Know (Not only for this class but also for calculus) Angle measurement: degrees and radians. Basic Trigonometry You Should Know (Not only for this class but also for calculus) There are 360 degrees in a full circle. If the circle has radius 1, then the circumference

More information

Activity Overview This activity takes the concept of derivative and applies it to various maximum and minimum problems.

Activity Overview This activity takes the concept of derivative and applies it to various maximum and minimum problems. TI-Nspire Activity: Derivatives: Applied Maxima and Minima By: Tony Duncan Activity Overview This activity takes the concept of derivative and applies it to various maximum and minimum problems. Concepts

More information

constant EXAMPLE #4:

constant EXAMPLE #4: Linear Equations in One Variable (1.1) Adding in an equation (Objective #1) An equation is a statement involving an equal sign or an expression that is equal to another expression. Add a constant value

More information

Section 15.3 Partial Derivatives

Section 15.3 Partial Derivatives Section 5.3 Partial Derivatives Differentiating Functions of more than one Variable. Basic Definitions In single variable calculus, the derivative is defined to be the instantaneous rate of change of a

More information

Review #Final Exam MATH 142-Drost

Review #Final Exam MATH 142-Drost Fall 2007 1 Review #Final Exam MATH 142-Drost 1. Find the domain of the function f(x) = x 1 x 2 if x3 2. Suppose 450 items are sold per day at a price of $53 per item and that 650 items are

More information

10 GRAPHING LINEAR EQUATIONS

10 GRAPHING LINEAR EQUATIONS 0 GRAPHING LINEAR EQUATIONS We now expand our discussion of the single-variable equation to the linear equation in two variables, x and y. Some examples of linear equations are x+ y = 0, y = 3 x, x= 4,

More information

Chapter 1 and Section 2.1

Chapter 1 and Section 2.1 Chapter 1 and Section 2.1 Diana Pell Section 1.1: Angles, Degrees, and Special Triangles Angles Degree Measure Angles that measure 90 are called right angles. Angles that measure between 0 and 90 are called

More information

Unit 8 Trigonometry. Math III Mrs. Valentine

Unit 8 Trigonometry. Math III Mrs. Valentine Unit 8 Trigonometry Math III Mrs. Valentine 8A.1 Angles and Periodic Data * Identifying Cycles and Periods * A periodic function is a function that repeats a pattern of y- values (outputs) at regular intervals.

More information

Name: ID: Section: Math 233 Exam 2. Page 1. This exam has 17 questions:

Name: ID: Section: Math 233 Exam 2. Page 1. This exam has 17 questions: Page Name: ID: Section: This exam has 7 questions: 5 multiple choice questions worth 5 points each. 2 hand graded questions worth 25 points total. Important: No graphing calculators! Any non scientific

More information

Math Final Exam - 6/13/2013

Math Final Exam - 6/13/2013 Math - Final Exam - 6/13/13 NAME: SECTION: Directions: For the free response section, you must show all work. Answers without proper justification will not receive full credit. Partial credit will be awarded

More information

Math 138 Exam 1 Review Problems Fall 2008

Math 138 Exam 1 Review Problems Fall 2008 Chapter 1 NOTE: Be sure to review Activity Set 1.3 from the Activity Book, pp 15-17. 1. Sketch an algebra-piece model for the following problem. Then explain or show how you used it to arrive at your solution.

More information

2. (8pts) If θ is an acute angle, find the values of all the trigonometric functions of θ given

2. (8pts) If θ is an acute angle, find the values of all the trigonometric functions of θ given Trigonometry Joysheet 1 MAT 145, Spring 2017 D. Ivanšić Name: Covers: 6.1, 6.2 Show all your work! 1. 8pts) If θ is an acute angle, find the values of all the trigonometric functions of θ given that sin

More information

Functions of more than one variable

Functions of more than one variable Chapter 3 Functions of more than one variable 3.1 Functions of two variables and their graphs 3.1.1 Definition A function of two variables has two ingredients: a domain and a rule. The domain of the function

More information

The Chain Rule, Higher Partial Derivatives & Opti- mization

The Chain Rule, Higher Partial Derivatives & Opti- mization The Chain Rule, Higher Partial Derivatives & Opti- Unit #21 : mization Goals: We will study the chain rule for functions of several variables. We will compute and study the meaning of higher partial derivatives.

More information

Copyright 2009 Pearson Education, Inc. Slide Section 8.2 and 8.3-1

Copyright 2009 Pearson Education, Inc. Slide Section 8.2 and 8.3-1 8.3-1 Transformation of sine and cosine functions Sections 8.2 and 8.3 Revisit: Page 142; chapter 4 Section 8.2 and 8.3 Graphs of Transformed Sine and Cosine Functions Graph transformations of y = sin

More information

Similarly, the point marked in red below is a local minimum for the function, since there are no points nearby that are lower than it:

Similarly, the point marked in red below is a local minimum for the function, since there are no points nearby that are lower than it: Extreme Values of Multivariate Functions Our next task is to develop a method for determining local extremes of multivariate functions, as well as absolute extremes of multivariate functions on closed

More information

Pre-Calc Chapter 4 Sample Test. 1. Determine the quadrant in which the angle lies. (The angle measure is given in radians.) π

Pre-Calc Chapter 4 Sample Test. 1. Determine the quadrant in which the angle lies. (The angle measure is given in radians.) π Pre-Calc Chapter Sample Test 1. Determine the quadrant in which the angle lies. (The angle measure is given in radians.) π 8 I B) II C) III D) IV E) The angle lies on a coordinate axis.. Sketch the angle

More information

5.3-The Graphs of the Sine and Cosine Functions

5.3-The Graphs of the Sine and Cosine Functions 5.3-The Graphs of the Sine and Cosine Functions Objectives: 1. Graph the sine and cosine functions. 2. Determine the amplitude, period and phase shift of the sine and cosine functions. 3. Find equations

More information

Now we are going to introduce a new horizontal axis that we will call y, so that we have a 3-dimensional coordinate system (x, y, z).

Now we are going to introduce a new horizontal axis that we will call y, so that we have a 3-dimensional coordinate system (x, y, z). Example 1. A circular cone At the right is the graph of the function z = g(x) = 16 x (0 x ) Put a scale on the axes. Calculate g(2) and illustrate this on the diagram: g(2) = 8 Now we are going to introduce

More information

14.2 Limits and Continuity

14.2 Limits and Continuity 14 Partial Derivatives 14.2 Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Let s compare the behavior of the functions Tables 1 2 show values of f(x,

More information

I II III IV V VI VII VIII IX X Total

I II III IV V VI VII VIII IX X Total 1 of 16 HAND IN Answers recorded on exam paper. DEPARTMENT OF MATHEMATICS AND STATISTICS QUEEN S UNIVERSITY AT KINGSTON MATH 121/124 - APR 2018 Section 700 - CDS Students ONLY Instructor: A. Ableson INSTRUCTIONS:

More information

2.4 Translating Sine and Cosine Functions

2.4 Translating Sine and Cosine Functions www.ck1.org Chapter. Graphing Trigonometric Functions.4 Translating Sine and Cosine Functions Learning Objectives Translate sine and cosine functions vertically and horizontally. Identify the vertical

More information

6.1 - Introduction to Periodic Functions

6.1 - Introduction to Periodic Functions 6.1 - Introduction to Periodic Functions Periodic Functions: Period, Midline, and Amplitude In general: A function f is periodic if its values repeat at regular intervals. Graphically, this means that

More information

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan. Figure 50.1

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan. Figure 50.1 50 Polar Coordinates Arkansas Tech University MATH 94: Calculus II Dr. Marcel B. Finan Up to this point we have dealt exclusively with the Cartesian coordinate system. However, as we will see, this is

More information

5-5 Multiple-Angle and Product-to-Sum Identities

5-5 Multiple-Angle and Product-to-Sum Identities Find the values of sin 2, cos 2, tan 2 1 cos for the given value interval, (270, 360 ) Since on the interval (270, 360 ), one point on the terminal side of θ has x-coordinate 3 a distance of 5 units from

More information

Math Final Exam - 6/11/2015

Math Final Exam - 6/11/2015 Math 200 - Final Exam - 6/11/2015 Name: Section: Section Class/Times Instructor Section Class/Times Instructor 1 9:00%AM ( 9:50%AM Papadopoulos,%Dimitrios 11 1:00%PM ( 1:50%PM Swartz,%Kenneth 2 11:00%AM

More information

Algebra 2/Trigonometry Review Sessions 1 & 2: Trigonometry Mega-Session. The Unit Circle

Algebra 2/Trigonometry Review Sessions 1 & 2: Trigonometry Mega-Session. The Unit Circle Algebra /Trigonometry Review Sessions 1 & : Trigonometry Mega-Session Trigonometry (Definition) - The branch of mathematics that deals with the relationships between the sides and the angles of triangles

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 0 - Section 4. Unit Circle Trigonometr An angle is in standard position if its verte is at the origin and its initial side is along the positive ais. Positive angles are measured counterclockwise

More information

5.4 Transformations and Composition of Functions

5.4 Transformations and Composition of Functions 5.4 Transformations and Composition of Functions 1. Vertical Shifts: Suppose we are given y = f(x) and c > 0. (a) To graph y = f(x)+c, shift the graph of y = f(x) up by c. (b) To graph y = f(x) c, shift

More information

Unit 6 Test REVIEW Algebra 2 Honors

Unit 6 Test REVIEW Algebra 2 Honors Unit Test REVIEW Algebra 2 Honors Multiple Choice Portion SHOW ALL WORK! 1. How many radians are in 1800? 10 10π Name: Per: 180 180π 2. On the unit circle shown, which radian measure is located at ( 2,

More information

Section 5.2 Graphs of the Sine and Cosine Functions

Section 5.2 Graphs of the Sine and Cosine Functions A Periodic Function and Its Period Section 5.2 Graphs of the Sine and Cosine Functions A nonconstant function f is said to be periodic if there is a number p > 0 such that f(x + p) = f(x) for all x in

More information

M.I. Transformations of Functions

M.I. Transformations of Functions M.I. Transformations of Functions Do Now: A parabola with equation y = (x 3) 2 + 8 is translated. The image of the parabola after the translation has an equation of y = (x + 5) 2 4. Describe the movement.

More information

WARM UP. 1. Expand the expression (x 2 + 3) Factor the expression x 2 2x Find the roots of 4x 2 x + 1 by graphing.

WARM UP. 1. Expand the expression (x 2 + 3) Factor the expression x 2 2x Find the roots of 4x 2 x + 1 by graphing. WARM UP Monday, December 8, 2014 1. Expand the expression (x 2 + 3) 2 2. Factor the expression x 2 2x 8 3. Find the roots of 4x 2 x + 1 by graphing. 1 2 3 4 5 6 7 8 9 10 Objectives Distinguish between

More information

Class 9 Coordinate Geometry

Class 9 Coordinate Geometry ID : in-9-coordinate-geometry [1] Class 9 Coordinate Geometry For more such worksheets visit www.edugain.com Answer the questions (1) Find the coordinates of the point shown in the picture. (2) Find the

More information

Chapter 6: Periodic Functions

Chapter 6: Periodic Functions Chapter 6: Periodic Functions In the previous chapter, the trigonometric functions were introduced as ratios of sides of a triangle, and related to points on a circle. We noticed how the x and y values

More information

14.4. Tangent Planes. Tangent Planes. Tangent Planes. Tangent Planes. Partial Derivatives. Tangent Planes and Linear Approximations

14.4. Tangent Planes. Tangent Planes. Tangent Planes. Tangent Planes. Partial Derivatives. Tangent Planes and Linear Approximations 14 Partial Derivatives 14.4 and Linear Approximations Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Suppose a surface S has equation z = f(x, y), where

More information

Lesson 16: The Computation of the Slope of a Non Vertical Line

Lesson 16: The Computation of the Slope of a Non Vertical Line ++ Lesson 16: The Computation of the Slope of a Non Vertical Line Student Outcomes Students use similar triangles to explain why the slope is the same between any two distinct points on a non vertical

More information

(d) If a particle moves at a constant speed, then its velocity and acceleration are perpendicular.

(d) If a particle moves at a constant speed, then its velocity and acceleration are perpendicular. Math 142 -Review Problems II (Sec. 10.2-11.6) Work on concept check on pages 734 and 822. More review problems are on pages 734-735 and 823-825. 2nd In-Class Exam, Wednesday, April 20. 1. True - False

More information