doi: info:doi/ /icpe

Size: px
Start display at page:

Download "doi: info:doi/ /icpe"

Transcription

1 doi: info:doi/0.09/cpe

2 New Measurement Base De-embedded Load Model for Power Delivery Network Design Motochika Okano,2, Koji Watanabe 3, Masamichi Naitoh, and chiro Omura Kyushu nstitute of Technology, Japan 2 Toshiba Corporation, Japan 3 Toshiba Digital Media Engineering Corporation, Japan Abstract-- load model including on-chip wiring and package interconnection has been required for printed circuit board (PCB) design of digital products according to the improvement in the speed of operation in recent years. Especially, accurate power delivery network (PDN) information inside is indispensable for PCB design according to requirement of low-impedance and the broadband (from DC to GHz) from the inside of to DC-DC converter. While the detailed impedance information inside s is not disclosed to PCB board designers with the complicated back-end and front-end production design for chip and package. This paper aims to establish new methodology to extract load model with combination of measurement and simulation. The method is simple yet powerful for high-end board design. Fig.. PDN from DC-DC converter to the inside of. ndex Terms-- Load Model, De-embedded, Power delivery network, Target impedance. NTRODUCTON Severe voltage margin for the power supply has been required according to the decrease of supply voltage for high performance. n order to supply required power to the under GHz operation, it is necessary to precisely design the power delivery network (PDN) from DC-DC converter to the digital circuit on chip including wiring on the chip, in the package, and other interconnections as shown in Fig.. Specially, mω level low-impedance characteristics along entire PDN is required in frequency range up to tens of GHz. This impedance is called Target impedance (Z t ). Power supply voltage, Current consumption, and Z t of high-end in recent years are shown in Fig. 2. Z t is calculated by (). Z t V 0% s () c Where V s is the Power supply voltage and c is the Current consumption. Current consumption c has the frequency dependence, so that Z t also has the frequency dependence as shown in (2). Z t V 0% ( f ) s (2) ( f ) c Power supply voltage[v] Target mpedance[mω] Power supply voltage Current consumption Target mpedance Year Fig.2 Trend of high-end Power supply voltage (V s), Current consumption ( c), and Target impedance (Z t). Current waveform (Time domain) of and its frequency dependence (Frequency domain) by Fourier transform are illustrated in Fig. 3. Frequency domain target impedance Z t can be directly obtained from Fig. 3 (b) as shown in fig. 4. The target impedance Z t is defined as the lower side envelope of the impedance curve obtained. As indicated in Fig. 4, although the frequency basis impedance increases as frequency, Z t is required to maintain relatively low level even in high frequency range. Since the load models are not disclosed from vendors to board designers, the amount of capacitors has been assembled on the PCB, based on designer s experience, to maintain low impedance up to the high frequency and no practical method exists to ensure the design validity Current consumption[a]

3 Current consumption[a] Current consumption[a] Target impedance[ω] E Time[ns] (a) Time domain 00k M 0M 00M G (b) Frequency domain Fig.3. Example of Current consumption waveform Target impedance line 00k M 0M 00M G Fig.4. Example of Target impedance. n order to realize PDN for required target low impedance and frequency, with minimum number of capacitors, it is necessary to design entire network including inside package and on-chip wiring. The impedance information is not disclosed from the vendor, thus extraction method become important. Although there have been some papers on extraction method for impedance inside [-3], the low accuracy and the complication has been the problem. This paper aims to introduce novel method to extract impedance inside package by the combination of measurement and simulation. The method is simple and accurate without special measurement tools. The method will contribute efficient design for power delivery on PCB.. NECESSTY OF LOAD MODEL The PDN impedance with and without load model are shown in Fig. 5. The PDN impedance curves ( blue and aqua colored lines in Fig. 5) are calculated with the exact load model specially calculated from the chip and the package design detail in Toshiba Corp. for the particular. The detailed PKG design data used for the exact load mode is shown in Fig. 6. The model includes the effect of vias and bonding wires inside package. (The data and model is not provided for users). The blue line is the impedance at chip indicated by Point B in Fig., and the aqua line is the impedance of at package BGA indicated by Point A in Fig.. t should be noted that detailed package wiring data is required to obtain the impedance at chip shown by blue line in Fig. 5, thus the impedance at Point A is the practical index for the board design without detailed package and wiring information. Without load model, the calculated PDN impedance is out of the target impedance at high frequency range as shown in Black line. Therefore, the number of required capacitors is always over estimated by the board designer, resulting higher board cost and larger board size. Further, mutual correlation effects, such as anti-resonance effect appeared at 20 MHz in Fig. 5 in blue and aqua line, are not considered without load model. The load model is important for following three points according to above discussion. (a) Provide model to board designer to minimize on-board capacitors (b) Ensure the board design validity to the target impedance of the PDN (c) Co-design of PCB board package in terms of PDN quality As described, most of the vendors do not provide the load model of their products nor detailed package and wiring information. Therefor the accurate extraction method for the load model is indispensable. n the next section, the new experiment simulation combined load model extraction method is proposed. The load model is extracted from the difference between PDN impedances obtained by board level measurement with on the board and by the board level simulation without. This technique is the very powerful to minimize the size and cost in terms of PDN design, even if the model is not provided from the vendor.

4 Power Delivery Network mpedance [Ω] Simulation Result Point A(fig.) w/o model Point A(fig.) w/ model Point B(fig.) w/ model Target impedance Zt anti-resonance k 0k 00k M 0M 00M G. NEW EXTRACTON METHOD PCB in which was mounted is prepared, and the Power-GND impedance is measured. Moreover, the Power-GND impedance is simulated in the state where all parts included are not mounted, using PCB design data. The PDN information inside is extracted by taking these both difference. The image is shown in Fig. 7. Fig. 5. PDN mpedance w/ and w/o. load model is precisely calculated from design data. Fig. 7. Load Model extraction concept. A. Proposed Method The relation of input and output can be realized by (3) (4) and (5), if F parameter [F PCB ] is defined as shown in Fig. 8. [F PCB ] is converted from S parameter by (6) even in high frequency. This S parameter [S PCB ] is the impedance of the PCB without, and it can calculate it in analysis from PCB design data. Z N is the Power-GND impedance. S of S parameter between Power and GND of input side is measured using PCB with by Shunt-Thru method. n Shunt-Thru method, the transmission characteristic (S ) comes to hand as S 2. Z N can be transformed from S by (7). (a) PCB design data N * Z N FPCB FPCB 2 * Z (3) N FPCB2 FPCB N N Z F F * PCB FPCB 2 N PCB2 F PCB Z (4) (b) Package design data f N * Z a, b then N a Z (5) b F F PCB PCB2 2 S 2 F F PCB2 PCB ( + S ( S )( S )( S Z ref ) + S2S ) S S [( + S )( + S ) S S ] ( S )( + S 2 2 ) + S S 2 Z 2 (6) ref (c) Wire Bonding data Fig. 6. PCB and Package design data mounted inside Toshiba, which is not disclosed for users. 50 S (7) 2 ( S ) Z N

5 Port near Power supply is mounted. Fig. 8. Load model extraction method. Other parts are not mounted. B. Work Flow to extract load impedance These workflow are indicated in Fig9. Board S-parameter measurement w/ Power-GND impedance S is measured using the PCB with. Shunt-Thru method E836C@Agilent *The transmission characteristic (S) comes to hand as S2 of Shunt-Thru method. Fig. 0. PCB mounted only for measurement. S parameter(s 2 ) can be measured by the Shunt-Thru method. Z N calculated from this S 2 of [S Measure ] is shown in Fig. -2. (S 2 of the Shunt-Thru means the transmission characteristic (S )). S is changed into Z N by (7). S Z N Board S-parameter simulation w/o Power-GND impedance [S PCB ] is simulated using the PCB design data w/o. [S PCB ] is changed into [F PCB ], and [F PCB] - by (6). [S PCB ] [F PCB ] [F PCB ] - Z N 0 0. Fig.. Equivalent circuit of Z N Z N Z can be calculated by (4) and (5). Fig. 9. Work flow for load model with combination of simulation and measurement. 0M 00M Fig. 2. Measurement result Z N G V. RESULTS AND DSCUSSON A. Calculation of Z N The PCB mounted is shown in Fig. 0. Only is mounted in this substrate. The measurement point is Port near DC-DC converter. Measuring instruments is the network/impedance analyzer (product E836C made by Agilent). The frequency range is 0[MHz]- [GHz]. B. Calculation of [F PCB ] [S PCB ] was calculated in the Power-GND impedance simulation using the PCB design data which does not mount any parts included. The simulator is used PowerS(Cadence) Ver0. (Fig. 3). PCB is 4-layer through-hole. The layer structure is shown in TABLE. Port is the same as the measurement point, and Port2 is set to the power and ground pads of as far as possible from Port as shown in Fig. 4.

6 0 Z PCB Z PCB 0. 0M 00M G Fig. 3. Simulation model of PCB (PowerS) Fig. 6. Simulation result Z PCB TABLE THE LAYER STRUCTURE OF THE PCB L S/V/G Material Thickness Conductivity Dielectric Loss [mm] [S/m] Constant Tan Solder Resist S Copper E+07 +Plating P.P G Copper E+07 Core V Copper E+07 P.P S Copper E+07 +Plating Solder Resist C. Calculation of Z The load impedance (Z ) is calculated using Z N of measurement and [F PCB ] - of simulation by (4) and (5). This extracted result is shown in Fig Fig. 7. Equivalent circuit of Z Port All parts are NOT mounted. Port2: Power and GND (Power and GND are groupings, Z cpu 0 De-embedded Result by this method Z 0. Fig. 4. Simulation Ports setting Z PCB calculated from S of [S PCB ] is shown in Fig. 5-6, and it was changed into [F PCB ] and [F PCB ] - from this [S PCB ] by (6). 0M 00M G Fig. 8. Z obtained by this de-embedded method. D. Verification of extracted Z The extracted Z is applied to part on Fig. 9 and the result Z N simulated is indicated on Fig. 20. To compare, Measurement result of Fig.2 is also shown on the same chart. Z N using Z agrees very well with measurement result. This proves that it can be De-embedded Load Model correctly by this method. Fig. 5. Equivalent circuit of Z PCB

7 Z N Fig. 9. Equivalent circuit of Z N using extracted Z Z N using extracted Z Z N calculated from measurement result 0M 00M G Fig. 20. Comparison of Z N using extracted Z ( Red ) and Z N calculated from measurement result( Black ). E. PDN mpedance using extracted Z The Power-GND impedance of Point A in Fig. using PCB data and extracted Z is shown by the green line in Fig. 2. This impedance is equivalent to the aqua line using the load model specially calculated from design data. With the proposed method, load model is successfully extracted with high accuracy. Power Delivery Network mpedance [Ω] 0 0. Simulation Result Point A(fig.) using 's design data (same as "aqua" line of Fig.3) De-embedded Result by this method Point A(fig.) using extracted Z 0M 00M G Fig. 2. PDN using extracted Z As show in Fig. 8, the load model of (Z ) is rising by more than 40 MHz, and PDN is also rising in the same way by more than 40 MHz as shown in Fig. 2. This means that the inductance ingredient of (especially Package in ) becomes dominant for more than 40 MHz of impedance. n other words, there are no ways but vender increases the capacity in included Package to lower more than 40 MHz of impedance and it's ineffective that PCB designer arranges additional capacitors on PCB. The conventional Power-GND impedance which has no Load models and this Power-GND impedance using the Load model extracted by this method are shown in Fig.. PCB designer didn't know even the frequency range to take a measure at the PCB design side, because there were no Load models. With the proposed method, on the other hand, the Load model was clearly defined. n case of this example, it's necessary that the PCB side to take the measure to lower PDN impedance in frequency range less than 40 MHz. n particular, there is the sudden change impedance rise around 20MHz. This seems to depend on anti-resonance of PCB and (especially Package). Therefore, PCB designer has to arrange some capacitors to lower impedance around 20MHz, avoid the signal line of around 20MHz from this PDN, and design the shape of Power and Ground plane without resonance 20MHz. Power Delivery Network mpedance [Ω] Simulation Result Point A(fig.) without model De-embedded Result by this method Point A(fig.) using extracted Z k 0k 00k M 0M 00M G Fig.. PDN mpedance without and with load model extracted by this method. V. CONCLUSONS A novel extraction method for load impedance inside package including on-chip wiring has been successfully demonstrated. The method is simple yet accurate without special equipment. The method will contribute efficient design for power delivery on PCB. REFERENCES [] Alex Waizman, Power Supply mpedance Profile Measurement Using FFT and Clock Gating, Electrical Performance of Electronic Packaging, 2003, pp.29-32, Oct [2] W.J.Lambert, R.Ayyanar, Estimation of Microprocessor nstantaneous Load Current for Voltage Regulator Optimization, Applied Power Electronics Conference and Exposition, APEC Twenty-Third Annual EEE, pp , Feb [3] S.Chickamenahalli, K.Aygun, M.J.Hill, K.Radhakrishnan, K.Eilert, E Stanford, Microprocessor Platform mpedance Characterization using VTT Tools Applied Power Electronics Conference and Exposition, APEC Twentieth Annual EEE, pp Vol. 3, 6-0 March 2005.

Practical Limitations of State of the Art Passive Printed Circuit Board Power Delivery Networks for High Performance Compute Systems

Practical Limitations of State of the Art Passive Printed Circuit Board Power Delivery Networks for High Performance Compute Systems Practical Limitations of State of the Art Passive Printed Circuit Board Power Delivery Networks for High Performance Compute Systems Presented by Chad Smutzer Mayo Clinic Special Purpose Processor Development

More information

The Facts about the Input Impedance of Power and Ground Planes

The Facts about the Input Impedance of Power and Ground Planes The Facts about the Input Impedance of Power and Ground Planes The following diagram shows the power and ground plane structure of which the input impedance is computed. Figure 1. Configuration of the

More information

T est POST OFFICE BOX 1927 CUPERTINO, CA TEL E P H ONE (408) FAX (408) ARIES ELECTRONICS

T est POST OFFICE BOX 1927 CUPERTINO, CA TEL E P H ONE (408) FAX (408) ARIES ELECTRONICS G iga T est L abs POST OFFICE BOX 1927 CUPERTINO, CA 95015 TEL E P H ONE (408) 524-2700 FAX (408) 524-2777 ARIES ELECTRONICS BGA SOCKET (0.80MM TEST CENTER PROBE CONTACT) Final Report Electrical Characterization

More information

Design of the Power Delivery System for Next Generation Gigahertz Packages

Design of the Power Delivery System for Next Generation Gigahertz Packages Design of the Power Delivery System for Next Generation Gigahertz Packages Madhavan Swaminathan Professor School of Electrical and Computer Engg. Packaging Research Center madhavan.swaminathan@ece.gatech.edu

More information

A Resonance-Free Power Delivery System Design Methodology applying 3D Optimized Extended Adaptive Voltage Positioning.

A Resonance-Free Power Delivery System Design Methodology applying 3D Optimized Extended Adaptive Voltage Positioning. A Resonance-Free Power Delivery System Design Methodology applying 3D Optimized Extended Adaptive Voltage Positioning Tao Xu Brad Brim Agenda Adaptive voltage positioning (AVP) Extended adaptive voltage

More information

Chip Package - PC Board Co-Design: Applying a Chip Power Model in System Power Integrity Analysis

Chip Package - PC Board Co-Design: Applying a Chip Power Model in System Power Integrity Analysis Chip Package - PC Board Co-Design: Applying a Chip Power Model in System Power Integrity Analysis Authors: Rick Brooks, Cisco, ricbrook@cisco.com Jane Lim, Cisco, honglim@cisco.com Udupi Harisharan, Cisco,

More information

EMI Reduction on an Automotive Microcontroller

EMI Reduction on an Automotive Microcontroller EMI Reduction on an Automotive Microcontroller Design Automation Conference, July 26 th -31 st, 2009 Patrice JOUBERT DORIOL 1, Yamarita VILLAVICENCIO 2, Cristiano FORZAN 1, Mario ROTIGNI 1, Giovanni GRAZIOSI

More information

544 IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 31, NO. 3, AUGUST /$ IEEE

544 IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 31, NO. 3, AUGUST /$ IEEE 544 IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 31, NO. 3, AUGUST 2008 Modeling and Measurement of Interlevel Electromagnetic Coupling and Fringing Effect in a Hierarchical Power Distribution Network

More information

Engineering the Power Delivery Network

Engineering the Power Delivery Network C HAPTER 1 Engineering the Power Delivery Network 1.1 What Is the Power Delivery Network (PDN) and Why Should I Care? The power delivery network consists of all the interconnects in the power supply path

More information

Aries Kapton CSP socket

Aries Kapton CSP socket Aries Kapton CSP socket Measurement and Model Results prepared by Gert Hohenwarter 5/19/04 1 Table of Contents Table of Contents... 2 OBJECTIVE... 3 METHODOLOGY... 3 Test procedures... 4 Setup... 4 MEASUREMENTS...

More information

PDS Impact for DDR Low Cost Design

PDS Impact for DDR Low Cost Design PDS Impact for DDR3-1600 Low Cost Design Jack W.C. Lin Sr. AE Manager jackl@cadence.com Aug. g 13 2013 Cadence, OrCAD, Allegro, Sigrity and the Cadence logo are trademarks of Cadence Design Systems, Inc.

More information

Electromagnetic Interference Shielding Effects in Wireless Power Transfer using Magnetic Resonance Coupling for Board-to-Board Level Interconnection

Electromagnetic Interference Shielding Effects in Wireless Power Transfer using Magnetic Resonance Coupling for Board-to-Board Level Interconnection Electromagnetic Interference Shielding Effects in Wireless Power Transfer using Magnetic Resonance Coupling for Board-to-Board Level Interconnection Sukjin Kim 1, Hongseok Kim, Jonghoon J. Kim, Bumhee

More information

Application Note 5525

Application Note 5525 Using the Wafer Scale Packaged Detector in 2 to 6 GHz Applications Application Note 5525 Introduction The is a broadband directional coupler with integrated temperature compensated detector designed for

More information

Signal Integrity Modeling and Simulation for IC/Package Co-Design

Signal Integrity Modeling and Simulation for IC/Package Co-Design Signal Integrity Modeling and Simulation for IC/Package Co-Design Ching-Chao Huang Optimal Corp. October 24, 2004 Why IC and package co-design? The same IC in different packages may not work Package is

More information

Broadband Methodology for Power Distribution System Analysis of Chip, Package and Board for High Speed IO Design

Broadband Methodology for Power Distribution System Analysis of Chip, Package and Board for High Speed IO Design DesignCon 2009 Broadband Methodology for Power Distribution System Analysis of Chip, Package and Board for High Speed IO Design Hsing-Chou Hsu, VIA Technologies jimmyhsu@via.com.tw Jack Lin, Sigrity Inc.

More information

High Speed Design Issues and Jitter Estimation Techniques. Jai Narayan Tripathi

High Speed Design Issues and Jitter Estimation Techniques. Jai Narayan Tripathi High Speed Design Issues and Jitter Estimation Techniques Jai Narayan Tripathi (jainarayan.tripathi@st.com) Outline Part 1 High-speed Design Issues Signal Integrity Power Integrity Jitter Power Delivery

More information

Model PD3150J5050S2HF

Model PD3150J5050S2HF Model PD315J55S2HF Ultra Low Profile 85 Power Divider 5Ω to 5Ω Description The PD315J55S2HF is a low profile, sub-miniature Wilkinson power divider in an easy to use surface mount package. The PD315J55S2HF

More information

Model PD2328J5050S2HF

Model PD2328J5050S2HF Model PD2328J55S2HF Ultra Low Profile 85 Power Divider 5Ω to 5Ω Description The PD2328J55S2HF is a low profile, sub-miniature Wilkinson power divider in an easy to use surface mount package. The PD2328J55S2HF

More information

TECHNICAL REPORT: CVEL Parasitic Inductance Cancellation for Filtering to Chassis Ground Using Surface Mount Capacitors

TECHNICAL REPORT: CVEL Parasitic Inductance Cancellation for Filtering to Chassis Ground Using Surface Mount Capacitors TECHNICAL REPORT: CVEL-14-059 Parasitic Inductance Cancellation for Filtering to Chassis Ground Using Surface Mount Capacitors Andrew J. McDowell and Dr. Todd H. Hubing Clemson University April 30, 2014

More information

Foundry WLSI Technology for Power Management System Integration

Foundry WLSI Technology for Power Management System Integration 1 Foundry WLSI Technology for Power Management System Integration Chuei-Tang Wang, Chih-Lin Chen, Jeng-Shien Hsieh, Victor C.Y. Chang, Douglas Yu R&D,TSMC Oct. 2016 2 Motivation Outline PMIC system integration

More information

Aries QFP microstrip socket

Aries QFP microstrip socket Aries QFP microstrip socket Measurement and Model Results prepared by Gert Hohenwarter 2/18/05 1 Table of Contents Table of Contents... 2 OBJECTIVE... 3 METHODOLOGY... 3 Test procedures... 4 Setup... 4

More information

Taking the Mystery out of Signal Integrity

Taking the Mystery out of Signal Integrity Slide - 1 Jan 2002 Taking the Mystery out of Signal Integrity Dr. Eric Bogatin, CTO, GigaTest Labs Signal Integrity Engineering and Training 134 S. Wolfe Rd Sunnyvale, CA 94086 408-524-2700 www.gigatest.com

More information

Custom Interconnects Fuzz Button with Hardhat Test Socket/Interposer 1.00 mm pitch

Custom Interconnects Fuzz Button with Hardhat Test Socket/Interposer 1.00 mm pitch Custom Interconnects Fuzz Button with Hardhat Test Socket/Interposer 1.00 mm pitch Measurement and Model Results prepared by Gert Hohenwarter 12/14/2015 1 Table of Contents TABLE OF CONTENTS...2 OBJECTIVE...

More information

Application of Generalized Scattering Matrix for Prediction of Power Supply Noise

Application of Generalized Scattering Matrix for Prediction of Power Supply Noise Application of Generalized Scattering Matrix for Prediction of Power Supply Noise System Level Interconnect Prediction 2010 June 13, 2010 K. Yamanaga (1),K. Masu (2), and T. Sato (3) (1) Murata Manufacturing

More information

Relationship Between Signal Integrity and EMC

Relationship Between Signal Integrity and EMC Relationship Between Signal Integrity and EMC Presented by Hasnain Syed Solectron USA, Inc. RTP, North Carolina Email: HasnainSyed@solectron.com 06/05/2007 Hasnain Syed 1 What is Signal Integrity (SI)?

More information

Considerations in High-Speed High Performance Die-Package-Board Co-Design. Jenny Jiang Altera Packaging Department October 2014

Considerations in High-Speed High Performance Die-Package-Board Co-Design. Jenny Jiang Altera Packaging Department October 2014 Considerations in High-Speed High Performance Die-Package-Board Co-Design Jenny Jiang Altera Packaging Department October 2014 Why Co-Design? Complex Multi-Layer BGA Package Horizontal and vertical design

More information

Design, Modeling and Characterization of Embedded Capacitor Networks for Mid-frequency Decoupling in Semiconductor Systems

Design, Modeling and Characterization of Embedded Capacitor Networks for Mid-frequency Decoupling in Semiconductor Systems Design, Modeling and Characterization of Embedded Capacitor Networks for Mid-frequency Decoupling in Semiconductor Systems Prathap Muthana, Madhavan Swaminathan, Rao Tummala, P.Markondeya Raj, Ege Engin,Lixi

More information

The Inductance Loop Power Distribution in the Semiconductor Test Interface. Jason Mroczkowski Multitest

The Inductance Loop Power Distribution in the Semiconductor Test Interface. Jason Mroczkowski Multitest The Inductance Loop Power Distribution in the Semiconductor Test Interface Jason Mroczkowski Multitest j.mroczkowski@multitest.com Silicon Valley Test Conference 2010 1 Agenda Introduction to Power Delivery

More information

A passive circuit based RF optimization methodology for wireless sensor network nodes. Article (peer-reviewed)

A passive circuit based RF optimization methodology for wireless sensor network nodes. Article (peer-reviewed) Title Author(s) Editor(s) A passive circuit based RF optimization methodology for wireless sensor network nodes Zheng, Liqiang; Mathewson, Alan; O'Flynn, Brendan; Hayes, Michael; Ó Mathúna, S. Cian Wu,

More information

3 GHz Wide Frequency Model of Surface Mount Technology (SMT) Ferrite Bead for Power/Ground and I/O Line Noise Simulation of High-speed PCB

3 GHz Wide Frequency Model of Surface Mount Technology (SMT) Ferrite Bead for Power/Ground and I/O Line Noise Simulation of High-speed PCB 3 GHz Wide Frequency Model of Surface Mount Technology (SMT) Ferrite Bead for Power/Ground and I/O Line Noise Simulation of High-speed PCB Tae Hong Kim, Hyungsoo Kim, Jun So Pak, and Joungho Kim Terahertz

More information

Microwave Metrology -ECE 684 Spring Lab Exercise T: TRL Calibration and Probe-Based Measurement

Microwave Metrology -ECE 684 Spring Lab Exercise T: TRL Calibration and Probe-Based Measurement ab Exercise T: TR Calibration and Probe-Based Measurement In this project, you will measure the full phase and magnitude S parameters of several surface mounted components. You will then develop circuit

More information

Thank you for downloading one of our ANSYS whitepapers we hope you enjoy it.

Thank you for downloading one of our ANSYS whitepapers we hope you enjoy it. Thank you! Thank you for downloading one of our ANSYS whitepapers we hope you enjoy it. Have questions? Need more information? Please don t hesitate to contact us! We have plenty more where this came from.

More information

Frequency-Domain Characterization of Power Distribution Networks

Frequency-Domain Characterization of Power Distribution Networks Frequency-Domain Characterization of Power Distribution Networks Istvan Novak Jason R. Miller ARTECH H O U S E BOSTON LONDON artechhouse.com Preface Acknowledgments xi xv CHAPTER 1 Introduction 1 1.1 Evolution

More information

Silicon Interposers enable high performance capacitors

Silicon Interposers enable high performance capacitors Interposers between ICs and package substrates that contain thin film capacitors have been used previously in order to improve circuit performance. However, with the interconnect inductance due to wire

More information

if the conductance is set to zero, the equation can be written as following t 2 (4)

if the conductance is set to zero, the equation can be written as following t 2 (4) 1 ECEN 720 High-Speed Links: Circuits and Systems Lab1 - Transmission Lines Objective To learn about transmission lines and time-domain reflectometer (TDR). Introduction Wires are used to transmit clocks

More information

Development and Validation of IC Models for EMC

Development and Validation of IC Models for EMC Development and Validation of D. Beetner Missouri University University of Missouri of Science - Rolland Technology UMR EMC Laboratory 1 Who is the UMR/MS&T EMC Laboratory? People 5 professors 3 graduate

More information

Top View (Near-side) Side View Bottom View (Far-side) .89±.08. 4x.280. Orientation Marker Orientation Marker.

Top View (Near-side) Side View Bottom View (Far-side) .89±.08. 4x.280. Orientation Marker Orientation Marker. Model B2F2AHF Ultra Low Profile 168 Balun Ω to 2Ω Balanced Description The B2F2AHF is a low profile sub-miniature balanced to unbalanced transformer designed for differential input locations on data conversion

More information

CHQ SERIES. Surface Mount Chip Capacitors: Ultra High Frequency

CHQ SERIES. Surface Mount Chip Capacitors: Ultra High Frequency 26 High Frequency Measurement and Performance of High Multilayer Ceramic Capacitors Introduction Capacitors used in High Frequency applications are generally used in two particular circuit applications:

More information

Analysis signal transitions characteristics of BGA-via multi-chip module Baolin Zhou1,a, Dejian Zhou1,b

Analysis signal transitions characteristics of BGA-via multi-chip module Baolin Zhou1,a, Dejian Zhou1,b 5th International Conference on Computer Sciences and Automation Engineering (ICCSAE 2015) Analysis signal transitions characteristics of BGA-via multi-chip module Baolin Zhou1,a, Dejian Zhou1,b 1 Electromechanical

More information

DesignCon On-Chip Power Supply Noise and Reliability Analysis for Multi-Gigabit I/O Interfaces

DesignCon On-Chip Power Supply Noise and Reliability Analysis for Multi-Gigabit I/O Interfaces DesignCon 2010 On-Chip Power Supply Noise and Reliability Analysis for Multi-Gigabit I/O Interfaces Ralf Schmitt, Rambus Inc. [Email: rschmitt@rambus.com] Hai Lan, Rambus Inc. Ling Yang, Rambus Inc. Abstract

More information

DesignCon Effect of Power Plane Inductance on Power Delivery Networks. Shirin Farrahi, Cadence Design Systems

DesignCon Effect of Power Plane Inductance on Power Delivery Networks. Shirin Farrahi, Cadence Design Systems DesignCon 2019 Effect of Power Plane Inductance on Power Delivery Networks Shirin Farrahi, Cadence Design Systems shirinf@cadence.com, 978-262-6008 Ethan Koether, Oracle Corp ethan.koether@oracle.com Mehdi

More information

Application Note 5012

Application Note 5012 MGA-61563 High Performance GaAs MMIC Amplifier Application Note 5012 Application Information The MGA-61563 is a high performance GaAs MMIC amplifier fabricated with Avago Technologies E-pHEMT process and

More information

Data Sheet. ACFF-1024 ISM Bandpass Filter ( MHz) Description. Features. Specifications. Functional Block Diagram.

Data Sheet. ACFF-1024 ISM Bandpass Filter ( MHz) Description. Features. Specifications. Functional Block Diagram. ACFF-124 ISM Bandpass Filter (241 2482 MHz) Data Sheet Description The Avago ACFF-124 is a miniaturized Bandpass Filter designed for use in the 2.4 GHz Industrial, Scientific and Medical (ISM) band. The

More information

Model 2425B50-50C Rev. A

Model 2425B50-50C Rev. A rit Model 2425B50-50C Xinger Balun 50Ω to 100Ω Balanced Description The 2425B50-50C is a low profile sub-miniature balanced to unbalanced transformer designed for differential inputs and output locations

More information

Application Note 5011

Application Note 5011 MGA-62563 High Performance GaAs MMIC Amplifier Application Note 511 Application Information The MGA-62563 is a high performance GaAs MMIC amplifier fabricated with Avago Technologies E-pHEMT process and

More information

The amout, type and position definition and optimization of decoupling capacitors which depend on the resonance hot spot position,

The amout, type and position definition and optimization of decoupling capacitors which depend on the resonance hot spot position, Resonance Simulation in PI Design Xiao Dan Nokia Abstract PCB power-ground resonance theory is introduced and relationship between Z simulated parameter and resonance frequency is discussed based on the

More information

Model PD0409J7575S2HF

Model PD0409J7575S2HF Model PD49J77SHF Ultra Low Profile 8 Power Divider 7Ω to 7Ω Description The PD49J77SHF is a low profile, sub-miniature Wilkinson power divider in an easy to use surface mount package. The PD49J77SHF is

More information

Design Considerations for Highly Integrated 3D SiP for Mobile Applications

Design Considerations for Highly Integrated 3D SiP for Mobile Applications Design Considerations for Highly Integrated 3D SiP for Mobile Applications FDIP, CA October 26, 2008 Joungho Kim at KAIST joungho@ee.kaist.ac.kr http://tera.kaist.ac.kr Contents I. Market and future direction

More information

INVENTION DISCLOSURE- ELECTRONICS SUBJECT MATTER IMPEDANCE MATCHING ANTENNA-INTEGRATED HIGH-EFFICIENCY ENERGY HARVESTING CIRCUIT

INVENTION DISCLOSURE- ELECTRONICS SUBJECT MATTER IMPEDANCE MATCHING ANTENNA-INTEGRATED HIGH-EFFICIENCY ENERGY HARVESTING CIRCUIT INVENTION DISCLOSURE- ELECTRONICS SUBJECT MATTER IMPEDANCE MATCHING ANTENNA-INTEGRATED HIGH-EFFICIENCY ENERGY HARVESTING CIRCUIT ABSTRACT: This paper describes the design of a high-efficiency energy harvesting

More information

Model PD0409J5050S2HF

Model PD0409J5050S2HF Model PD49JSHF Ultra Low Profile 8 Power Divider Ω to Ω Description The PD49JSHF is a low profile, sub-miniature Wilkinson power divider in an easy to use surface mount package. The PD49JSHF is ideal for

More information

Model BD4859L50100A00 Rev A

Model BD4859L50100A00 Rev A Model BD4859L51A Ultra Small Low Profile 63 Balun 5Ω to 1Ω Balanced Description The BD4859L51A is an ultra-small low profile balanced to unbalanced transformer designed for differential inputs and output

More information

How to anticipate Signal Integrity Issues: Improve my Channel Simulation by using Electromagnetic based model

How to anticipate Signal Integrity Issues: Improve my Channel Simulation by using Electromagnetic based model How to anticipate Signal Integrity Issues: Improve my Channel Simulation by using Electromagnetic based model HSD Strategic Intent Provide the industry s premier HSD EDA software. Integration of premier

More information

Electromagnetic Analysis of Decoupling Capacitor Mounting Structures with Simbeor

Electromagnetic Analysis of Decoupling Capacitor Mounting Structures with Simbeor Simbeor Application Note #2008_01, March 2008 2008 Simberian Inc. Electromagnetic Analysis of Decoupling Capacitor Mounting Structures with Simbeor Simberian, Inc. www.simberian.com Simbeor: Easy-to-Use,

More information

Model BD1722J50100A00

Model BD1722J50100A00 Ultra Low Profile 85 Balun 5Ω to 1Ω Balanced Description The BD1722J51A is a low profile sub-miniature balanced to unbalanced transformer designed for differential inputs and output locations on next generation

More information

Detailed Electrical Specifications: Specifications subject to change without notice. Broadband Narrowband 25 C

Detailed Electrical Specifications: Specifications subject to change without notice. Broadband Narrowband 25 C fee Ultra Low Profile 85 Balun 75Ω to 75Ω Balanced Description The B225J7575AHF is a low profile sub-miniature balanced to unbalanced transformer designed for differential inputs and output locations on

More information

Development and Validation of a Microcontroller Model for EMC

Development and Validation of a Microcontroller Model for EMC Development and Validation of a Microcontroller Model for EMC Shaohua Li (1), Hemant Bishnoi (1), Jason Whiles (2), Pius Ng (3), Haixiao Weng (2), David Pommerenke (1), and Daryl Beetner (1) (1) EMC lab,

More information

Physically-Based Distributed Models for Multi-Layer Ceramic Capacitors

Physically-Based Distributed Models for Multi-Layer Ceramic Capacitors Physically-Based Distributed Models for Multi-Layer Ceramic Capacitors Charles R Sullivan and Yuqin Sun Thayer School of Engineering Dartmouth College http://power.thayer.dartmouth.edu/ Introduction Why

More information

Model BD3238N5050AHF. Ultra Low Profile 0404 Balun

Model BD3238N5050AHF. Ultra Low Profile 0404 Balun Model BD338N55AHF Ultra Low Profile 44 Balun 5Ω to 5Ω Balanced Description The BD338N55AHF is a low cost, low profile sub-miniature unbalanced to balanced transformer designed for differential inputs and

More information

Extraction of Broadband Error Boxes for Microprobes and Recessed Probe Launches for Measurement of Printed Circuit Board Structures

Extraction of Broadband Error Boxes for Microprobes and Recessed Probe Launches for Measurement of Printed Circuit Board Structures Extraction of Broadband Error Boxes for Microprobes and Recessed Probe Launches for Measurement of Printed Circuit Board Structures, Renato Rimolo-Donadio, Christian Schuster Institut für TU Hamburg-Harburg,

More information

SSO Noise, Eye Margin, and Jitter Characterization for I/O Power Integrity

SSO Noise, Eye Margin, and Jitter Characterization for I/O Power Integrity DESIGNCON 2009 SSO Noise, Eye Margin, and Jitter Characterization for I/O Power Integrity Vishram S. Pandit, Intel Corporation [vishram.s.pandit@intel.com, (916)356-2059] Ashish N. Pardiwala, Intel Corporation

More information

The Design Challenge to Integrate High Performance Organic Packaging into High End ASIC Strategic Space Based Applications.

The Design Challenge to Integrate High Performance Organic Packaging into High End ASIC Strategic Space Based Applications. The Design Challenge to Integrate High Performance Organic Packaging into High End ASIC Strategic Space Based Applications May 8, 2007 Abstract: The challenge to integrate high-end, build-up organic packaging

More information

MSPP Page 1. MSPP Competencies in SiP Integration for Wireless Applications

MSPP Page 1. MSPP Competencies in SiP Integration for Wireless Applications MSPP Page 1 MSPP Competencies in SiP Integration for Wireless Applications MSPP Page 2 Outline Design, simulation and measurements tools MSPP competencies in electrical design and modeling Embedded passive

More information

Signal Integrity Design of TSV-Based 3D IC

Signal Integrity Design of TSV-Based 3D IC Signal Integrity Design of TSV-Based 3D IC October 24, 21 Joungho Kim at KAIST joungho@ee.kaist.ac.kr http://tera.kaist.ac.kr 1 Contents 1) Driving Forces of TSV based 3D IC 2) Signal Integrity Issues

More information

BROADBAND DISTRIBUTED AMPLIFIER

BROADBAND DISTRIBUTED AMPLIFIER ADM-126-83SM The ADM-126-83SM is a broadband, efficient GaAs PHEMT distributed amplifier with an integrated bias tee in a 4mm QFN surface mount package, designed to provide efficient LO drive for T3 mixers.

More information

IC Decoupling and EMI Suppression using X2Y Technology

IC Decoupling and EMI Suppression using X2Y Technology IC Decoupling and EMI Suppression using X2Y Technology Summary Decoupling and EMI suppression of ICs is a complex system level engineering problem complicated by the desire for faster switching gates,

More information

HMC6380LC4B. WIDEBAND VCOs - SMT. Electrical Specifications, T A. Typical Applications. Features. General Description. Functional Diagram

HMC6380LC4B. WIDEBAND VCOs - SMT. Electrical Specifications, T A. Typical Applications. Features. General Description. Functional Diagram Typical Applications Low Noise wideband MMIC VCO is ideal for: Industrial/Medical Equipment Test & Measurement Equipment Satcom Military Radar, EW, & ECM Functional Diagram Features Wide Tuning Bandwidth

More information

EMI/EMC of Entire Automotive Vehicles and Critical PCB s. Makoto Suzuki Ansoft Corporation

EMI/EMC of Entire Automotive Vehicles and Critical PCB s. Makoto Suzuki Ansoft Corporation EMI/EMC of Entire Automotive Vehicles and Critical PCB s Makoto Suzuki Ansoft Corporation WT10_SI EMI/EMC of Entire Automotive Vehicles and Critical PCB s Akira Ohta, Toru Watanabe, Benson Wei Makoto Suzuki

More information

Compensation for Simultaneous Switching Noise in VLSI Packaging Brock J. LaMeres University of Colorado September 15, 2005

Compensation for Simultaneous Switching Noise in VLSI Packaging Brock J. LaMeres University of Colorado September 15, 2005 Compensation for Simultaneous Switching Noise in VLSI Packaging Brock J. LaMeres University of Colorado 1 Problem Statement Package Interconnect Limits VLSI System Performance The three main components

More information

surface mount chip capacitor model

surface mount chip capacitor model S (db) CAP-PPI-78N- surface mount chip capacitor model Model Features* Broadband validation: DC 4 GHz Equivalent circuit based Substrate scalable:(.9 H/Er 6.5 mil) Part value scalable: (. to pf) Land Pattern

More information

Return loss (db) Insertion loss (db) .56±.06 TBD. GND / DC Feed 1 + RF GND 2. Unbalanced Port Balanced Port Balanced Port.

Return loss (db) Insertion loss (db) .56±.06 TBD. GND / DC Feed 1 + RF GND 2. Unbalanced Port Balanced Port Balanced Port. Model BD6N5AHF Ultra Low Profile 44 Balun 5Ω to Ω Balanced Description The BD6N5AHF is a low cost, low profile sub-miniature unbalanced to balanced transformer designed for differential inputs and output

More information

Low power SERDES transceiver for supply-induced jitter sensitivity methodology analysis

Low power SERDES transceiver for supply-induced jitter sensitivity methodology analysis Low power SERDES transceiver for supply-induced jitter sensitivity methodology analysis Micro Chang htc Michael_Chang@hTC.com Jan 9, 2019 X 1 Agenda Jitter-aware target impedance of power delivery network

More information

Methodology for MMIC Layout Design

Methodology for MMIC Layout Design 17 Methodology for MMIC Layout Design Fatima Salete Correra 1 and Eduardo Amato Tolezani 2, 1 Laboratório de Microeletrônica da USP, Av. Prof. Luciano Gualberto, tr. 3, n.158, CEP 05508-970, São Paulo,

More information

How Long is Too Long? A Via Stub Electrical Performance Study

How Long is Too Long? A Via Stub Electrical Performance Study How Long is Too Long? A Via Stub Electrical Performance Study Michael Rowlands, Endicott Interconnect Michael.rowlands@eitny.com, 607.755.5143 Jianzhuang Huang, Endicott Interconnect 1 Abstract As signal

More information

PCB Routing Guidelines for Signal Integrity and Power Integrity

PCB Routing Guidelines for Signal Integrity and Power Integrity PCB Routing Guidelines for Signal Integrity and Power Integrity Presentation by Chris Heard Orange County chapter meeting November 18, 2015 1 Agenda Insertion Loss 101 PCB Design Guidelines For SI Simulation

More information

Model BD1631J50100AHF

Model BD1631J50100AHF Model BD1631J51AHF Ultra Low Profile 85 Balun 5Ω to 1Ω Balanced Description The BD1631J51AHF is a low profile sub-miniature balanced to unbalanced transformer designed for differential inputs and output

More information

Schematic-Level Transmission Line Models for the Pyramid Probe

Schematic-Level Transmission Line Models for the Pyramid Probe Schematic-Level Transmission Line Models for the Pyramid Probe Abstract Cascade Microtech s Pyramid Probe enables customers to perform production-grade, on-die, full-speed test of RF circuits for Known-Good

More information

Model B0922N7575AHF Rev B. Ultra Low Profile 0404 Balun

Model B0922N7575AHF Rev B. Ultra Low Profile 0404 Balun Model B9N7575AHF Ultra Low Profile 44 Balun 75Ω to 75Ω Balanced Description The B9N7575AHF is a low profile, low impedance mm square subminiature wideband unbalanced to balanced transformer designed for

More information

CHAPTER 5 PRINTED FLARED DIPOLE ANTENNA

CHAPTER 5 PRINTED FLARED DIPOLE ANTENNA CHAPTER 5 PRINTED FLARED DIPOLE ANTENNA 5.1 INTRODUCTION This chapter deals with the design of L-band printed dipole antenna (operating frequency of 1060 MHz). A study is carried out to obtain 40 % impedance

More information

GaAs MMIC Non-Linear Transmission Line. Description Package Green Status

GaAs MMIC Non-Linear Transmission Line. Description Package Green Status GaAs MMIC Non-Linear Transmission Line NLTL-6273 1. Device Overview 1.1 General Description NLTL-6273 is a MMIC non-linear transmission line (NLTL) based comb generator. This NLTL offers excellent phase

More information

Power Distribution Network Design for Stratix IV GX and Arria II GX FPGAs

Power Distribution Network Design for Stratix IV GX and Arria II GX FPGAs Power Distribution Network Design for Stratix IV GX and Arria II GX FPGAs Transceiver Portfolio Workshops 2009 Question What is Your PDN Design Methodology? Easy Complex Historical Full SPICE simulation

More information

PDN design and analysis methodology in SI&PI codesign

PDN design and analysis methodology in SI&PI codesign PDN design and analysis methodology in SI&PI codesign www.huawei.com Asian IBIS Summit, November 9, 2010, Shenzhen China Luo Zipeng (luozipeng@huawei.com) Liu Shuyao (liushuyao@huawei.com) HUAWEI TECHNOLOGIES

More information

Electromagnetic Analysis of AC Coupling Capacitor Mounting Structures

Electromagnetic Analysis of AC Coupling Capacitor Mounting Structures Simbeor Application Note #2008_02, April 2008 2008 Simberian Inc. Electromagnetic Analysis of AC Coupling Capacitor Mounting Structures Simberian, Inc. www.simberian.com Simbeor : Easy-to-Use, Efficient

More information

Measurement and Comparative S21 Performance of Raw and Mounted Decoupling Capacitors

Measurement and Comparative S21 Performance of Raw and Mounted Decoupling Capacitors Measurement and Comparative S21 Performance of Raw and Mounted Decoupling Capacitors Summary Introduction Capacitors All IC power systems require some level of passive decoupling. The ability to accurately

More information

1 FUNDAMENTAL CONCEPTS What is Noise Coupling 1

1 FUNDAMENTAL CONCEPTS What is Noise Coupling 1 Contents 1 FUNDAMENTAL CONCEPTS 1 1.1 What is Noise Coupling 1 1.2 Resistance 3 1.2.1 Resistivity and Resistance 3 1.2.2 Wire Resistance 4 1.2.3 Sheet Resistance 5 1.2.4 Skin Effect 6 1.2.5 Resistance

More information

5V, 3A, 1.5MHz Buck Constant Current Switching Regulator for White LED

5V, 3A, 1.5MHz Buck Constant Current Switching Regulator for White LED 5V, 3A, 1.5MHz Buck Constant Current Switching Regulator for White LED General Description The is a PWM control buck converter designed to provide a simple, high efficiency solution for driving high power

More information

Maxim > Design Support > Technical Documents > Application Notes > Wireless and RF > APP 3571

Maxim > Design Support > Technical Documents > Application Notes > Wireless and RF > APP 3571 Maxim > Design Support > Technical Documents > Application Notes > Wireless and RF > APP 3571 Keywords: automotive keyless entry, MAX2640, LNA, 315MHz, RKE, stability, automotive, keyless entry APPLICATION

More information

Design and Optimization of a Novel 2.4 mm Coaxial Field Replaceable Connector Suitable for 25 Gbps System and Material Characterization up to 50 GHz

Design and Optimization of a Novel 2.4 mm Coaxial Field Replaceable Connector Suitable for 25 Gbps System and Material Characterization up to 50 GHz Design and Optimization of a Novel 2.4 mm Coaxial Field Replaceable Connector Suitable for 25 Gbps System and Material Characterization up to 50 GHz Course Number: 13-WA4 David Dunham, Molex Inc. David.Dunham@molex.com

More information

Application Note AN-00502

Application Note AN-00502 Proper PCB Design for Embedded Antennas Application Note AN-00502 Introduction Embedded antennas are ideal for products that cannot use an external antenna. The reasons for this can range from ergonomic

More information

Introduction: Planar Transmission Lines

Introduction: Planar Transmission Lines Chapter-1 Introduction: Planar Transmission Lines 1.1 Overview Microwave integrated circuit (MIC) techniques represent an extension of integrated circuit technology to microwave frequencies. Since four

More information

Hardware Design Considerations for MKW41Z/31Z/21Z BLE and IEEE Device

Hardware Design Considerations for MKW41Z/31Z/21Z BLE and IEEE Device NXP Semiconductors Document Number: AN5377 Application Note Rev. 2, Hardware Design Considerations for MKW41Z/31Z/21Z BLE and IEEE 802.15.4 Device 1. Introduction This application note describes Printed

More information

HMC959LC3 HIGH SPEED LOGIC - SMT. 26 GHz, DIVIDE-BY-4 WITH RESET & PROGRAMMABLE OUTPUT VOLTAGE. Typical Applications. Features. Functional Diagram

HMC959LC3 HIGH SPEED LOGIC - SMT. 26 GHz, DIVIDE-BY-4 WITH RESET & PROGRAMMABLE OUTPUT VOLTAGE. Typical Applications. Features. Functional Diagram HMC959LC Typical Applications Features The HMC959LC is ideal for: High Speed Frequency Divider (up to 26 GHz) Broadband Test & Measurement Clock Synthesis Phase Locked Loops Functional Diagram Electrical

More information

Effect of Aging on Power Integrity of Digital Integrated Circuits

Effect of Aging on Power Integrity of Digital Integrated Circuits Effect of Aging on Power Integrity of Digital Integrated Circuits A. Boyer, S. Ben Dhia Alexandre.boyer@laas.fr Sonia.bendhia@laas.fr 1 May 14 th, 2013 Introduction and context Long time operation Harsh

More information

EMC cases study. Antonio Ciccomancini Scogna, CST of America CST COMPUTER SIMULATION TECHNOLOGY

EMC cases study. Antonio Ciccomancini Scogna, CST of America CST COMPUTER SIMULATION TECHNOLOGY EMC cases study Antonio Ciccomancini Scogna, CST of America antonio.ciccomancini@cst.com Introduction Legal Compliance with EMC Standards without compliance products can not be released to the market Failure

More information

Data Sheet. ACMD-6103 Band 3 Duplexer. Description. Features. Specifications. Applications. Functional Block Diagram

Data Sheet. ACMD-6103 Band 3 Duplexer. Description. Features. Specifications. Applications. Functional Block Diagram ACMD-613 Band 3 Duplexer Data Sheet Description The Avago Technologies ACMD-613 is a highly miniaturized duplexer designed for use in LTE Band 3 (171 1785 MHz UL, 185 188 MHz DL) handsets and mobile data

More information

Surface Mount SOT-363 (SC-70) Package. Pin Connections and Package Marking GND. V dd. Note: Package marking provides orientation and identification.

Surface Mount SOT-363 (SC-70) Package. Pin Connections and Package Marking GND. V dd. Note: Package marking provides orientation and identification. GHz V Low Current GaAs MMIC LNA Technical Data MGA-876 Features Ultra-Miniature Package.6 db Min. Noise Figure at. GHz. db Gain at. GHz Single + V or V Supply,. ma Current Applications LNA or Gain Stage

More information

CIRCUITS. Raj Nair Donald Bennett PRENTICE HALL

CIRCUITS. Raj Nair Donald Bennett PRENTICE HALL POWER INTEGRITY ANALYSIS AND MANAGEMENT I CIRCUITS Raj Nair Donald Bennett PRENTICE HALL Upper Saddle River, NJ Boston Indianapolis San Francisco New York Toronto Montreal London Munich Paris Madrid Capetown

More information

surface mount chip ferrite bead model

surface mount chip ferrite bead model surface mount chip ferrite bead model Model Features Broadband (DC to 6GHz) Equivalent circuit based Substrate scalable (1. H/Er 16.4) Part value selectable: rated 1 to 18 ohms Bias Sensing Capability:

More information

CMY210. Demonstration Board Documentation / Applications Note (V1.0) Ultra linear General purpose up/down mixer 1. DESCRIPTION

CMY210. Demonstration Board Documentation / Applications Note (V1.0) Ultra linear General purpose up/down mixer 1. DESCRIPTION Demonstration Board Documentation / (V1.0) Ultra linear General purpose up/down mixer Features: Very High Input IP3 of 24 dbm typical Very Low LO Power demand of 0 dbm typical; Wide input range Wide LO

More information

surface mount chip capacitor model

surface mount chip capacitor model surface mount chip capacitor model Model Features* Broadband validation: DC 30 GHz Equivalent circuit based Applicable for horizontal mounted capacitors Substrate scalable: (1 H/Er 16.7 mil) Part value

More information

Automotive PCB SI and PI analysis

Automotive PCB SI and PI analysis Automotive PCB SI and PI analysis SI PI Analysis Signal Integrity S-Parameter Timing analysis Eye diagram Power Integrity Loop / Partial inductance DC IR-Drop AC PDN Impedance Power Aware SI Signal Integrity

More information