Improved Switching Characteristics Obtained by Using High-k Dielectric Layers in 4H-SiC IGBT: Physics-Based Simulation

Size: px
Start display at page:

Download "Improved Switching Characteristics Obtained by Using High-k Dielectric Layers in 4H-SiC IGBT: Physics-Based Simulation"

Transcription

1 Improved Switching Characteristics Obtained by Using High-k Dielectric Layers in 4H-SiC IGBT: Physics-Based Simulation by vidya.naidu, Sivaprasad Kotamraju in European Conference on Silicon Carbide and Related Materials (ECSCRM-2016) Report No: IIIT/TR/2016/-1 Centre for VLSI and Embeded Systems Technology International Institute of Information Technology Hyderabad , INDIA September 2016

2 Materials Science Forum Submitted: ISSN: , Vol. 897, pp Revised: doi: / Accepted: Trans Tech Publications, Switzerland Online: Improved Switching Characteristics Obtained by Using High-k Dielectric Layers in 4H-SiC IGBT: Physics-Based Simulation Vidya Naidu 1,a and Sivaprasad Kotamraju 2,b* 1 International Institute of Information Technology, Hyderabad, India 2 Indian Institute of Information Technology, SriCity, Chittoor district, India a g.vidya.naidu@gmail.com, b siva.k@iiits.in Keywords: High-k dielectrics, Power dissipation trend, Switching characteristics, Tail current Abstract. Silicon Carbide (SiC) based MOS devices are one of the promising devices for high temperature, high switching frequency and high power applications. In this paper, the static and dynamic characteristics of an asymmetric trench gate SiC IGBT with high-k dielectrics- HfO 2 and ZrO 2 are investigated. SiC IGBT with HfO 2 and ZrO 2 exhibited higher forward transconductance ratio and lower threshold voltage compared to conventionally used SiO 2. In addition, lower switching power losses have been observed in the case of high-k dielectrics due to reduced tail current duration. Introduction The wider bandgap, higher thermal conductivity, and larger critical electric field allow SiC devices to offer several compelling advantages high operating temperatures, higher-operating electric field and lower losses than Si power devices[1]. However, SiC MOS structures have the disadvantage of lower channel mobility, SiC-SiO 2 interface compatibility and the inability in handling higher electric fields at the interface. The choice of gate dielectric in SiC MOS device plays important role in the device performance. High-k dielectrics such as HfO 2 & ZrO 2 have been incorporated in the SiC IGBT, as these dielectrics have dielectric constant of about 25 and have the ability to sustain much higher electric fields than SiO 2. Attributing to high dielectric constant, HfO 2 has very high breakdown voltage, supporting the high electric field endurance of SiC in power devices [2,3]. On the other hand, high-k dielectrics have lower band offsets at SiC interface, that could lead to high leakage currents. Low band offsets at the high-k/sic interface were addressed earlier by introducing an ultrathin SiO 2 interfacial layer in between dielectric and SiC layer [4,5]. In this paper, sentaurus TCAD device simulations are performed to study static and dynamic behavior of SiC IGBT with HfO 2 & ZrO 2 as gate dielectrics. In addition, switching characteristics of the IGBT is investigated by considering the drive circuit similar to the one given in reference [6]. Fig.1. Half cell structure of an asymmetric trench gate SiC IGBT generated by Sentaurus structure editor. Non-uniform scale has been used for thickness markings. All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of Trans Tech Publications, (# /04/17,19:03:27)

3 572 Silicon Carbide and Related Materials 2016 Device Simulation Setup The half cell structure of SiC trench gate IGBT considered for simulations is shown in Fig.1. Physics based models such as drift-diffusion transport model, bandgap narrowing, Auger & Shockley-Read-Hall (SRH) recombination, doping and temperature dependent field mobility [7] are taken into account. For gate leakage current through the dielectrics, Fowler-Nordheim tunneling model & non-local tunneling model [7] are considered. While the trench gate devices provide low on state voltage drop, it is challenging to fabricate deep trench structures in SiC. Simulation results of 10 KV trench gate SiC IGBT with gate trench depth of 6µm and 5µm thick p-type conduction layer has been reported earlier [8]. There has been evidence of stripe Fig.2. Collector current versus gate voltage(transfer characteristics) for different dielectrics. Inset: Collector current versus collector voltage(output characteristics) for different dielectrics of 20nm thickness. trenches of 4µm deep and 3µm wide fabricated using ICP dry etching [9]. This paper is focussed more towards the influence of high-k dielectrics on the IGBT switching characteristics. Static and dynamic characteristics of the IGBT are obtained for 20nm HfO 2, ZrO 2 and SiO 2 gate dielectrics individually placed on top of the SiC substrate. The simulations are repeated by sandwiching 1nm SiO 2 between SiC and high-k dielectric layers. To obtain dynamic characteristics of the IGBT, the device is embedded in an external gate drive circuit with the inductive load of 100 µh at the collector terminal, which is connected to a DC voltage source. A voltage pulse(vgg) from 0V to 15V with period of 1μs is applied to gate terminal. The drive resistor to the input of the gate terminal is fixed at 470 Ω. Mixed mode device simulation has been used in TCAD to obtain the switching characteristics of the device. A fixed trap concentration of 1E12cm -2 is considered for all simulations. Turn ON delay(td(on)) is calculated as the time period from 10% of applied rising gate voltage to 10% of maximum collector current. Rise time(tr) is calculated as time period taken by collector current to rise from 10% to 90% of its maximum value. Turn OFF delay(td(off)) is calculated as the time period from 90% of applied falling gate voltage to 90% of maximum collector current. Fall time(tf) is calculated Fig.3. Gate Leakage Current for diff-erent dielectrics of thickness 20nm at 300 K. as time period taken by collector current to drop from 90% to 10% of its maximum value. Tail current is specific to the IGBT and is approximately the time period from sudden change in dic/dt to the point where collector current almost becomes zero.

4 Materials Science Forum Vol Results and Discussions The transfer characteristics (collector current(ic) Vs. gate voltage(vg)) of the device is obtained at a constant collector voltage(vc) of 5V. Fig. 2 illustrates the static characteristics of IGBT for different dielectrics of 20nm thickness. The slope of the transfer characteristic gives the measure of the transconductance of the device. From the direct inspection of the transfer characteristics, it can be seen that the high-k dielectrics have a higher forward transconductance ratio as compared to SiO 2. Table 1. Approximate time values extracted from device collector current transient characteristics. All numbers are in nano-seconds. Dielectric Rise time (tr) Td (ON) Td (OFF) Fall Time(tf) A high transconductance ratio is desirable to obtain good current handling capability with low gate drive voltage. The threshold voltage values for HfO 2 & ZrO 2 are found to be much lower than SiO 2. Also, from the inset of Fig.2, high-k dielectrics exhibit much higher Ic for any given Vc which could be beneficial from the device point of view leading to lower ON resistance during conduction mode. In Fig.3 the gate leakage current with respect to applied gate voltage is plotted. The leakage current for high-k dielectrics is observed to be much higher as compared to SiO 2. This could be as a result of low band offset at the oxide/sic interface. In order to reduce the leakage current, a thin layer of SiO 2 (1nm) is inserted between SiC and 20nm high-k dielectrics. Insertion of 1nm SiO 2 reduced the leakage current drastically to a value lower than the leakage current of the 20nm SiO 2 curve. Table 1 lists switching times for the different dielectrics obtained by dynamic simulations. Fig 4 shows the collector current high-low transition for a fixed dielectric thickness of 20nm. A clean break is observed during the turn off process indicating the inception of tail current. The tail current is a common phenomenon observed in IGBTs due to the minority carrier holes that are trapped in the base region, which slowly recombine with electrons causing a delay in the turn off process. For applied pulse voltage at gate, SiO 2 has the longest OFF time duration. From Fig.4 it can be observed that the tail current is much lower for HfO 2 and ZrO 2 as compared to SiO 2. This reduction in tail current duration reflects in the total turn OFF duration. The tail current for HfO 2 /ZrO 2 is approximately 380 nano-secs whereas for SiO 2 it is 1070 nano-secs. Even with a thin layer of SiO 2 between SiC and high-k dielectric, the OFF time observed for high-k dielectrics is much lower than SiO 2. This improvement in turn OFF time for high-k dielectrics could enhance the switching frequency and hence Tail Current (tail) HfO ZrO SiO HfO 2 +1nm SiO ZrO 2 +1nm SiO T (OFF)=Td(OFF)+tf+tail Fig.4. OFF state characteristics of the device for different dielectrics. The thickness of the dielectrics is 20nm with all other parameters related to device kept same. reduces the switching power dissipation. The inclusion of high-k dielectrics in the device might have eventually led to the reduction of minority carrier lifetime in the base region. However, it

5 574 Silicon Carbide and Related Materials 2016 needs to be further investigated as a part of future work. Reduced OFF time values indicate lower power dissipation. Power dissipation curves were plotted for temperature range of K. At 300K, the power dissipation curves for SiO 2 and high-k dielectrics were almost overlapping [Fig.5]. At 400K, the power dissipation for HfO 2 /ZrO 2 was visibly lower than SiO 2, but at 600K the power dissipation for SiO 2 was almost 10 Watts higher than HfO 2 /ZrO 2. Along with other advantages, high-k dielectrics exhibited superior performance as far as turn off losses and power dissipation are concerned. Summary The static and switching characteristics of SiC trench gate IGBT have been analyzed using ZrO 2 and HfO 2 gate dielectrics and compared with conventionally used SiO 2. While no significant difference has been observed individually between ZrO 2 and HfO 2, high- K dielectrics exhibited favorable static characteristics as compared to SiO 2. From the device turn OFF characteristics, improved OFF time values have been observed due to reduced tail current duration for high-k dielectrics. The obtained results confirm the critical role of high-k dielectrics for future SiC power devices. References Fig.5. Power dissipation as a function of time when the applied pulse (shown in dotted line) is high. At any temperature, the power dissipation of IGBT with high-k dielectric is lower than SiO 2. [1] Stephen E. Saddow and Anant K. Agarwal, Advances in Silicon Carbide Processing and Applications, Artech House Publishers(2004), Chapter 1, ISBN [2] M. Nawaz, On the evaluation of gate dielectrics for 4H-SiC based power MOSFETs, Hindawi publishing corporation, Active and Passive Electronic Components(2015), Article ID [3] A. Taube, S. Gierałtowskac, T. Gutta, T. Małachowskia, I. Pasternaka, T. Wojciechowskic, W. Rzodkiewicza, M. Sawickic and A. Piotrowskaa, Electronic properties of thin HfO 2 films fabricated by ALD on 4H-SiC, Acta Physica Polonica A(2011), , Vol.119. [4] K. Y Cheong, J.H. Moon, T. J. Park, J. H.Kim, C. S. Hwang, H. Joon K., W. Bahng and N.K. Kim, Improved electronic performance of HfO 2 /SiO 2 stacking gate dielectric on 4H-SiC, IEEE Transactions on Electron Devices(2007), , Vol. 54, No.12. [5] Mahapatra, R., Chakraborty, Amit. K., Horsfall, A. B., Wright, N. G., Beamson, G. and Coleman, Karl. S., Energy-band alignment of HfO 2 /SiO 2 /SiC gate dielectric stack, Applied Physics Letter(2008), 92, [6] X. Kang, A. Caiafa, E. Santi, J. L. Hudgins and P. R. Palmer, Characterization and modeling of high-voltage field-stop IGBTs, IEEE Transactions on Industry Applications(2003), , Vol. 39, No. 4. [7] Synopsys Inc. Sentaurus device user manual, Ver K [8] Q. C. J. Zhang, S. H. Ryu, C. Jonas, A. K. Agarwal, J. W. Palmour, Simulations of 10 kv Trench Gate IGBTs on 4H-SiC, Materials Science Forum(2006), Vols , pp [9] Y. Takeuchi, M. Kataoka, T. Kimoto, H. Matsunami, R. K. Malhan, SiC Migration Enhanced Embedded Epitaxial (ME 3 ) Growth Technology, Materials Science Forum(2006), Vols , pp

4H-SiC V-Groove Trench MOSFETs with the Buried p + Regions

4H-SiC V-Groove Trench MOSFETs with the Buried p + Regions ELECTRONICS 4H-SiC V-Groove Trench MOSFETs with the Buried p + Regions Yu SAITOH*, Toru HIYOSHI, Keiji WADA, Takeyoshi MASUDA, Takashi TSUNO and Yasuki MIKAMURA ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

More information

NOVEL 4H-SIC BIPOLAR JUNCTION TRANSISTOR (BJT) WITH IMPROVED CURRENT GAIN

NOVEL 4H-SIC BIPOLAR JUNCTION TRANSISTOR (BJT) WITH IMPROVED CURRENT GAIN NOVEL 4H-SIC BIPOLAR JUNCTION TRANSISTOR (BJT) WITH IMPROVED CURRENT GAIN Thilini Daranagama 1, Vasantha Pathirana 2, Florin Udrea 3, Richard McMahon 4 1,2,3,4 The University of Cambridge, Cambridge, United

More information

Fundamentals of Power Semiconductor Devices

Fundamentals of Power Semiconductor Devices В. Jayant Baliga Fundamentals of Power Semiconductor Devices 4y Spri ringer Contents Preface vii Chapter 1 Introduction 1 1.1 Ideal and Typical Power Switching Waveforms 3 1.2 Ideal and Typical Power Device

More information

Performance Evaluation of MISISFET- TCAD Simulation

Performance Evaluation of MISISFET- TCAD Simulation Performance Evaluation of MISISFET- TCAD Simulation Tarun Chaudhary Gargi Khanna Rajeevan Chandel ABSTRACT A novel device n-misisfet with a dielectric stack instead of the single insulator of n-mosfet

More information

Some Key Researches on SiC Device Technologies and their Predicted Advantages

Some Key Researches on SiC Device Technologies and their Predicted Advantages 18 POWER SEMICONDUCTORS www.mitsubishichips.com Some Key Researches on SiC Device Technologies and their Predicted Advantages SiC has proven to be a good candidate as a material for next generation power

More information

Department of Electrical Engineering IIT Madras

Department of Electrical Engineering IIT Madras Department of Electrical Engineering IIT Madras Sample Questions on Semiconductor Devices EE3 applicants who are interested to pursue their research in microelectronics devices area (fabrication and/or

More information

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices Anri Nakajima Research Center for Nanodevices and Systems, Hiroshima University 1-4-2 Kagamiyama, Higashi-Hiroshima,

More information

DEVICE AND TECHNOLOGY SIMULATION OF IGBT ON SOI STRUCTURE

DEVICE AND TECHNOLOGY SIMULATION OF IGBT ON SOI STRUCTURE Materials Physics and Mechanics 20 (2014) 111-117 Received: April 29, 2014 DEVICE AND TECHNOLOGY SIMULATION OF IGBT ON SOI STRUCTURE I. Lovshenko, V. Stempitsky *, Tran Tuan Trung Belarusian State University

More information

Future MOSFET Devices using high-k (TiO 2 ) dielectric

Future MOSFET Devices using high-k (TiO 2 ) dielectric Future MOSFET Devices using high-k (TiO 2 ) dielectric Prerna Guru Jambheshwar University, G.J.U.S. & T., Hisar, Haryana, India, prernaa.29@gmail.com Abstract: In this paper, an 80nm NMOS with high-k (TiO

More information

Students: Yifan Jiang (Research Assistant) Siyang Liu (Visiting Scholar)

Students: Yifan Jiang (Research Assistant) Siyang Liu (Visiting Scholar) Y9.FS1.1: SiC Power Devices for SST Applications Project Leader: Faculty: Dr. Jayant Baliga Dr. Alex Huang Students: Yifan Jiang (Research Assistant) Siyang Liu (Visiting Scholar) 1. Project Goals (a)

More information

Power MOSFET Zheng Yang (ERF 3017,

Power MOSFET Zheng Yang (ERF 3017, ECE442 Power Semiconductor Devices and Integrated Circuits Power MOSFET Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Evolution of low-voltage (

More information

Impact of Basal Plane Dislocations and Ruggedness of 10 kv 4H-SiC Transistors

Impact of Basal Plane Dislocations and Ruggedness of 10 kv 4H-SiC Transistors 11th International MOS-AK Workshop (co-located with the IEDM and CMC Meetings) Silicon Valley, December 5, 2018 Impact of Basal Plane Dislocations and Ruggedness of 10 kv 4H-SiC Transistors *, A. Kumar,

More information

2014, IJARCSSE All Rights Reserved Page 1352

2014, IJARCSSE All Rights Reserved Page 1352 Volume 4, Issue 3, March 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Double Gate N-MOSFET

More information

Design and Analysis of Double Gate MOSFET Devices using High-k Dielectric

Design and Analysis of Double Gate MOSFET Devices using High-k Dielectric International Journal of Electrical Engineering. ISSN 0974-2158 Volume 7, Number 1 (2014), pp. 53-60 International Research Publication House http://www.irphouse.com Design and Analysis of Double Gate

More information

A new Hetero-material Stepped Gate (HSG) SOI LDMOS for RF Power Amplifier Applications

A new Hetero-material Stepped Gate (HSG) SOI LDMOS for RF Power Amplifier Applications A new Hetero-material Stepped Gate (HSG) SOI LDMOS for RF Power Amplifier Applications Radhakrishnan Sithanandam and M. Jagadesh Kumar, Senior Member, IEEE Department of Electrical Engineering Indian Institute

More information

Davinci. Semiconductor Device Simulaion in 3D SYSTEMS PRODUCTS LOGICAL PRODUCTS PHYSICAL IMPLEMENTATION SIMULATION AND ANALYSIS LIBRARIES TCAD

Davinci. Semiconductor Device Simulaion in 3D SYSTEMS PRODUCTS LOGICAL PRODUCTS PHYSICAL IMPLEMENTATION SIMULATION AND ANALYSIS LIBRARIES TCAD SYSTEMS PRODUCTS LOGICAL PRODUCTS PHYSICAL IMPLEMENTATION SIMULATION AND ANALYSIS LIBRARIES TCAD Aurora DFM WorkBench Davinci Medici Raphael Raphael-NES Silicon Early Access TSUPREM-4 Taurus-Device Taurus-Lithography

More information

Supplementary Figure 1 Schematic illustration of fabrication procedure of MoS2/h- BN/graphene heterostructures. a, c d Supplementary Figure 2

Supplementary Figure 1 Schematic illustration of fabrication procedure of MoS2/h- BN/graphene heterostructures. a, c d Supplementary Figure 2 Supplementary Figure 1 Schematic illustration of fabrication procedure of MoS 2 /hon a 300- BN/graphene heterostructures. a, CVD-grown b, Graphene was patterned into graphene strips by oxygen monolayer

More information

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET)

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET) FIELD EFFECT TRANSISTOR (FET) The field-effect transistor (FET) is a three-terminal device used for a variety of applications that match, to a large extent, those of the BJT transistor. Although there

More information

Design of Gate-All-Around Tunnel FET for RF Performance

Design of Gate-All-Around Tunnel FET for RF Performance Drain Current (µa/µm) International Journal of Computer Applications (97 8887) International Conference on Innovations In Intelligent Instrumentation, Optimization And Signal Processing ICIIIOSP-213 Design

More information

6. LDD Design Tradeoffs on Latch-Up and Degradation in SOI MOSFET

6. LDD Design Tradeoffs on Latch-Up and Degradation in SOI MOSFET 110 6. LDD Design Tradeoffs on Latch-Up and Degradation in SOI MOSFET An experimental study has been conducted on the design of fully depleted accumulation mode SOI (SIMOX) MOSFET with regard to hot carrier

More information

Characterization of Variable Gate Oxide Thickness MOSFET with Non-Uniform Oxide Thicknesses for Sub-Threshold Leakage Current Reduction

Characterization of Variable Gate Oxide Thickness MOSFET with Non-Uniform Oxide Thicknesses for Sub-Threshold Leakage Current Reduction 2012 International Conference on Solid-State and Integrated Circuit (ICSIC 2012) IPCSIT vol. 32 (2012) (2012) IACSIT Press, Singapore Characterization of Variable Gate Oxide Thickness MOSFET with Non-Uniform

More information

Study of Static and Dynamic Characteristics of Silicon and Silicon Carbide Devices

Study of Static and Dynamic Characteristics of Silicon and Silicon Carbide Devices Study of Static and Dynamic Characteristics of Silicon and Silicon Carbide Devices Sreenath S Dept. of Electrical & Electronics Engineering Manipal University Jaipur Jaipur, India P. Ganesan External Guide

More information

Study on Fabrication and Fast Switching of High Voltage SiC JFET

Study on Fabrication and Fast Switching of High Voltage SiC JFET Advanced Materials Research Online: 2013-10-31 ISSN: 1662-8985, Vol. 827, pp 282-286 doi:10.4028/www.scientific.net/amr.827.282 2014 Trans Tech Publications, Switzerland Study on Fabrication and Fast Switching

More information

1200 V SiC Super Junction Transistors operating at 250 C with extremely low energy losses for power conversion applications

1200 V SiC Super Junction Transistors operating at 250 C with extremely low energy losses for power conversion applications 1200 V SiC Super Junction Transistors operating at 250 C with extremely low energy losses for power conversion applications Ranbir Singh, Siddarth Sundaresan, Eric Lieser and Michael Digangi GeneSiC Semiconductor,

More information

Characterization and Modeling of the LPT CSTBT the 5 th Generation IGBT

Characterization and Modeling of the LPT CSTBT the 5 th Generation IGBT Characterization and Modeling of the LPT CSTBT the 5 th Generation IGBT X. Kang, L. Lu, X. Wang, E. Santi, J.L. Hudgins, P.R. Palmer*, J.F. onlon** epartment of Electrical Engineering *epartment of Engineering

More information

Solid State Devices- Part- II. Module- IV

Solid State Devices- Part- II. Module- IV Solid State Devices- Part- II Module- IV MOS Capacitor Two terminal MOS device MOS = Metal- Oxide- Semiconductor MOS capacitor - the heart of the MOSFET The MOS capacitor is used to induce charge at the

More information

Open Access. C.H. Ho 1, F.T. Chien 2, C.N. Liao 1 and Y.T. Tsai*,1

Open Access. C.H. Ho 1, F.T. Chien 2, C.N. Liao 1 and Y.T. Tsai*,1 56 The Open Electrical and Electronic Engineering Journal, 2008, 2, 56-61 Open Access Optimum Design for Eliminating Back Gate Bias Effect of Silicon-oninsulator Lateral Double Diffused Metal-oxide-semiconductor

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Metal-Semiconductor and Semiconductor Heterojunctions The Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) is one of two major types of transistors. The MOSFET is used in digital circuit, because

More information

Parameter Optimization Of GAA Nano Wire FET Using Taguchi Method

Parameter Optimization Of GAA Nano Wire FET Using Taguchi Method Parameter Optimization Of GAA Nano Wire FET Using Taguchi Method S.P. Venu Madhava Rao E.V.L.N Rangacharyulu K.Lal Kishore Professor, SNIST Professor, PSMCET Registrar, JNTUH Abstract As the process technology

More information

High-Temperature and High-Frequency Performance Evaluation of 4H-SiC Unipolar Power Devices

High-Temperature and High-Frequency Performance Evaluation of 4H-SiC Unipolar Power Devices High-Temperature and High-Frequency Performance Evaluation of H-SiC Unipolar Power Devices Madhu Sudhan Chinthavali Oak Ridge Institute for Science and Education Oak Ridge, TN 37831-117 USA chinthavalim@ornl.gov

More information

A High Breakdown Voltage Two Zone Step Doped Lateral Bipolar Transistor on Buried Oxide Thick Step

A High Breakdown Voltage Two Zone Step Doped Lateral Bipolar Transistor on Buried Oxide Thick Step A High Breakdown Voltage Two Zone Step Doped Lateral Bipolar Transistor on Buried Oxide Thick Step Sajad A. Loan, S. Qureshi and S. Sundar Kumar Iyer Abstract----A novel two zone step doped (TZSD) lateral

More information

Performance advancement of High-K dielectric MOSFET

Performance advancement of High-K dielectric MOSFET Performance advancement of High-K dielectric MOSFET Neha Thapa 1 Lalit Maurya 2 Er. Rajesh Mehra 3 M.E. Student M.E. Student Associate Prof. ECE NITTTR, Chandigarh NITTTR, Chandigarh NITTTR, Chandigarh

More information

Wide Band-Gap Power Device

Wide Band-Gap Power Device Wide Band-Gap Power Device 1 Contents Revisit silicon power MOSFETs Silicon limitation Silicon solution Wide Band-Gap material Characteristic of SiC Power Device Characteristic of GaN Power Device 2 1

More information

Enhanced Emitter Transit Time for Heterojunction Bipolar Transistors (HBT)

Enhanced Emitter Transit Time for Heterojunction Bipolar Transistors (HBT) Advances in Electrical Engineering Systems (AEES)` 196 Vol. 1, No. 4, 2013, ISSN 2167-633X Copyright World Science Publisher, United States www.worldsciencepublisher.org Enhanced Emitter Transit Time for

More information

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010 Low Power CMOS Inverter design at different Technologies Vijay Kumar Sharma 1, Surender Soni 2 1 Department of Electronics & Communication, College of Engineering, Teerthanker Mahaveer University, Moradabad

More information

FEM simulation of IGBTs under short circuit operations

FEM simulation of IGBTs under short circuit operations Aalborg University Master Thesis FEM simulation of IGBTs under short circuit operations Vasilios Dimitris Karaventzas PED4-1044 September 2016 Title: FEM simulation of IGBTs under short circuit operations

More information

INTRODUCTION: Basic operating principle of a MOSFET:

INTRODUCTION: Basic operating principle of a MOSFET: INTRODUCTION: Along with the Junction Field Effect Transistor (JFET), there is another type of Field Effect Transistor available whose Gate input is electrically insulated from the main current carrying

More information

A Novel Double Gate Tunnel FET based Flash Memory

A Novel Double Gate Tunnel FET based Flash Memory International Journal of Innovation and Scientific Research ISSN 2351-8014 Vol. 22 No. 2 Apr. 2016, pp. 275-282 2015 Innovative Space of Scientific Research Journals http://www.ijisr.issr-journals.org/

More information

Temperature-Dependent Characterization of SiC Power Electronic Devices

Temperature-Dependent Characterization of SiC Power Electronic Devices Temperature-Dependent Characterization of SiC Power Electronic Devices Madhu Sudhan Chinthavali 1 chinthavalim@ornl.gov Burak Ozpineci 2 burak@ieee.org Leon M. Tolbert 2, 3 tolbert@utk.edu 1 Oak Ridge

More information

Stability of Electrical Characteristics of SiC Super Junction Transistors under Long- Term DC and Pulsed Operation at various Temperatures

Stability of Electrical Characteristics of SiC Super Junction Transistors under Long- Term DC and Pulsed Operation at various Temperatures Mater. Res. Soc. Symp. Proc. Vol. 1433 2012 Materials Research Society DOI: 10.1557/opl.2012. 1032 Stability of Electrical Characteristics of SiC Super Junction Transistors under Long- Term DC and Pulsed

More information

QRTECH AB, Mejerigatan 1, Gothenburg, Sweden

QRTECH AB, Mejerigatan 1, Gothenburg, Sweden Materials Science Forum Online: 213-1-25 ISSN: 1662-9752, Vols. 74-742, pp 97-973 doi:1.428/www.scientific.net/msf.74-742.97 213 Trans Tech Publications, Switzerland 1 V, 3.3 m SiC bipolar junction transistor

More information

3084 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 60, NO. 4, AUGUST 2013

3084 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 60, NO. 4, AUGUST 2013 3084 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 60, NO. 4, AUGUST 2013 Dummy Gate-Assisted n-mosfet Layout for a Radiation-Tolerant Integrated Circuit Min Su Lee and Hee Chul Lee Abstract A dummy gate-assisted

More information

3D SOI elements for System-on-Chip applications

3D SOI elements for System-on-Chip applications Advanced Materials Research Online: 2011-07-04 ISSN: 1662-8985, Vol. 276, pp 137-144 doi:10.4028/www.scientific.net/amr.276.137 2011 Trans Tech Publications, Switzerland 3D SOI elements for System-on-Chip

More information

Static and Dynamic Characterization of High-Speed Silicon Carbide (SiC) Power Transistors

Static and Dynamic Characterization of High-Speed Silicon Carbide (SiC) Power Transistors Engineering, 21, 2, 673-682 doi:1.4236/eng.21.2987 Published Online September 21 (http://www.scirp.org/journal/eng) Static and Dynamic Characterization of High-Speed Silicon Carbide (SiC) Power Transistors

More information

Semiconductor Memory: DRAM and SRAM. Department of Electrical and Computer Engineering, National University of Singapore

Semiconductor Memory: DRAM and SRAM. Department of Electrical and Computer Engineering, National University of Singapore Semiconductor Memory: DRAM and SRAM Outline Introduction Random Access Memory (RAM) DRAM SRAM Non-volatile memory UV EPROM EEPROM Flash memory SONOS memory QD memory Introduction Slow memories Magnetic

More information

Design & Performance Analysis of DG-MOSFET for Reduction of Short Channel Effect over Bulk MOSFET at 20nm

Design & Performance Analysis of DG-MOSFET for Reduction of Short Channel Effect over Bulk MOSFET at 20nm RESEARCH ARTICLE OPEN ACCESS Design & Performance Analysis of DG- for Reduction of Short Channel Effect over Bulk at 20nm Ankita Wagadre*, Shashank Mane** *(Research scholar, Department of Electronics

More information

FinFET Devices and Technologies

FinFET Devices and Technologies FinFET Devices and Technologies Jack C. Lee The University of Texas at Austin NCCAVS PAG Seminar 9/25/14 Material Opportunities for Semiconductors 1 Why FinFETs? Planar MOSFETs cannot scale beyond 22nm

More information

PHYSICS OF SEMICONDUCTOR DEVICES

PHYSICS OF SEMICONDUCTOR DEVICES PHYSICS OF SEMICONDUCTOR DEVICES PHYSICS OF SEMICONDUCTOR DEVICES by J. P. Colinge Department of Electrical and Computer Engineering University of California, Davis C. A. Colinge Department of Electrical

More information

Session 3: Solid State Devices. Silicon on Insulator

Session 3: Solid State Devices. Silicon on Insulator Session 3: Solid State Devices Silicon on Insulator 1 Outline A B C D E F G H I J 2 Outline Ref: Taurand Ning 3 SOI Technology SOl materials: SIMOX, BESOl, and Smart Cut SIMOX : Synthesis by IMplanted

More information

Design and Simulation of N-Substrate Reverse Type Ingaasp/Inp Avalanche Photodiode

Design and Simulation of N-Substrate Reverse Type Ingaasp/Inp Avalanche Photodiode International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 2, Issue 8 (August 2013), PP.34-39 Design and Simulation of N-Substrate Reverse Type

More information

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 2: Basic MOS Physics Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture Semiconductor

More information

Supporting Information. Air-stable surface charge transfer doping of MoS 2 by benzyl viologen

Supporting Information. Air-stable surface charge transfer doping of MoS 2 by benzyl viologen Supporting Information Air-stable surface charge transfer doping of MoS 2 by benzyl viologen Daisuke Kiriya,,ǁ, Mahmut Tosun,,ǁ, Peida Zhao,,ǁ, Jeong Seuk Kang, and Ali Javey,,ǁ,* Electrical Engineering

More information

45nm Bulk CMOS Within-Die Variations. Courtesy of C. Spanos (UC Berkeley) Lecture 11. Process-induced Variability I: Random

45nm Bulk CMOS Within-Die Variations. Courtesy of C. Spanos (UC Berkeley) Lecture 11. Process-induced Variability I: Random 45nm Bulk CMOS Within-Die Variations. Courtesy of C. Spanos (UC Berkeley) Lecture 11 Process-induced Variability I: Random Random Variability Sources and Characterization Comparisons of Different MOSFET

More information

ENHANCING POWER ELECTRONIC DEVICES WITH WIDE BANDGAP SEMICONDUCTORS

ENHANCING POWER ELECTRONIC DEVICES WITH WIDE BANDGAP SEMICONDUCTORS ENHANCING POWER ELECTRONIC DEVICES WITH WIDE BANDGAP SEMICONDUCTORS BURAK OZPINECI Oak Ridge National Laboratory Oak Ridge, TN 37831-6472 USA ozpinecib@ornl.gov MADHU SUDHAN CHINTHAVALI Oak Ridge Institute

More information

King Mongkut s Institute of Technology Ladkrabang, Bangkok 10520, Thailand b Thai Microelectronics Center (TMEC), Chachoengsao 24000, Thailand

King Mongkut s Institute of Technology Ladkrabang, Bangkok 10520, Thailand b Thai Microelectronics Center (TMEC), Chachoengsao 24000, Thailand Materials Science Forum Online: 2011-07-27 ISSN: 1662-9752, Vol. 695, pp 569-572 doi:10.4028/www.scientific.net/msf.695.569 2011 Trans Tech Publications, Switzerland DEFECTS STUDY BY ACTIVATION ENERGY

More information

Modeling and Simulation of a 5.8kV SiC PiN Diode for Inductive Pulsed Plasma Thruster Applications

Modeling and Simulation of a 5.8kV SiC PiN Diode for Inductive Pulsed Plasma Thruster Applications Modeling and Simulation of a 5.8kV SiC PiN Diode for Inductive Pulsed Plasma Thruster Applications Abstract Current ringing in an Inductive Pulsed Plasma Thruster (IPPT) can lead to reduced energy efficiency,

More information

Semiconductor Devices

Semiconductor Devices Semiconductor Devices Modelling and Technology Source Electrons Gate Holes Drain Insulator Nandita DasGupta Amitava DasGupta SEMICONDUCTOR DEVICES Modelling and Technology NANDITA DASGUPTA Professor Department

More information

A STUDY INTO THE APPLICABILITY OF P + N + (UNIVERSAL CONTACT) TO POWER SEMICONDUCTOR DIODES AND TRANSISTORS FOR FASTER REVERSE RECOVERY

A STUDY INTO THE APPLICABILITY OF P + N + (UNIVERSAL CONTACT) TO POWER SEMICONDUCTOR DIODES AND TRANSISTORS FOR FASTER REVERSE RECOVERY Thesis Title: Name: A STUDY INTO THE APPLICABILITY OF P + N + (UNIVERSAL CONTACT) TO POWER SEMICONDUCTOR DIODES AND TRANSISTORS FOR FASTER REVERSE RECOVERY RAGHUBIR SINGH ANAND Roll Number: 9410474 Thesis

More information

Gallium nitride (GaN)

Gallium nitride (GaN) 80 Technology focus: GaN power electronics Vertical, CMOS and dual-gate approaches to gallium nitride power electronics US research company HRL Laboratories has published a number of papers concerning

More information

Review of Power IC Technologies

Review of Power IC Technologies Review of Power IC Technologies Ettore Napoli Dept. Electronic and Telecommunication Engineering University of Napoli, Italy Introduction The integration of Power and control circuitry is desirable for

More information

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI 1 Integrated diodes pn junctions of transistor structures can be used as integrated diodes. The choice of the junction is limited by the considerations of switching speed and breakdown voltage. The forward

More information

CHAPTER 6 DIGITAL CIRCUIT DESIGN USING SINGLE ELECTRON TRANSISTOR LOGIC

CHAPTER 6 DIGITAL CIRCUIT DESIGN USING SINGLE ELECTRON TRANSISTOR LOGIC 94 CHAPTER 6 DIGITAL CIRCUIT DESIGN USING SINGLE ELECTRON TRANSISTOR LOGIC 6.1 INTRODUCTION The semiconductor digital circuits began with the Resistor Diode Logic (RDL) which was smaller in size, faster

More information

NAME: Last First Signature

NAME: Last First Signature UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 130: IC Devices Spring 2003 FINAL EXAMINATION NAME: Last First Signature STUDENT

More information

Gigahertz Ambipolar Frequency Multiplier Based on Cvd Graphene

Gigahertz Ambipolar Frequency Multiplier Based on Cvd Graphene Gigahertz Ambipolar Frequency Multiplier Based on Cvd Graphene The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

A new Vertical JFET Technology for Harsh Radiation Applications

A new Vertical JFET Technology for Harsh Radiation Applications A New Vertical JFET Technology for Harsh Radiation Applications ISPS 2016 1 A new Vertical JFET Technology for Harsh Radiation Applications A Rad-Hard switch for the ATLAS Inner Tracker P. Fernández-Martínez,

More information

EFFECT OF THRESHOLD VOLTAGE AND CHANNEL LENGTH ON DRAIN CURRENT OF SILICON N-MOSFET

EFFECT OF THRESHOLD VOLTAGE AND CHANNEL LENGTH ON DRAIN CURRENT OF SILICON N-MOSFET EFFECT OF THRESHOLD VOLTAGE AND CHANNEL LENGTH ON DRAIN CURRENT OF SILICON N-MOSFET A.S.M. Bakibillah Nazibur Rahman Dept. of Electrical & Electronic Engineering, American International University Bangladesh

More information

IMPROVED CURRENT MIRROR OUTPUT PERFORMANCE BY USING GRADED-CHANNEL SOI NMOSFETS

IMPROVED CURRENT MIRROR OUTPUT PERFORMANCE BY USING GRADED-CHANNEL SOI NMOSFETS IMPROVED CURRENT MIRROR OUTPUT PERFORMANCE BY USING GRADED-CHANNEL SOI NMOSFETS Marcelo Antonio Pavanello *, João Antonio Martino and Denis Flandre 1 Laboratório de Sistemas Integráveis Escola Politécnica

More information

V A ( ) 2 = A. For Vbe = 0.4V: Ic = 7.34 * 10-8 A. For Vbe = 0.5V: Ic = 3.49 * 10-6 A. For Vbe = 0.6V: Ic = 1.

V A ( ) 2 = A. For Vbe = 0.4V: Ic = 7.34 * 10-8 A. For Vbe = 0.5V: Ic = 3.49 * 10-6 A. For Vbe = 0.6V: Ic = 1. 1. A BJT has the structure and parameters below. a. Base Width = 0.5mu b. Electron lifetime in base is 1x10-7 sec c. Base doping is NA=10 17 /cm 3 d. Emitter Doping is ND=2 x10 19 /cm 3. Collector Doping

More information

Design and Simulation of Compact, High Capacitance Ratio RF MEMS Switches using High-K Dielectric Material

Design and Simulation of Compact, High Capacitance Ratio RF MEMS Switches using High-K Dielectric Material Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 5 (2013), pp. 579-584 Research India Publications http://www.ripublication.com/aeee.htm Design and Simulation of Compact,

More information

Performance Comparison of CMOS and Finfet Based Circuits At 45nm Technology Using SPICE

Performance Comparison of CMOS and Finfet Based Circuits At 45nm Technology Using SPICE RESEARCH ARTICLE OPEN ACCESS Performance Comparison of CMOS and Finfet Based Circuits At 45nm Technology Using SPICE Mugdha Sathe*, Dr. Nisha Sarwade** *(Department of Electrical Engineering, VJTI, Mumbai-19)

More information

Analog Synaptic Behavior of a Silicon Nitride Memristor

Analog Synaptic Behavior of a Silicon Nitride Memristor Supporting Information Analog Synaptic Behavior of a Silicon Nitride Memristor Sungjun Kim, *, Hyungjin Kim, Sungmin Hwang, Min-Hwi Kim, Yao-Feng Chang,, and Byung-Gook Park *, Inter-university Semiconductor

More information

Higher School of Economics, Moscow, Russia. Zelenograd, Moscow, Russia

Higher School of Economics, Moscow, Russia. Zelenograd, Moscow, Russia Advanced Materials Research Online: 2013-07-31 ISSN: 1662-8985, Vols. 718-720, pp 750-755 doi:10.4028/www.scientific.net/amr.718-720.750 2013 Trans Tech Publications, Switzerland Hardware-Software Subsystem

More information

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Current Transport: Diffusion, Thermionic Emission & Tunneling For Diffusion current, the depletion layer is

More information

Active Pixel Sensors Fabricated in a Standard 0.18 um CMOS Technology

Active Pixel Sensors Fabricated in a Standard 0.18 um CMOS Technology Active Pixel Sensors Fabricated in a Standard.18 um CMOS Technology Hui Tian, Xinqiao Liu, SukHwan Lim, Stuart Kleinfelder, and Abbas El Gamal Information Systems Laboratory, Stanford University Stanford,

More information

Introduction. Figure 2: The HiPak standard (left) and high-insulation (right) modules with 3300V SPT + IGBT technology.

Introduction. Figure 2: The HiPak standard (left) and high-insulation (right) modules with 3300V SPT + IGBT technology. M. Rahimo, U. Schlapbach, A. Kopta, R. Schnell, S. Linder ABB Switzerland Ltd, Semiconductors, Fabrikstrasse 3, CH 5600 Lenzburg, Switzerland email: munaf.rahimo@ch.abb.com Abstract: Following the successful

More information

Unit III FET and its Applications. 2 Marks Questions and Answers

Unit III FET and its Applications. 2 Marks Questions and Answers Unit III FET and its Applications 2 Marks Questions and Answers 1. Why do you call FET as field effect transistor? The name field effect is derived from the fact that the current is controlled by an electric

More information

Experiment 3. 3 MOSFET Drain Current Modeling. 3.1 Summary. 3.2 Theory. ELEC 3908 Experiment 3 Student#:

Experiment 3. 3 MOSFET Drain Current Modeling. 3.1 Summary. 3.2 Theory. ELEC 3908 Experiment 3 Student#: Experiment 3 3 MOSFET Drain Current Modeling 3.1 Summary In this experiment I D vs. V DS and I D vs. V GS characteristics are measured for a silicon MOSFET, and are used to determine the parameters necessary

More information

Implantation-Free 4H-SiC Bipolar Junction Transistors with Double Base Epi-layers

Implantation-Free 4H-SiC Bipolar Junction Transistors with Double Base Epi-layers Implantation-Free 4H-SiC Bipolar Junction Transistors with Double Base Epi-layers Jianhui Zhang, member, IEEE, Xueqing, Li, Petre Alexandrov, member, IEEE, Terry Burke, member, IEEE, and Jian H. Zhao,

More information

HfO 2 Based Resistive Switching Non-Volatile Memory (RRAM) and Its Potential for Embedded Applications

HfO 2 Based Resistive Switching Non-Volatile Memory (RRAM) and Its Potential for Embedded Applications 2012 International Conference on Solid-State and Integrated Circuit (ICSIC 2012) IPCSIT vol. 32 (2012) (2012) IACSIT Press, Singapore HfO 2 Based Resistive Switching Non-Volatile Memory (RRAM) and Its

More information

DC Analysis of InP/GaAsSb DHBT Device Er. Ankit Sharma 1, Dr. Sukhwinder Singh 2

DC Analysis of InP/GaAsSb DHBT Device Er. Ankit Sharma 1, Dr. Sukhwinder Singh 2 IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 5, Ver. I (Sep - Oct.2015), PP 48-52 www.iosrjournals.org DC Analysis of InP/GaAsSb

More information

Fundamentals of CMOS Image Sensors

Fundamentals of CMOS Image Sensors CHAPTER 2 Fundamentals of CMOS Image Sensors Mixed-Signal IC Design for Image Sensor 2-1 Outline Photoelectric Effect Photodetectors CMOS Image Sensor(CIS) Array Architecture CIS Peripherals Design Considerations

More information

The impact of Triangular Defects on Electrical Characteristics and Switching Performance of 3.3kV 4H-SiC PiN Diode

The impact of Triangular Defects on Electrical Characteristics and Switching Performance of 3.3kV 4H-SiC PiN Diode The impact of Triangular Defects on Electrical Characteristics and Switching Performance of 3.3kV 4H-SiC PiN Diode Yeganeh Bonyadi, Peter Gammon, Roozbeh Bonyadi, Olayiwola Alatise, Ji Hu, Steven Hindmarsh,

More information

Learning Material Ver 1.1

Learning Material Ver 1.1 Insulated Gate Bipolar Transistor (IGBT) ST2701 Learning Material Ver 1.1 An ISO 9001:2008 company Scientech Technologies Pvt. Ltd. 94, Electronic Complex, Pardesipura, Indore - 452 010 India, + 91-731

More information

DESIGN OF 20 nm FinFET STRUCTURE WITH ROUND FIN CORNERS USING SIDE SURFACE SLOPE VARIATION

DESIGN OF 20 nm FinFET STRUCTURE WITH ROUND FIN CORNERS USING SIDE SURFACE SLOPE VARIATION Journal of Electron Devices, Vol. 18, 2013, pp. 1537-1542 JED [ISSN: 1682-3427 ] DESIGN OF 20 nm FinFET STRUCTURE WITH ROUND FIN CORNERS USING SIDE SURFACE SLOPE VARIATION Suman Lata Tripathi and R. A.

More information

T-series and U-series IGBT Modules (600 V)

T-series and U-series IGBT Modules (600 V) T-series and U-series IGBT Modules (6 V) Seiji Momota Syuuji Miyashita Hiroki Wakimoto 1. Introduction The IGBT (insulated gate bipolar transistor) module is the most popular power device in power electronics

More information

A Physics-Based Model for Fast Recovery Diodes with Lifetime Control and Emitter Efficiency Reduction

A Physics-Based Model for Fast Recovery Diodes with Lifetime Control and Emitter Efficiency Reduction A Physics-Based Model for Fast Recovery Diodes with Lifetime Control and Emitter Efficiency Reduction Chengjie Wang, Li Yin, and Chuanmin Wang Abstract This paper presents a physics-based model for the

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/6/e1501326/dc1 Supplementary Materials for Organic core-sheath nanowire artificial synapses with femtojoule energy consumption Wentao Xu, Sung-Yong Min, Hyunsang

More information

COMPARISON OF PT AND NPT CELL CONCEPT FOR 600V IGBTs

COMPARISON OF PT AND NPT CELL CONCEPT FOR 600V IGBTs COMPARISON OF PT AND NPT CELL CONCEPT FOR 6V IGBTs R.Siemieniec, M.Netzel, * R.Herzer Technical University of Ilmenau, * SEMIKRON Elektronik GmbH Nürnberg, Germany Abstract. This paper presents a comparison

More information

Reliability of deep submicron MOSFETs

Reliability of deep submicron MOSFETs Invited paper Reliability of deep submicron MOSFETs Francis Balestra Abstract In this work, a review of the reliability of n- and p-channel Si and SOI MOSFETs as a function of gate length and temperature

More information

n-channel LDMOS WITH STI FOR BREAKDOWN VOLTAGE ENHANCEMENT AND IMPROVED R ON

n-channel LDMOS WITH STI FOR BREAKDOWN VOLTAGE ENHANCEMENT AND IMPROVED R ON n-channel LDMOS WITH STI FOR BREAKDOWN VOLTAGE ENHANCEMENT AND IMPROVED R ON 1 SUNITHA HD, 2 KESHAVENI N 1 Asstt Prof., Department of Electronics Engineering, EPCET, Bangalore 2 Prof., Department of Electronics

More information

Education on CMOS RF Circuit Reliability

Education on CMOS RF Circuit Reliability Education on CMOS RF Circuit Reliability Jiann S. Yuan 1 Abstract This paper presents a design methodology to study RF circuit performance degradations due to hot carrier and soft breakdown. The experimental

More information

SCALING AND NUMERICAL SIMULATION ANALYSIS OF 50nm MOSFET INCORPORATING DIELECTRIC POCKET (DP-MOSFET)

SCALING AND NUMERICAL SIMULATION ANALYSIS OF 50nm MOSFET INCORPORATING DIELECTRIC POCKET (DP-MOSFET) SCALING AND NUMERICAL SIMULATION ANALYSIS OF 50nm MOSFET INCORPORATING DIELECTRIC POCKET (DP-MOSFET) Zul Atfyi Fauzan M. N., Ismail Saad and Razali Ismail Faculty of Electrical Engineering, Universiti

More information

UNIT 3: FIELD EFFECT TRANSISTORS

UNIT 3: FIELD EFFECT TRANSISTORS FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

More information

EFFECT OF STRUCTURAL AND DOPING PARAMETER VARIATIONS ON NQS DELAY, INTRINSIC GAIN AND NF IN JUNCTIONLESS FETS

EFFECT OF STRUCTURAL AND DOPING PARAMETER VARIATIONS ON NQS DELAY, INTRINSIC GAIN AND NF IN JUNCTIONLESS FETS EFFECT OF STRUCTURAL AND DOPING PARAMETER VARIATIONS ON NQS DELAY, INTRINSIC GAIN AND NF IN JUNCTIONLESS FETS B. Lakshmi 1 and R. Srinivasan 2 1 School of Electronics Engineering, VIT University, Chennai,

More information

Semiconductor Devices Lecture 5, pn-junction Diode

Semiconductor Devices Lecture 5, pn-junction Diode Semiconductor Devices Lecture 5, pn-junction Diode Content Contact potential Space charge region, Electric Field, depletion depth Current-Voltage characteristic Depletion layer capacitance Diffusion capacitance

More information

Comparative Study of Silicon and Germanium Doping-less Tunnel Field Effect Transistors

Comparative Study of Silicon and Germanium Doping-less Tunnel Field Effect Transistors IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 5 November 2015 ISSN (online): 2349-784X Comparative Study of Silicon and Germanium Doping-less Tunnel Field Effect Transistors

More information

Low Noise Dual Gate Enhancement Mode MOSFET with Quantum Valve in the Channel

Low Noise Dual Gate Enhancement Mode MOSFET with Quantum Valve in the Channel Proceedings of the World Congress on Electrical Engineering and Computer Systems and Science (EECSS 2015) Barcelona, Spain, July 13-14, 2015 Paper No. 153 Low Noise Dual Gate Enhancement Mode MOSFET with

More information

Avalanche Ruggedness of 800V Lateral IGBTs in Bulk Si

Avalanche Ruggedness of 800V Lateral IGBTs in Bulk Si Avalanche Ruggedness of 800V Lateral IGBTs in Bulk Si Gianluca Camuso 1, Nishad Udugampola 2, Vasantha Pathirana 2, Tanya Trajkovic 2, Florin Udrea 1,2 1 University of Cambridge, Engineering Department

More information

High Voltage SPT + HiPak Modules Rated at 4500V

High Voltage SPT + HiPak Modules Rated at 4500V High Voltage SPT + HiPak Modules Rated at 45V High Voltage SPT + HiPak Modules Rated at 45V A. Kopta, M. Rahimo, U. Schlapbach, R. Schnell, D. Schneider ABB Switzerland Ltd, Semiconductors, Fabrikstrasse

More information

Chapter 2 : Semiconductor Materials & Devices (II) Feb

Chapter 2 : Semiconductor Materials & Devices (II) Feb Chapter 2 : Semiconductor Materials & Devices (II) 1 Reference 1. SemiconductorManufacturing Technology: Michael Quirk and Julian Serda (2001) 3. Microelectronic Circuits (5/e): Sedra & Smith (2004) 4.

More information