Page 2 of 40

Size: px
Start display at page:

Download "Page 2 of 40"

Transcription

1 Page 1 of 40

2 Page 2 of 40

3 Page 3 of 40

4 Page 4 of 40

5 Page 5 of 40

6 Page 6 of 40

7 Page 7 of 40

8 Page 8 of 40

9 Page 9 of 40

10 Page 10 of 40

11 Page 11 of 40

12 Page 12 of 40

13 Page 13 of 40

14 Page 14 of 40

15 Page 15 of 40

16 Page 16 of 40

17 Page 17 of 40

18 Page 18 of 40

19 Page 19 of 40

20 Page 20 of 40

21 Page 21 of 40

22 Page 22 of 40

23 Page 23 of 40

24 Page 24 of 40

25 Page 25 of 40

26 Page 26 of 40

27 Page 27 of 40

28 ME MANUFACTURING TECHNOLOGY II UNIT 4 - ABRASIVE PROCESS AND BROACHING l. What is meant by Grinding? A/M-12 Grinding is a metal removal process or operation performed by means of rotating abrasive wheel that acts as a cutting tool against the work piece. 2. Why is grinding called finishing process? M/J 16 Grinding is called finishing process, because the grinding process removes metal usually in the order of 0.25 to 0.50 mm, which produces very high quality surface finish. 3. What is the approximate thickness of metal removed in grinding operation? M/J 15 The approximate thickness of metal removed in grinding operation is 0.01 to 0.03 mm. 4. What are the main types of grinding? A/M-12 The two main types of grinding are 1) Rough or Non -precision grinding and 2) Precision grinding. 5. What are the different types of rough grinders? M/J 14 The different types of rough grinders are 1. Floor stand and bench type grinders 2. Portable and flexible shaft grinders 3. Swing frame grinders and 4. Abrasive belt grinders. 6. What are the types of precision grinders? A/M-13 The different types of precision grinders are 1. Cylindrical grinders 2. Internal grinders 3. Surface grinders 4. Tool and cutter grinders and 5. Special grinding machines Page 28 of 40

29 7. What is surface grinding? M/J 11 Surface grinding is the process of producing and finishing flat surfaces by means of a grinding machine using a revolving abrasive wheel. 8. What are the types of surface grindings? M/J 11 The different types of surface grindings are: 1. Reciprocating table surface grindingsa. Horizontal type b. Vertical type. 2. Rotating table.- a. Horizontal spindle b. Vertical spindle. 9. What types of work can be ground by a surface grinder? A/M-10 Surface grinder can be used for flat surface, irregular surface, curved surface, tapered surface, convex surface and concave surface. 10. What are the types of internal grinders? A/M-16 The different types of internal grinders are: 1. Chucking grinders a) Plain b) Universal 2. Planetary grinders 3. Centre less grinders Explain the working mechanism of cylindrical and surface grinding. ( A/M-11) The cylindrical grinder is a type of grinding machine used to shape the outside of an object. The cylindrical grinder can work on a variety of shapes; however the object must have a central axis of rotation. This includes but is not limited to such shapes as a cylinder, an ellipse, a cam, or a crankshaft. Cylindrical grinding is defined as having four essential actions: Page 29 of 40

30 1. The work (object) must be constantly rotating 2. The grinding wheel must be constantly rotating 3. The grinding wheel is fed towards and away from the work 4. Either the work or the grinding wheel is traversed with respect to the other. While the majority of cylindrical grinders employ all four movements, there are grinders that only employ three of the four actions. Outside diameter grinding OD grinding is grinding occurring on external surface a of an object between the centers. The centers are end units with a point that allow the object to be rotated. The grinding wheel is also being rotated in the same direction when it comes in contact with the object. This effectively means the two surfaces will be moving opposite directions when contact is made which allows for a smoother operation and less chance of a jam up. Inside diameter grinding ID grinding is grinding occurring on the inside of an object. The grinding wheel is always smaller than the width of the object. The object is held in place by a collet, which also rotates the object in place. Just as with OD grinding, the grinding wheel and the object rotated in opposite directions giving reversed direction contact of the two surfaces where the grinding occurs. Centerless grinding Centerless cylindrical grinder A schematic of the centerless grinding process. Centerless grinding is a form of grinding where there is no collet or pair of centers holding the object in place. Instead, there is a regulating wheel positioned on the opposite side of the object to the grinding wheel. A work rest keeps the object at the appropriate height but has no bearing Page 30 of 40

31 on its rotary speed. The workblade is angled slightly towards the regulating wheel, with the workpiece centerline above the centerlines of the regulating and grinding wheel; this means that high spots do not tend to generate corresponding opposite low spots, and hence the roundness of parts can be improved. Centerless grinding is much easier to combine with automatic loading procedures than centered grinding; throughfeed grinding, where the regulating wheel is held at a slight angle to the part so that there is a force feeding the part through the grinder, is particularly efficient. Surface grinding is used to produce a smooth finish on flat surfaces. It is a widely used abrasive machining process in which a spinning wheel covered in rough particles (grinding wheel) cuts chips of metallic or nonmetallic substance from a workpiece, making a face of it flat or smooth. Surface grinding is the most common of the grinding operations. It is a finishing process that uses a rotating abrasive wheel to smooth the flat surface of metallic or nonmetallic materials to give them a more refined look or to attain a desired surface for a functional purpose. The surface grinder is composed of an abrasive wheel, a workholding device known as a chuck, and a reciprocating or rotary table. The chuck holds the material in place while it is being worked on. It can do this one of two ways: ferromagnetic pieces are held in place by a magnetic chuck, while non-ferromagnetic and nonmetallic pieces are held in place by vacuum or mechanical means. A machine vise (made from ferromagnetic steel or cast iron) placed on the magnetic chuck can be used to hold non-ferromagnetic workpieces if only a magnetic chuck is available. Factors to consider in surface grinding are the material of the grinding wheel and the material of the piece being worked on. Typical workpiece materials include cast iron and mild steel. These two materials don't tend to clog the grinding wheel while being processed. Other materials are aluminum, stainless steel, brass and some plastics. When grinding at high temperatures, the material tends to become weakened and is more inclined to corrode. This can also result in a loss of magnetism in materials where this is applicable. The grinding wheel is not limited to a cylindrical shape and can have a myriad of options that are useful in transferring different geometries to the object being worked on. Straight wheels can be dressed by the operator to produce custom geometries. When surface grinding an object, one must keep in mind that the shape of the wheel will be transferred to the material of the object like a reverse image. Spark out is a term used when precision values are sought and literally means "until the sparks are out (no more)". It involves passing the workpiece under the wheel, without resetting the depth of cut, more than once and generally multiple times. This ensures that any inconsistencies in the machine or workpiece are eliminated. Page 31 of 40

32 2. Describe gear cutting by forming and shaping. A/M-15 Gear manufacturing refers to the making of gears. Gears can be manufactured by a variety of processes, including casting, forging, extrusion, powder metallurgy, and blanking. As a general rule, however, machining is applied to achieve the final dimensions, shape and surface finish in the gear. The initial operations that produce a semifinishing part ready for gear machining as referred to as blanking operations; the starting product in gear machining is called a gear blank. Selection of materials The gear material should have the following properties: High tensile strength to prevent failure against static loads High endurance strength to withstand dynamic loads Low coefficient of friction Good manufacturability Gear forming In gear form cutting, the cutting edge of the cutting tool has a shape identical with the shape of the space between the gear teeth. Two machining operations, milling and broaching can be employed to form cut gear teeth. Page 32 of 40

33 Form milling In form milling, the cutter called a form cutter travels axially along the length of the gear tooth at the appropriate depth to produce the gear tooth. After each tooth is cut, the cutter is withdrawn, the gear blank is rotated, and the cutter proceeds to cut another tooth. The process continues until all teeth are cut. Broaching Broaching can also be used to produce gear teeth and is particularly applicable to internal teeth. The process is rapid and produces fine surface finish with high dimensional accuracy. However, because broaches are expensive and a separate broach is required for each size of gear,this method is suitable mainly for high-quality production. Gear generation In gear generating, the tooth flanks are obtained as an outline of the subsequent positions of the cutter, which resembles in shape the mating gear in the gear pair. There are two machining processes employed shaping and milling. There are several modifications of these processes for different cutting tool used. Gear hobbing Gear hobbing is a machining process in which gear teeth are progressively generated by a series of cuts with a helical cutting tool. All motions in hobbing are rotary, and the hob and gear blank rotate continuously as in two gears meshing until all teeth are cut. Finishing operations As produced by any of the process described, the surface finish and dimensional accuracy may not be accurate enough for certain applications. Several finishing operations are available, including the conventional process of shaving, and a number of abrasive operations, including grinding, honing, and lapping. Page 33 of 40

34 3. Describe the working of a crank and slotted link mechanism M/J-16 A crank is an arm attached at right angles to a rotating shaft by which reciprocating motion is imparted to or received from the shaft. It is used to convert circular motion into reciprocating motion, or vice versa. The arm may be a bent portion of the shaft, or a separate arm or disk attached to it. Attached to the end of the crank by a pivot is a rod, usually called a connecting rod (conrod). The end of the rod attached to the crank moves in a circular motion, while the other end is usually constrained to move in a linear sliding motion. The term often refers to a human-powered crank which is used to manually turn an axle, as in a bicyclecrankset or a brace and bit drill. In this case a person's arm or leg serves as the connecting rod, applying reciprocating force to the crank. There is usually a bar perpendicular to the other end of the arm, often with a freely rotatable handle or pedal attached. Operations: The workpiece mounts on a rigid, box-shaped table in front of the machine. The height of the table can be adjusted to suit this workpiece, and the table can traverse sideways underneath the reciprocating tool, which is mounted on the ram. Table motion may be controlled manually, but is usually advanced by an automatic feed mechanism acting on the feedscrew. The ram slides back and forth above the work. At the front end of the ram is a vertical tool slide that may be adjusted to either side of the vertical plane along the stroke axis. This tool-slide holds the clapper box and tool post, from which the tool can be positioned to cut a straight, flat surface on the top of the workpiece. The tool-slide permits feeding the tool downwards to deepen a cut. This adjustability, coupled with the use of specialized cutters and toolholders, enable the operator to cut internal and external gear tooth Page 34 of 40

35 The ram is adjustable for stroke and, due to the geometry of the linkage, it moves faster on the return (non-cutting) stroke than on the forward, cutting stroke. This action is via a slotted link (or Whitworth link). Types: Shapers are mainly classified as standard, draw-cut, horizontal, universal, vertical, geared, crank, hydraulic, contour and traveling head, with a horizontal arrangement most common. Vertical shapers are generally fitted with a rotary table to enable curved surfaces to be machined (same idea as in helical planing). The vertical shaper is essentially the same thing as a slotter (slotting machine), although technically a distinction can be made if one defines a true vertical shaper as a machine whose slide can be moved from the vertical. A slotter is fixed in the vertical plane Page 35 of 40

36 MANUFACTURING TECHNOLOGY II UNIT 5 (CNC MACHINING) 1. Define numerical control machine. A/M-12 Numerical control can be defined as a form of programmable automation in which the process is controlled by numbers, letters and symbols. 2. List out any threebasic components of NC system. M/J 16 1.Program of instruction 2.Controllerunit 3.Machine tool 3. Classify NC Motion Control System. A/M-12 1.Point to point 2. straight Cut 3.Contouring 4. Mention any three applications of Numerical control. M/J 15 1.Milling 2.Drilling 3.Boring 5. What is NC part programming? A/M-12 NC part programming is the procedure of by which the sequence of processing steps to be performed on the NC machine is planned and documented. 6. What is tape reader? M/J 15 The tape reader feed the data from the tape to the buffer in blocks. 7. What are the functions in computer assisted part programming? M/J 14 1.Defining the work part geometry, 2. Specifying the operation sequence and tool path. 8. What is APT language? A/M-12 APT is not only a NC language it is also the computer program that performs the calculations to generate cutter positions based on APT statement. 9. Classify statements in APT. M/J Geometry statement 2. Motion statement 3.Post processor statement 4. Auxilary Statement 10. Define - Check surface M/J 16 This is the surface that stops the movement of the tool in its current direction.in a sense,the forward movement of the tool. Page 36 of 40

37 101 Explain the following in CNC machining. M/J 15 (a)linear Interpolation (b)circular Interpolation (c )Cubic interpolation LINEAR INTERPOLATION ALGORITHM Any line in 3D space can be decomposed into three planes by dropping perpendiculars into each plane. This line is then equal to lines traced in any of two planes. Thus the 3D linear interpolation becomes two 2D linear interpolations. This principle forms the basis of our interpolation algorithm. 3D Line Movement In Space We define the axis as long axis which has the longest distance movement in our 3D interpolation process. We call the other two axes as short axis. As shown in the figure 1, space line from O to P can be decomposed in 3 ways: OB and OC, or OB and OA, or OA and OC. The decomposition method of the space movement is decided by long axis. If Z axis is the long axis, the linear movement OP is decomposed into OB in XOZ plane and OC in YOZ plane. The interpolation algorithm starts by outputting a pulse train to the long axis and the driving pulses of two short axes depends on the relationship of the corresponding axis with the long axis. Thus two concurrent 2D interpolation movements of lines OB and OC implements the 3D linear interpolation of line OP. 3-D Line movement in XYZ Circular Interpolation G02 G03 I, J, K Concepts & Programming The axis of the Arc must be parallel to the X-, Y- or Z-axis of the machine coordinate system. The axis or the plane perpendicular to the axis is selected with G17 (Z-axis, XYplane), G18 (Y-axis, XZ-plane) or G19 (X-axis, YZ-plane). I, J and K are the offsets from the current location. At one time only two of I, J, and K will be used. This will depend on what arc plane has been selected G17 Use I and J G18 Use I and K G19 Use J and K The I, J and K arguments specify the DISTANCE from the ARC START POINT to the CENTER POINT of the arc. Note that the start point of the arc is NOT GIVEN in a G02 or G03 command. The start point is determined by the location of the cutter when the command is implemented. Also, the center point is never given explicitly in the command. I, J, and K Page 37 of 40

38 are DISTANCES. If the geometry of the circle is impossible (to within.0001), an error is usually thrown. The following figure shows the four quadrants of circle and I, J calculation from start point to end point. Circle radius is 50 mm. 02. Describe the spindle drives used in CNC machine tools. M/J 16 FEEDDRIVES A feed drive consists of a feed servomotor and an electronic controller. Unlike a spindle motor, the feed motor has certain special characteristics, like constant torque and positioning. Also, in contouring operations, where a prescribed path has to be followed continuously, several feed drives have to work simultaneously. This requires a sufficiently damped servosystem with high bandwidth, i.e., fast response and matched dynamic characteristics for different axes, REQUIREMENTS OF CNC FEED DRIVE (a) The required constant torque for overcoming frictional and working forces must be provided (during machining), (b) The drive speed should be infinitely variable with a speed range of at least 1:20,000 which means that both at a maximum speed, say of 2000 rpm, and at a minimum, speed of 0.1 rpm, the feed motor must run smoothly and without noticeable waviness. (c) Positioning of smallest position increments like 1-2 μm should be possible. For a feed motor this represents an angular rotation of approximately 2-5 angular minutes. (d) Maximum speeds of up to 3000 rpm. (e) Four quadrant operation-quick response characteristics. (f) Low electrical and mechanical time constants. (g) Integral mounting feedback devices. (h) Permanent magnet construction. (i) Low armature or rotor inertia, (j) High torque-to-weight ratio. (k) High peak torque for quick responses. (l) Total enclosed non-ventilated design (TENV) Types of Feed Drives Variable speed dc feed drives are very common in machine tools because of their simple Page 38 of 40

39 control techniques. However, with the advent of the latest power electronic devices and control techniques ac feed drives are becoming popular due to certain advantages. The spindle drives are used to provide angular motion to the workpiece or a cutting tool.shows the components of a spindle drive. These drives are essentiallyrequired to maintain the speed accurately within a power band which will enablemachining of a variety of materials with variations in material hardness. The speed rangescan be from 10 to 20,000 rpm. The machine tools mostly employ DC spindle drives. Butas of late, the AC drives are preferred to DC drives due to the advent of microprocessor-based AC frequency inverter. High overload capacity is also needed for unintendedoverloads on the spindle due to an inappropriate feed. It is desirous to have a compactdrive with highly smooth operation. DC stepper motors prevail in small-footprint/benchtop soft material CNCs for axial positioning while AC motors with VFD are used for spindles. For the room-sized, million dollar shop floor CNCs, you will find a combination of high torque AC machines along with BLDCs for tool camera/tool changer/coolant flow positioning actuators. All industrial CNC motors use feedback - so the motors get categorized as servomotors. Many of the 12DOF and greater machines use additional motors for workpiece positioning - depending on capacity, those could use DC or AC. Almost no one (except hobby grade) uses DC steppers without any feedback. The next generation machines are likely to use elastic actuation/tool temperature feedback techniques to sense compliance in workpiece/tool fixturing or work in unprotected locations for completely automated controls. Almost all high-end CNCs implement advanced versions of vector control strategies (different types of FieldOrientedControls/DirectTorqueControls; for example Fanuc talks about a 'high response vector strategy' which is a FOC type) and system specific feedback/forward control strategies. This requires high resolution, high bandwidth and statistical feedback and some extremely advanced DSP capabilities. Such capabilities reduce dependence on the nature of motor used. 03. Write short notes on A/M 12 (a) NC machine tool classification (b) APT programming structure (c)g and M codes (d)cnc machine vs Conventional Machine Types of NC Systems When classified according to the machine tool control system,there are three basic types of NC systems : 1. Point to Point. 2. Straight cut. 3. Contouring. The classification is concerned with the amount of control over the relative motion between the workpiece and cutting tool. The least control is exerted over the tool motion with the point to point systems. Contouring represents the highest level of control. Point-to-Point-NC Point to point is also sometimes called a positioning system. In PTP the objective of Page 39 of 40

40 themachine tool control system is to move the cutting tool to predefined location. The speedor path by which this movement is accomplished is not important in point to point NC. Once the tool reaches the desired location, the machining operation is performed at that position. NC drill presses are a good example of PTP systems. The spindle must first be positioned at a particular location n the workpiece. This is done under PTP control. Then the drilling of the holes is performed at that location,the tool is moved to the next hole location, and so forth. Since no cutting is performed between holes there is no need for controlling the relative motion of the tool and workpiecebetwwenhole locations. On positioning systems the speeds and feeds used by the machine tool are often used by the machine operater rather than by the nc tape. Positioning systems are the simplest machine tool control systems and therefore the least expensive of the three types. However for certain processes such as drilling operations and spot welding. PTP is perfectly suited to task and any higher level of control is unnecessary. StraightCut-NC Straight cut control systems are capable of moving the cutting tool parallel to one of the major axes at a controlled rate suitable for machining. It is therefore appropriate for performing milling operations to fabricate workpieces of rectangular configuartions. With this type of NC systems it is therefor appropriate for performing milling operations to fabricate workpieces of rectangular configuartions. With this type of NC system it is not possible to combine movements in more than single axis direction. Therefore angular cuts on the workpiece would not be possible. An NC machine tool capable of performing straight cut movements is also capable of point to point movements. Contouring-NC Contouring is the most complex flexible and teh most expensive type of machine tool control. It is capable of performing both PTP and straight cut opeartions. In addition thedistinguishning feature of the of contouring NC system is their capacity for simultaneousl control of more than one axis movement of machine tool Figures below illustrate the versatility of continuous path NC. Milling and Turning are the common examples of the use of conturing control. Page 40 of 40

Chapter 22 MACHINING OPERATIONS AND MACHINE TOOLS

Chapter 22 MACHINING OPERATIONS AND MACHINE TOOLS Chapter 22 MACHINING OPERATIONS AND MACHINE TOOLS Turning and Related Operations Drilling and Related Operations Milling Machining Centers and Turning Centers Other Machining Operations High Speed Machining

More information

ABRASIVE PROCESSES AND BROACHING

ABRASIVE PROCESSES AND BROACHING UNIT 4 www.studentsfocus.com ABRASIVE PROCESSES AND BROACHING 1. What are the types of surfaces that could de produced using plain cylindrical grinders? Plain cylindrical parts, cylindrical parts, cylinders,

More information

DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK ME6402 MANUFACTURING TECHNOLOGY II UNIT I PART A 1. List the various metal removal processes? 2. How chip formation occurs in metal cutting? 3. What is

More information

VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK ME6402 MANUFACTURING TECHNOLOGY II UNIT-I PART A 1. List the various metal removal processes? (BT1) 2. Explain how chip

More information

Module 1. Classification of Metal Removal Processes and Machine tools. Version 2 ME IIT, Kharagpur

Module 1. Classification of Metal Removal Processes and Machine tools. Version 2 ME IIT, Kharagpur Module 1 Classification of Metal Removal Processes and Machine tools Lesson 2 Basic working principle, configuration, specification and classification of machine tools Instructional Objectives At the end

More information

Computer Numeric Control

Computer Numeric Control Computer Numeric Control TA202A 2017-18(2 nd ) Semester Prof. J. Ramkumar Department of Mechanical Engineering IIT Kanpur Computer Numeric Control A system in which actions are controlled by the direct

More information

Ahsanullah University of Science and Technology (AUST) Department of Mechanical and Production Engineering

Ahsanullah University of Science and Technology (AUST) Department of Mechanical and Production Engineering Ahsanullah University of Science and Technology (AUST) Department of Mechanical and Production Engineering LABORATORY MANUAL For the students of Department of Mechanical and Production Engineering 1 st

More information

SHAPER, MILLING AND GEAR CUTTING MACHINES

SHAPER, MILLING AND GEAR CUTTING MACHINES UNIT 3 SHAPER, MILLING AND GEAR CUTTING MACHINES 1. Compare hydraulic shaper with mechanical shaper? SL.NO Hydrulic shaper Mechanical shaper 1. smooth cutting operation Rough and noisy cutting operation

More information

Module 4 General Purpose Machine Tools. Version 2 ME, IIT Kharagpur

Module 4 General Purpose Machine Tools. Version 2 ME, IIT Kharagpur Module 4 General Purpose Machine Tools Lesson 22 Use of various Attachments in Machine Tools. Instructional objectives At the end of this lesson, the students will be able to; (i) Comprehend and state

More information

Chapter 24 Machining Processes Used to Produce Various Shapes.

Chapter 24 Machining Processes Used to Produce Various Shapes. Chapter 24 Machining Processes Used to Produce Various Shapes. 24.1 Introduction In addition to parts with various external or internal round profiles, machining operations can produce many other parts

More information

INTRODUCTION TO GRINDING PROCESS

INTRODUCTION TO GRINDING PROCESS GRINDING PART 2 Grinding Grinding is a material removal process accomplished by abrasive particles that are contained in a bonded grinding wheel rotating at very high surface speeds. The rotating grinding

More information

MACHINE TOOLS GRINDING MACHINE TOOLS

MACHINE TOOLS GRINDING MACHINE TOOLS MACHINE TOOLS GRINDING MACHINE TOOLS GRINDING MACHINE TOOLS Grinding in generally considered a finishing operation. It removes metal comparatively in smaller volume. The material is removed in the form

More information

BHARATHIDASAN ENGINEERING COLLEGE NATTRAMPALLI DEPARTMENT OF MECHANICAL ENGINEERING LABORATORY MANUAL ME6411-MANUFACTURING TECHNOLOGY LAB- II

BHARATHIDASAN ENGINEERING COLLEGE NATTRAMPALLI DEPARTMENT OF MECHANICAL ENGINEERING LABORATORY MANUAL ME6411-MANUFACTURING TECHNOLOGY LAB- II BHARATHIDASAN ENGINEERING COLLEGE NATTRAMPALLI 635 854 DEPARTMENT OF MECHANICAL ENGINEERING LABORATORY MANUAL ME6411-MANUFACTURING TECHNOLOGY LAB- II YEAR / SEMESTER : II / IV DEPARTMENT : Mechanical REGULATION

More information

Turning and Lathe Basics

Turning and Lathe Basics Training Objectives After watching the video and reviewing this printed material, the viewer will gain knowledge and understanding of lathe principles and be able to identify the basic tools and techniques

More information

ROOP LAL Unit-6 Lathe (Turning) Mechanical Engineering Department

ROOP LAL Unit-6 Lathe (Turning) Mechanical Engineering Department Notes: Lathe (Turning) Basic Mechanical Engineering (Part B) 1 Introduction: In previous Lecture 2, we have seen that with the help of forging and casting processes, we can manufacture machine parts of

More information

LANDMARK UNIVERSITY, OMU-ARAN

LANDMARK UNIVERSITY, OMU-ARAN LANDMARK UNIVERSITY, OMU-ARAN LECTURE NOTE: DRILLING. COLLEGE: COLLEGE OF SCIENCE AND ENGINEERING DEPARTMENT: MECHANICAL ENGINEERING PROGRAMME: MECHANICAL ENGINEERING ENGR. ALIYU, S.J Course code: MCE

More information

GEARS MACHINING. GEAR TYPES Cylindrical gears: - spur - helical Bevel gears: - straight - curved (spiral) Worm wheels and worms

GEARS MACHINING. GEAR TYPES Cylindrical gears: - spur - helical Bevel gears: - straight - curved (spiral) Worm wheels and worms GEARS MACHINING GEAR TYPES Cylindrical gears: - spur - helical Bevel gears: - straight - curved (spiral) Worm wheels and worms 1 Involute tooth profile 2 Spur and helical gears cutting METHODS: form milling

More information

SHAPING AND PLANING Shaping and planing

SHAPING AND PLANING Shaping and planing SHAPING AND PLANING Shaping and planing the simplest of all machine operations Straight line cutting motion with single-point cutting tool creates smooth flat surfaces. Mainly plain surfaces are machined

More information

PLANING MACHINE. Crossrail. Tool head. Table. Table. reciprocating movement Roller. Bed. Open Side Planer Sketch S-8.1-A. Feed screws.

PLANING MACHINE. Crossrail. Tool head. Table. Table. reciprocating movement Roller. Bed. Open Side Planer Sketch S-8.1-A. Feed screws. 8 PLANING MACHINE A8.1 : Planing Machine Tool head Table reciprocating movement Roller Table Cross-rail Bed Column Open Side Planer Sketch S-8.1-A Introduction This is also a reciprocating type of machine

More information

Typical Parts Made with These Processes

Typical Parts Made with These Processes Turning Typical Parts Made with These Processes Machine Components Engine Blocks and Heads Parts with Complex Shapes Parts with Close Tolerances Externally and Internally Threaded Parts Products and Parts

More information

Lecture 18. Chapter 24 Milling, Sawing, and Filing; Gear Manufacturing (cont.) Planing

Lecture 18. Chapter 24 Milling, Sawing, and Filing; Gear Manufacturing (cont.) Planing Lecture 18 Chapter 24 Milling, Sawing, and Filing; Gear Manufacturing (cont.) Planing For production of: Flat surfaces Grooves Notches Performed on long (on average 10 m) workpieces Workpiece moves / Tool

More information

UNIT 4: (iii) Illustrate the general kinematic system of drilling machine and explain its working principle

UNIT 4: (iii) Illustrate the general kinematic system of drilling machine and explain its working principle UNIT 4: Drilling machines: Classification, constructional features, drilling & related operations, types of drill & drill bit nomenclature, drill materials. Instructional Objectives At the end of this

More information

K E E P I N G T H E W O R L D I N M O T I O N TM P 90 G. Grinding and Hobbing Machine

K E E P I N G T H E W O R L D I N M O T I O N TM P 90 G. Grinding and Hobbing Machine K E E P I N G T H E W O R L D I N M O T I O N TM P 90 G Grinding and Hobbing Machine machine concept P 90 G three grinding methods + hobbing combined in one machine. The P 90 G is a new development based

More information

MANUFACTURING TECHNOLOGY

MANUFACTURING TECHNOLOGY MANUFACTURING TECHNOLOGY UNIT IV SURFACE FINISHING PROCESS Grinding Grinding is the most common form of abrasive machining. It is a material cutting process which engages an abrasive tool whose cutting

More information

MILLING and GRINDING MACHINES Machine Tools

MILLING and GRINDING MACHINES Machine Tools ELEMENTS OF MECHANICAL ENGINEERING PART B UNIT VI MILLING and GRINDING MACHINES Machine Tools 1 Objectives: 1.1 To understand the Principle of working of Milling, Horizontal & Vertical Milling. 1.2 Classification/Types

More information

Straight Bevel Gears on Phoenix Machines Using Coniflex Tools

Straight Bevel Gears on Phoenix Machines Using Coniflex Tools Straight Bevel Gears on Phoenix Machines Using Coniflex Tools Dr. Hermann J. Stadtfeld Vice President Bevel Gear Technology January 2007 The Gleason Works 1000 University Avenue P.O. Box 22970 Rochester,

More information

Copyright 2002 Society of Manufacturing Engineers. FUNDAMENTAL MANUFACTURING PROCESSES Gears & Gear Manufacturing NARRATION (VO):

Copyright 2002 Society of Manufacturing Engineers. FUNDAMENTAL MANUFACTURING PROCESSES Gears & Gear Manufacturing NARRATION (VO): FUNDAMENTAL MANUFACTURING PROCESSES Gears & Gear Manufacturing SCENE 1. CG: Gear Finishing Processes white text centered on black SCENE 2. tape 783, 01:12:24-01:17:06 peter carey narration tape 769, 05:14:02-05:14:30

More information

Materials Removal Processes (Machining)

Materials Removal Processes (Machining) Chapter Six Materials Removal Processes (Machining) 6.1 Theory of Material Removal Processes 6.1.1 Machining Definition Machining is a manufacturing process in which a cutting tool is used to remove excess

More information

Dr Ghassan Al-Kindi - MECH2118 Lecture 9

Dr Ghassan Al-Kindi - MECH2118 Lecture 9 Dr Ghassan Al-Kindi - MECH2118 Lecture 9 Machining A material removal process in which a sharp cutting tool is used to mechanically cut away material so that the desired part geometry remains Most common

More information

CHAPTER 1- INTRODUCTION TO MACHINING

CHAPTER 1- INTRODUCTION TO MACHINING CHAPTER 1- INTRODUCTION TO MACHINING LEARNING OBJECTIVES Introduction to Manufacturing, Manufacturing processes Broad classification of Manufacturing processes Kinematics elements involved in metal cutting

More information

CHAPTER 6 EXPERIMENTAL VALIDATION AND RESULTS AND DISCUSSIONS

CHAPTER 6 EXPERIMENTAL VALIDATION AND RESULTS AND DISCUSSIONS 119 CHAPTER 6 EXPERIMENTAL VALIDATION AND RESULTS AND DISCUSSIONS 6.1 CNC INTRODUCTION The CNC systems were first commercially introduced around 1970, and they applied the soft-wired controller approach

More information

UNIT 5: Indexing: Simple, compound, differential and angular indexing calculations. Simple problems on simple and compound indexing.

UNIT 5: Indexing: Simple, compound, differential and angular indexing calculations. Simple problems on simple and compound indexing. UNIT 5: Milling machines: Classification, constructional features, milling cutters nomenclature, milling operations, up milling and down milling concepts. Indexing: Simple, compound, differential and angular

More information

Technology II. Manufacturing methods

Technology II. Manufacturing methods Technology II Manufacturing methods Gears Machining GEAR TYPES Cylindrical gears: - spur - helical Bevel gears: - straight - curved (spiral) Worm wheels and worms 2 Involute tooth profile 3 Spur and helical

More information

Grinding Processes, A Review

Grinding Processes, A Review Grinding Processes, A Review Pushpendra kumar 1 Research Scholar,Mechanical Department BHSBIET lehragaga (Punjab) Sunatya kumar 2 Assistant professor & Head Mechanical Department BHSBIET lehragaga (Punjab)

More information

Other Machining Operations

Other Machining Operations Other Machining Operations Chapter 25 25.1 Introduction This chapter covers: Shaping Planing Broaching Sawing Filing 25.2 Introduction to Shaping and Planing Shaping and Planing among the oldest techniques

More information

Turning and Related Operations

Turning and Related Operations Turning and Related Operations Turning is widely used for machining external cylindrical and conical surfaces. The workpiece rotates and a longitudinally fed single point cutting tool does the cutting.

More information

Basic NC and CNC. Dr. J. Ramkumar Professor, Department of Mechanical Engineering Micro machining Lab, I.I.T. Kanpur

Basic NC and CNC. Dr. J. Ramkumar Professor, Department of Mechanical Engineering Micro machining Lab, I.I.T. Kanpur Basic NC and CNC Dr. J. Ramkumar Professor, Department of Mechanical Engineering Micro machining Lab, I.I.T. Kanpur Micro machining Lab, I.I.T. Kanpur Outline 1. Introduction to CNC machine 2. Component

More information

Precision made in Germany. As per DIN The heart of a system, versatile and expandable.

Precision made in Germany. As per DIN The heart of a system, versatile and expandable. 1 Precision made in Germany. As per DIN 8606. The heart of a system, versatile and expandable. Main switch with auto-start protection and emergency off. Precision lathe chuck as per DIN 6386 (Ø 100mm).

More information

Design for machining

Design for machining Multiple choice questions Design for machining 1) Which one of the following process is not a machining process? A) Planing B) Boring C) Turning D) Forging 2) The angle made between the rake face of a

More information

Chapter 25. Other Machining Processes. Materials Processing. MET Manufacturing Processes. Shaping Planing Broaching Sawing Filing

Chapter 25. Other Machining Processes. Materials Processing. MET Manufacturing Processes. Shaping Planing Broaching Sawing Filing MET 33800 Manufacturing Processes Chapter 25 Other Machining Processes Before you begin: Turn on the sound on your computer. There is audio to accompany this presentation. Other Machining Processes Shaping

More information

Lathe is a machine, which removes the metal from a piece of work to the required shape & size HENRY MAUDSLAY

Lathe is a machine, which removes the metal from a piece of work to the required shape & size HENRY MAUDSLAY TURNING MACHINES LATHE Introduction Lathe is a machine, which removes the metal from a piece of work to the required shape & size HENRY MAUDSLAY - 1797 Types of Lathe Engine Lathe The most common form

More information

Miyano Evolution Line

Miyano Evolution Line Evolution Line CNC Turning center with 2 spindles, 2 turrets and 1 -axis slide BNJ-34/42/51 "Evolution and Innovation" is the Future What could not be done can be done. -axis movement is added to the traditional

More information

PRODUCTION ENGINEERING LAB II

PRODUCTION ENGINEERING LAB II Department of Mechanical Engineering LAB MANUAL FOR PRODUCTION ENGINEERING LAB II DEPT. OF MECHANICAL ENGINEERING 1. SHAPER 1.1 INTRODUCTION The shaper is a reciprocating type of machine tool intended

More information

TURNING BORING TURNING:

TURNING BORING TURNING: TURNING BORING TURNING: FACING: Machining external cylindrical and conical surfaces. Work spins and the single cutting tool does the cutting. Done in Lathe. Single point tool, longitudinal feed. Single

More information

This just may be the Rotary Transfer machine you ve been waiting for.

This just may be the Rotary Transfer machine you ve been waiting for. This just may be the Rotary Transfer machine you ve been waiting for. A Machine Like No Other T he new Eclipse 12-100 is a ground-up redesign of the famous Hydromat concept with all new components. It

More information

Drilling. Drilling is the operation of producing circular hole in the work-piece by using a rotating cutter called DRILL.

Drilling. Drilling is the operation of producing circular hole in the work-piece by using a rotating cutter called DRILL. Drilling Drilling is the operation of producing circular hole in the work-piece by using a rotating cutter called DRILL. The machine used for drilling is called drilling machine. The drilling operation

More information

CHAPTER 23 Machining Processes Used to Produce Various Shapes Kalpakjian Schmid Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-1

CHAPTER 23 Machining Processes Used to Produce Various Shapes Kalpakjian Schmid Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-1 CHAPTER 23 Machining Processes Used to Produce Various Shapes Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-1 Examples of Parts Produced Using the Machining Processes in the Chapter

More information

DIRECTORATE OF TECHNICAL EDUCATION DIPLOMA IN MECHANICAL ENGINEERING. M SCHEME onwards II YEAR IV SEMESTER CURRICULUM DEVELOPMENT CENTRE

DIRECTORATE OF TECHNICAL EDUCATION DIPLOMA IN MECHANICAL ENGINEERING. M SCHEME onwards II YEAR IV SEMESTER CURRICULUM DEVELOPMENT CENTRE DIRECTORATE OF TECHNICAL EDUCATION DIPLOMA IN MECHANICAL ENGINEERING M SCHEME 2015-2016 onwards II YEAR IV SEMESTER 32042 SPECIAL MACHINES CURRICULUM DEVELOPMENT CENTRE Curriculum Development Centre, DOTE.

More information

The new generation with system accessories. Made in Germany!

The new generation with system accessories. Made in Germany! 1 The new generation with system accessories. Made in Germany! For face, longitudinal and taper turning, thread-cutting. For machining steel, brass, aluminium and plastic. Mounting flange for fastening

More information

Rotary Engraving Fact Sheet

Rotary Engraving Fact Sheet Rotary Engraving Fact Sheet Description Rotary engraving is the term used to describe engraving done with a rotating cutting tool in a motorized spindle. The tool, or cutter, cuts into the surface of the

More information

MANUFACTURING TECHNOLOGY

MANUFACTURING TECHNOLOGY MANUFACTURING TECHNOLOGY UNIT V Machine Tools Milling cutters Classification of milling cutters according to their design HSS cutters: Many cutters like end mills, slitting cutters, slab cutters, angular

More information

Lathe. A Lathe. Photo by Curt Newton

Lathe. A Lathe. Photo by Curt Newton Lathe Photo by Curt Newton A Lathe Labeled Photograph Description Choosing a Cutting Tool Installing a Cutting Tool Positioning the Tool Feed, Speed, and Depth of Cut Turning Facing Parting Drilling Boring

More information

PERIYAR CENTENARY POLYTECHNIC COLLAGE Manufacturing Technology - II SUBCODE: MEB520 UNIT- I PART-A

PERIYAR CENTENARY POLYTECHNIC COLLAGE Manufacturing Technology - II SUBCODE: MEB520 UNIT- I PART-A PERIYAR CENTENARY POLYTECHNIC COLLAGE Manufacturing Technology - II 1. List out the cutting tool materials. 2. Define rake angle. 3. Define clearance angle. 4. What is meant by drilling? 5. What is the

More information

Roll No. :.. Invigilator s Signature :.. CS/B.Tech (ME)/SEM-5/ME-504/ TECHNOLOGY OF MACHINING. Time Allotted : 3 Hours Full Marks : 70

Roll No. :.. Invigilator s Signature :.. CS/B.Tech (ME)/SEM-5/ME-504/ TECHNOLOGY OF MACHINING. Time Allotted : 3 Hours Full Marks : 70 Name : Roll No. :.. Invigilator s Signature :.. CS/B.Tech (ME)/SEM-5/ME-504/2009-10 2009 TECHNOLOGY OF MACHINING Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates

More information

Introduction to Machining: Lathe Operation

Introduction to Machining: Lathe Operation Introduction to Machining: Lathe Operation Lathe Operation Lathe The purpose of a lathe is to rotate a part against a tool whose position it controls. It is useful for fabricating parts and/or features

More information

MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR

MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR XXXX B23 MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR XXXX PLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE

More information

Classification of Metal Removal Processes and Machine tools. Introduction to Manufacturing and Machining

Classification of Metal Removal Processes and Machine tools. Introduction to Manufacturing and Machining Classification of Metal Removal Processes and Machine tools Introduction to Manufacturing and Machining Production Engineering covers two domains: (a) Production or Manufacturing Processes (b) Production

More information

Student, Department of Mechanical Engineering, Knowledge Institute of Technology, Salem, Tamilnadu (1,3)

Student, Department of Mechanical Engineering, Knowledge Institute of Technology, Salem, Tamilnadu (1,3) International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016 11 Combined Drilling and Tapping Machine by using Cone Mechanism N.VENKATESH 1, G.THULASIMANI 2, S.NAVEENKUMAR 3,

More information

Design Guide: CNC Machining VERSION 3.4

Design Guide: CNC Machining VERSION 3.4 Design Guide: CNC Machining VERSION 3.4 CNC GUIDE V3.4 Table of Contents Overview...3 Tolerances...4 General Tolerances...4 Part Tolerances...5 Size Limitations...6 Milling...6 Lathe...6 Material Selection...7

More information

Chapter 23 Drilling and Hole Making Processes. Materials Processing. Hole Making Processes. MET Manufacturing Processes

Chapter 23 Drilling and Hole Making Processes. Materials Processing. Hole Making Processes. MET Manufacturing Processes MET 33800 Manufacturing Processes Chapter 23 Drilling and Hole Making Processes Before you begin: Turn on the sound on your computer. There is audio to accompany this presentation. Materials Processing

More information

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR NPTEL ONLINE CERTIFICATION COURSE. On Industrial Automation and Control

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR NPTEL ONLINE CERTIFICATION COURSE. On Industrial Automation and Control INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR NPTEL ONLINE CERTIFICATION COURSE On Industrial Automation and Control By Prof. S. Mukhopadhyay Department of Electrical Engineering IIT Kharagpur Topic Lecture

More information

THREAD CUTTING & FORMING

THREAD CUTTING & FORMING THREAD CUTTING & FORMING Threading, Thread Cutting and Thread Rolling: Machining Threads on External Diameters (shafts) Tapping: Machining Threads on Internal Diameters (holes) Size: Watch to 10 shafts

More information

Features. Reduced Floor Space Compact, one piece castings and multi layer slideway guards give the most compact surfacing machines available today.

Features. Reduced Floor Space Compact, one piece castings and multi layer slideway guards give the most compact surfacing machines available today. The S8A is designed to surface large diesel heads, blocks and manifolds. All SA machines use the same tooling and fixturing for quick, rigid setup and versatility. Fine surface finishes are easily obtained

More information

~) / 7&0. Gleason No. 610 Universal Hypoid Gear Machine

~) / 7&0. Gleason No. 610 Universal Hypoid Gear Machine ~) / 7&0 Gleason No. 610 Universal Hypoid Gear Machine Gleason No. 610 The No. 610 Universal Hypoid Gear Machine sets new standards in precision high speed roughing and finishing of medium and large non-generated

More information

A study of accuracy of finished test piece on multi-tasking machine tool

A study of accuracy of finished test piece on multi-tasking machine tool A study of accuracy of finished test piece on multi-tasking machine tool M. Saito 1, Y. Ihara 1, K. Shimojima 2 1 Osaka Institute of Technology, Japan 2 Okinawa National College of Technology, Japan yukitoshi.ihara@oit.ac.jp

More information

Review on Design of Jig and Fixture for Turning on Lathe

Review on Design of Jig and Fixture for Turning on Lathe Review on Design of Jig and Fixture for Turning on Lathe Gulam Shaikh 1, Siddiki Arshadali 2, Shaikh Masood 3, Thakur Aditya 4, Juberbhai Mansuri 5 1 Theem College of engineering, shaikhgulam45@gmail.com

More information

MANUFACTURING PROCESSES

MANUFACTURING PROCESSES 1 MANUFACTURING PROCESSES - AMEM 201 Lecture 5: Milling Processes DR. SOTIRIS L. OMIROU Milling Machining - Definition Milling machining is one of the very common manufacturing processes used in machinery

More information

Roughing vs. finishing

Roughing vs. finishing Finishing methods Roughing vs. finishing Roughing removing material as fast as possible, without special demands on surface and low demand on precision high Q, high IT, high Ra Finishing making final surface

More information

PF 61 Universal Cylindrical Grinding Machine PF 61 Universal Cylindrical Grinding for Flexible Production Thanks to its modular design, the PF 61 universal cylindrical grinding machine is your ideal choice

More information

INDEX. S.No. Name of the Experiment Page No.

INDEX. S.No. Name of the Experiment Page No. MACHINE TOOLS LAB INDEX S.No. Name of the Experiment Page No. 1 Step Turning and Taper Turning on Lathe 2 Thread Cutting and Knurling on Lathe 3 Machining Flat Surface using Shaper Machine 4 Manufacturing

More information

KTM-16/20 TECHNICAL DATA

KTM-16/20 TECHNICAL DATA TECHNICAL DATA Table Diameter : 1,600mm Max. Turning Diameter : 2,000mm Max. Turning Height : 1,750mm Table Indexing Degree : 0.001mm CNC Controller : FANUC 18i-TB ** Bed The bed has symmetrical structure

More information

Lathes. CADD SPHERE Place for innovation Introduction

Lathes. CADD SPHERE Place for innovation  Introduction Lathes Introduction Lathe is one of the most versatile and widely used machine tools all over the world. It is commonly known as the mother of all other machine tool. The main function of a lathe is to

More information

A H M 531 The Civil Engineering Center

A H M 531 The Civil Engineering Center Title Page Introduction 2 Objectives 2 Theory 2 Fitting 3 Turning 5 Shaping and Grinding 7 Milling 8 Conclusion 11 Reference 11 1 Introduction Machining Machining is a manufacturing process in which a

More information

ROOP LAL Unit-6 (Milling) Mechanical Engineering Department

ROOP LAL Unit-6 (Milling) Mechanical Engineering Department Notes: Milling Basic Mechanical Engineering (Part B, Unit - I) 1 Introduction: Milling is a machining process which is performed with a rotary cutter with several cutting edges arranged on the periphery

More information

The new generation with system accessories. Made in Germany!

The new generation with system accessories. Made in Germany! 1 The new generation with system accessories. Made in Germany! For face, longitudinal and taper turning, thread-cutting. For machining steel, brass, aluminium and plastic. Mounting flange for fastening

More information

FNL-220Y / 220SY / 200LS Series CNC Turning-Milling Machines Linear Way

FNL-220Y / 220SY / 200LS Series CNC Turning-Milling Machines Linear Way RICH WELL 206.0 Dimensions R450 E FNL-220Y / 220SY / 200LS Series CNC Turning-Milling Machines Linear Way 20 C D Chip conveyor 092 H G B 46 575 A F Unit:mm A B C D E F G H FNL220LSY/FNL220LY 952 2946 2700

More information

Machining Processes Used to Produce Various Shapes. Dr. Mohammad Abuhaiba

Machining Processes Used to Produce Various Shapes. Dr. Mohammad Abuhaiba Machining Processes Used to Produce Various Shapes 1 Homework Assignment Due Wensday 28/4/2010 1. Show that the distance lc in slab milling is approximately equal to for situations where D>>d. (see Figure

More information

National Conference on Advances in Mechanical Engineering Science (NCAMES-2016)

National Conference on Advances in Mechanical Engineering Science (NCAMES-2016) Design and Development of Milling Attachment for CNC Turing Center Shashank S 1, Dr.Raghavendra H 2 1 Assistant Professor, Department of Mechanical Engineering, 2 Professor, Department of Mechanical Engineering,

More information

Motion Manipulation Techniques

Motion Manipulation Techniques Motion Manipulation Techniques You ve already been exposed to some advanced techniques with basic motion types (lesson six) and you seen several special motion types (lesson seven) In this lesson, we ll

More information

TIMTOS 2017 EXHIBITS PROFILE

TIMTOS 2017 EXHIBITS PROFILE TIMTOS 2017 EXHIBITS PROFILE Product Code Product Name METAL CUTTING MACHINE TOOL Lathes and Turning Machines 160101 Lathes, Swiss Type 160502 Bench Lathes 160503 High Speed Lathes 160504 Automatic Lathes

More information

LAB MANUAL / OBSERVATION

LAB MANUAL / OBSERVATION DHANALAKSHMI COLLEGE OF ENGINEERING DR. VPR NAGAR, MANIMANGALAM, CHENNAI- 601301 DEPARTMENT OF MECHANICAL ENGINEERING LAB MANUAL / OBSERVATION ME6611- CAD/CAM LABORATORY STUDENT NAME REGISTER NUMBER YEAR

More information

The enriched system configuration designed based on the loader head accommodates a wide range of automation needs.

The enriched system configuration designed based on the loader head accommodates a wide range of automation needs. CNC Lathe These are high-precision chucking machines equipped with a general-purpose in-machine loader head. The loading time is shortened substantially through coordinated operation of the loader head

More information

[ means: One-stop shop. EMCOMAT FB-450 L / FB-600 L. Universal milling machines with Heidenhain TNC 320 or EMCO Easy Cycle

[ means: One-stop shop. EMCOMAT FB-450 L / FB-600 L. Universal milling machines with Heidenhain TNC 320 or EMCO Easy Cycle [ E[M]CONOMY] means: One-stop shop. EMCOMAT FB-450 L / FB-600 L Universal milling machines with Heidenhain TNC 320 or EMCO Easy Cycle EMCOMAT FB-450 L / FB-600 L Whether single or small series production,

More information

Catalogue guide. MARIO PINTO SPA Strada delle Cacce Torino page 1 di 13

Catalogue guide. MARIO PINTO SPA Strada delle Cacce Torino   page 1 di 13 Catalogue guide MARIO PINTO SPA Strada delle Cacce 21-10135 Torino www.live-tooling.com www.mariopinto.it page 1 di 13 PRODUCTS MANUFACTURING PHILOSOPHY Our Live Tools are entirely developed, designed

More information

PERFORMANCE RACING AND ENGINE BUILDING MACHINERY AND EQUIPMENT

PERFORMANCE RACING AND ENGINE BUILDING MACHINERY AND EQUIPMENT PERFORMANCE RACING AND ENGINE BUILDING MACHINERY AND EQUIPMENT F68A Programmable Automatic Machining Center AC Servo Motors and Power Drawbar Hardened Box Way Column Touch Screen Control INDUSTRY EXCLUSIVE

More information

InTurn Ultra and Ultra-T Indexing and Turning 4 th axis

InTurn Ultra and Ultra-T Indexing and Turning 4 th axis Specifications for the InTurn Ultra and Ultra-T Indexing and Turning 4 th axis Industrial quality. 100% duty cycle. Production ready. The InTurn series is the only CNC mill accessory that provides both

More information

Chapter 24. Machining Processes Used to Produce Various Shapes: Milling, Broaching, Sawing, and Filing; Gear Manufacturing

Chapter 24. Machining Processes Used to Produce Various Shapes: Milling, Broaching, Sawing, and Filing; Gear Manufacturing Chapter 24 Machining Processes Used to Produce Various Shapes: Milling, Broaching, Sawing, and Filing; Gear Manufacturing Parts Made with Machining Processes of Chapter 24 Figure 24.1 Typical parts and

More information

MFG 316 Chapter 4 //Workholding Principles

MFG 316 Chapter 4 //Workholding Principles Workholding Principles All devices that grip, hold, chuck, or retain a workpiece in order to perform a manufacturing operation. Force=hydraulic, pneumatic, electrical, mechanical Force multiplication by

More information

The new generation with system accessories. Made in Europe!

The new generation with system accessories. Made in Europe! 1 The new generation with system accessories. Made in Europe! Of cast iron, wide-legged prismatic guide. For vibration-free work even at high loads. Rear flange for mounting the mill/drill head PF 230.

More information

DEPARTMENT OF MECHANICAL ENGINEERING ME 6411 MANUFACTURING TECHNOLOGY LAB-II (IV SEMESTER MECHANICAL) Regulation 2013 LAB MANUAL 2015-16 OBSERVATION NOTE BOOK ME6411 MANUFACTURING TECHNOLOGY LABORATORY

More information

Chapter 24. Machining Processes Used to Produce Various Shapes: Milling

Chapter 24. Machining Processes Used to Produce Various Shapes: Milling Chapter 24 Machining Processes Used to Produce Various Shapes: Milling Parts Made with Machining Processes of Chapter 24 Figure 24.1 Typical parts and shapes that can be produced with the machining processes

More information

Looking for a small band saw? The Ellis 1100 band saw might be just what you are looking for.

Looking for a small band saw? The Ellis 1100 band saw might be just what you are looking for. 1100 MITRE BAND SAW Looking for a small band saw? The Ellis 1100 band saw might be just what you are looking for. This portable band saw moves easily to the job site. Use it as horizontal or vertical saw.

More information

SURFACE FINISHING GRINDING MACHINES

SURFACE FINISHING GRINDING MACHINES SURFACE FINISHING GRINDING MACHINES Introduction :- Grinding is a metal cutting operation which is performed by means of a rotating abrasive wheel acts as a cutting tool. Material removal is in the form

More information

CNC Cooltool - Milling Machine

CNC Cooltool - Milling Machine CNC Cooltool - Milling Machine Module 1: Introduction to CNC Machining 1 Prepared By: Tareq Al Sawafta Module Objectives: 1. Define machining. 2. Know the milling machine parts 3. Understand safety rules

More information

The Analysis and Research of Gear Surface Machining Rong Zhang

The Analysis and Research of Gear Surface Machining Rong Zhang International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 2015) The Analysis and Research of Gear Surface Machining Rong Zhang Dalian Vocational Technical College,

More information

PERFORMANCE RACING AND ENGINE REBUILDING MACHINERY AND EQUIPMENT

PERFORMANCE RACING AND ENGINE REBUILDING MACHINERY AND EQUIPMENT PERFORMANCE RACING AND ENGINE REBUILDING MACHINERY AND EQUIPMENT SF8M The SF8 is sized to surface diesel heads, blocks and manifolds. All SF machines use the same tooling and fixturing for quick, rigid

More information

Copyright 2009 Society of Manufacturing Engineers. FUNDAMENTALS OF TOOL DESIGN Fixture Design - DF

Copyright 2009 Society of Manufacturing Engineers. FUNDAMENTALS OF TOOL DESIGN Fixture Design - DF FUNDAMENTALS OF TOOL DESIGN Fixture Design - DF SCENE 1. DF26A, FTD87, 03:20:15:00-03:20:46:00 zoom out, milling operation DF26B, CGS: Milling Fixtures Lathe Fixtures Grinding Fixtures Broaching Fixtures

More information

1. The Lathe. 1.1 Introduction. 1.2 Main parts of a lathe

1. The Lathe. 1.1 Introduction. 1.2 Main parts of a lathe 1. The Lathe 1.1 Introduction Lathe is considered as one of the oldest machine tools and is widely used in industries. It is called as mother of machine tools. It is said that the first screw cutting lathe

More information

MONASET CM-2. Has these customer proven features...

MONASET CM-2. Has these customer proven features... MONASET CM-2 Has these customer proven features... We looked at our successful Monaset grinder very closely before we came up with the engineering refinements which, when combined with its field proven

More information

STEEL RULE. Stock TRY SQUARE

STEEL RULE. Stock TRY SQUARE FITTING INTRODUCTION Fitting consists of a handwork involved in fitting together components usually performed at a bench equipped with a vice and hand tools. The matting components have a close relation

More information