CHAPTER 23 Machining Processes Used to Produce Various Shapes Kalpakjian Schmid Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-1

Size: px
Start display at page:

Download "CHAPTER 23 Machining Processes Used to Produce Various Shapes Kalpakjian Schmid Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-1"

Transcription

1 CHAPTER 23 Machining Processes Used to Produce Various Shapes Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-1

2 Examples of Parts Produced Using the Machining Processes in the Chapter Figure 23.1 Typical parts and shapes produced with the machining processes described in this chapter. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-2

3 Examples of Milling Cutters and Operations Figure 23.2 Some of the basic types of milling cutters and milling operations. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-3

4 Example of Part Produced on a CNC Milling Machine Figure 23.3 A typical part that can be produced on a milling machine equipped with computer controls. Such parts can be made efficiently and repetitively on computer numerical control (CNC) machines, without the need for refixturing or reclamping the part. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-4

5 Conventional and Climb Milling Figure 23.4 (a) Schematic illustration of conventional milling and climb milling. (b) Slab milling operation, showing depth of cut, d, feed per tooth, f, chip depth of cut, t c, and workpiece speed, v. (c) Schematic illustration of cutter travel distance l c to reach full depth of cut. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-5

6 Summary of Milling Parameters and Formulas TABLE 23.1 N = Rotational speed of the milling cutter, rpm f = Feed, mm/tooth or in./tooth D = Cutter diameter, mm or in. n = Number of teeth on cutter v = Linear speed of the workpiece or feed rate, mm/min or in./min V = Surface speed of cutter, m/min or ft/min =D N f = Feed per tooth, mm/tooth or in/tooth =v /N n l = Length of cut, mm or in. t = Cutting time, s or min MRR = =( l+l c ) v, where l c =extent of the cutter s first contact with workpiece mm 3 /min or in. 3 /min =w d v, where w is the width of cut Torque = N-m or lb-ft ( F c ) (D/2) Power = kw or hp = (Torque) (ω ), where ω = 2π N radians/min Note: The units given are those that are commonly used; however, appropriate units must be used in the formulas. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-6

7 Face Milling Figure 23.5 Face-milling operation showing (a) action of an insert in face milling; (b) climb milling; (c) conventional milling; (d) dimensions in face milling. The width of cut, w, is not necessarily the same as the cutter radius. Source: Ingersoll Cutting Tool Company. Figure 23.6 A face-milling cutter with indexable inserts. Source: Courtesy of Ingersoll Cutting Tool Company. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-7

8 Effects of Insert Shapes Figure 23.7 Schematic illustration of the effect of insert shape on feed marks on a face-milled surface: (a) small corner radius, (b) corner flat on insert, and (c) wiper, consisting of a small radius followed by a large radius which leaves smoother feed marks. Source: Kennametal Inc. (d) Feed marks due to various insert shapes. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-8

9 Face-Milling Cutter Figure 23.8 Terminology for a face-milling cutter. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-9

10 Effect of Lead Angle Figure 23.9 The effect of lead angle on the undeformed chip thickness in face milling. Note that as the lead angle increase, the chip thickness decreases, but the length of contact (i.e., chip width) increases. The insert in (a) must be sufficiently large to accommodate the contact length increase. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-10

11 Cutter and Insert Position in Face Milling Figure (a) Relative position of the cutter and insert as it first engages the workpiece in face milling, (b) insert positions towards the end of the cut, and (c) examples of exit angles of insert, showing desirable (positive or negative angle) and undesirable (zero angle) positions. In all figures, the cutter spindle is perpendicular to the page. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-11

12 Cutters for Different Types of Milling Figure Cutters for (a) straddle milling, (b) form milling, (c) slotting, and (d) slitting with a milling cutter. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-12

13 Other Milling Operations and Cutters Figure (a) T-slot cutting with a milling cutter. (b) A shell mill. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-13

14 Arbors Figure Mounting a milling cutter on an arbor for use on a horizontal milling machine. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-14

15 Capacities and Maximum Workpiece Dimensions for Machine Tools TABLE 23.2 Typical Capacities and Maximum Workpiece Dimensions for Some Machine Tools Machine tool Maximum dimension m (ft) Power (kw) Maximum speed Milling machines (table travel) Knee-and-column 1.4 (4.6) rpm Bed 4.3 (14) Numerical control 5 (16.5) Planers (table travel) 10 (33) Broaching machines (length) 2 (6.5) 0.9 MN Gear cutting (gear diameter) 5 (16.5) Note: Larger capacities are available for special applications. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-15

16 Approximate Cost of Selected Tools for Machining TABLE 23.3 Approximate Cost of Selected Tools for Machining* Tools Size (in.) Cost ($) Drills, HSS, straight shank 1/ / Coated (TiN) 1/ / Tapered shank 1/ Reamers, HSS, hand 1/ / Chucking 1/ / End mills, HSS 1/ Carbide-tipped 1/ Solid carbide 1/ Burs, carbide 1/ Milling cutters, HSS, staggered tooth, wide Collets (5 core) *Cost depends on the particular type of material and shape of tool, its quality, and the amount purchased. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-16

17 General Recommendations for Milling Operations TABLE 23.4 Workpiece material Low-C and freemachining steels Alloy steels Soft Cutting tool Uncoated carbide, coated carbide, cermets General-purpose starting conditions Feed Speed mm/tooth m/min (in./tooth) (ft/min) ( ) Uncoated, coated, cermets ( ) Hard Cermets, PCBN ( ) Cast iron, gray Soft Uncoated, coated, Hard Stainless steel, austenitic High-temperature alloys, nickel base Titanium alloys Aluminum alloys Free machining cermets, SiN Cermets, SiN, PCBN Uncoated, coated, cermets Uncoated, coated, cermets, SiN, PCBN Uncoated, coated, cermets ( ) ( ) ( ) ( ) ( ) Uncoated, coated, PCD ( ) High silicon PCD 0.13 (0.005) Copper alloys Uncoated, coated, PCD ( ) Thermoplastics and Uncoated, coated, thermosets PCD ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 610 (2000) ( ) ( ) Range of conditions Feed mm/tooth (in./tooth) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Speed m/min (ft/min) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ,000) ( ) ( ) ( ) Source: Based on data from Kennametal Inc. Note: Depths of cut, d, usually are in the range of 1 8 mm ( in.). PCBN: polycrystalline cubic boron nitride; PCD: polycrystalline diamond. Note: See also Table 22.2 for range of cutting speeds within tool material groups. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-17

18 General Troubleshooting Guide for Milling Operations TABLE 23.5 Problem Tool breakage Tool wear excessive Rough surface finish Tolerances too broad Workpiece surface burnished Back striking Chatter marks Burr formation Breakout Probable causes Tool material lacks toughness; improper tool angles; cutting parameters too high. Cutting parameters too high; improper tool material; improper tool angles; improper cutting fluid. Feed too high; spindle speed too low; too few teeth on cutter; tool chipped or worn; built-up edge; vibration and chatter. Lack of spindle stiffness; excessive temperature rise; dull tool; chips clogging cutter. Dull tool; depth of cut too low; radial relief angle too small. Dull cutting tools; cutter spindle tilt; negative tool angles. Insufficient stiffness of system; external vibrations; feed, depth, and width of cut too large. Dull cutting edges or too much honing; incorrect angle of entry or exit; feed and depth of cut too high; incorrect insert geometry. Lead angle too low; incorrect cutting edge geometry; incorrect angle of entry or exit; feed and depth of cut too high. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-18

19 Surface Features and Corner Defects Figure Surface features and corner defects in face milling operations; see also Fig For troubleshooting, see Table Source: Kennametal Inc. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-19

20 Horizontal- and Vertical-Spindle Column-and- Knee Type Milling Machines Figure Schematic illustration of a horizontalspindle column-and-knee type milling machine. Source: G. Boothroyd. Figure Schematic illustration of a vertical-spindle column-and-knee type milling machine (also called a knee miller). Source: G. Boothroyd. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-20

21 Bed-Type Milling Machine Figure Schematic illustration of a bed-type milling machine. Note the single vertical-spindle cutter and two horizontal spindle cutters. Source: ASM International. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-21

22 Additional Milling Machines Figure A computer numerical control, vertical-spindle milling machine. This machine is one of the most versatile machine tools. Source: Courtesy of Bridgeport Machines Division, Textron Inc. Figure Schematic illustration of a five-axis profile milling machine. Note that there are three principal linear and two angular movements of machine components Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-22

23 Examples of Parts Made on a Planer and by Broaching Figure Typical parts that can be made on a planer. Figure (a) Typical parts made by internal broaching. (b) Parts made by surface broaching. Heavy lines indicate broached surfaces. Source: General Broach and Engineering Company. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-23

24 Broaches Figure (a) Cutting action of a broach, showing various features. (b) Terminology for a broach. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-24

25 Chipbreakers and a Broaching Machine Figure Chipbreaker features on (a) a flat broach and (b) a round broach. (c) Vertical broaching machine. Source: Ty Miles, Inc. (a) (c) (b) Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-25

26 Internal Broach and Turn Broaching Figure Terminology for a pull-type internal broach used for enlarging long holes. Figure Turn broaching of a crankshaft. The crankshaft rotates while the broaches pass tangentially across the crankshaft s bearing surfaces. Source: Courtesy of Ingersoll Cutting Tool Company. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-26

27 Broaching Internal Splines Figure Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-27

28 Sawing Operations Figure Examples of various sawing operations. Source: DoALL Company. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-28

29 Types of Saw Teeth Figure (a) Terminology for saw teeth. (b) Types of tooth set on saw teeth, staggered to provide clearance for the saw blade to prevent binding during sawing. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-29

30 Saw Teeth and Burs Figure (a) High-speed-steel teeth welded on steel blade. (b) Carbide inserts brazed to blade teeth. Figure Types of burs. Source: The Copper Group. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-30

31 Spur Gear Figure Nomenclature for an involute spur gear. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-31

32 Gear Generating Figure (a) Producing gear teeth on a blank by from cutting. (b) Schematic illustration of gear generating with a pinionshaped gear cutter. (c) Schematic illustration of gear generating in a gear shaper using a pinionshaped cutter. Note that the cutter reciprocates vertically. (d) Gear generating with rackshaped cutter. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-32

33 Gear Cutting With a Hob Figure Schematic illustration of three views of gear cutting with a hob. Source: After E. P. DeGarmo and Society of Manufacturing Engineers Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-33

34 Cutting Bevel Gears Figure (a) Cutting a straight bevel-gear blank with two cutters. (b) Cutting a spiral bevel gear with a single cutter. Source: ASM International. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-34

35 Gear Grinding Figure Finishing gears by grinding: (a) form grinding with shaped grinding wheels; (b) grinding by generating with two wheels. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-35

36 Economics of Gear Production Figure Gear manufacturing cost as a function of gear quality. The numbers along the vertical lines indicate tolerances. Source: Society of Manufacturing Engineers. Manufacturing Engineering and Technology 2001 Prentice-Hall Page 23-36

Chapter 24. Machining Processes Used to Produce Various Shapes: Milling, Broaching, Sawing, and Filing; Gear Manufacturing

Chapter 24. Machining Processes Used to Produce Various Shapes: Milling, Broaching, Sawing, and Filing; Gear Manufacturing Chapter 24 Machining Processes Used to Produce Various Shapes: Milling, Broaching, Sawing, and Filing; Gear Manufacturing Parts Made with Machining Processes of Chapter 24 Figure 24.1 Typical parts and

More information

Metal Cutting - 5. Content. Milling Characteristics. Parts made by milling Example of Part Produced on a CNC Milling Machine 7.

Metal Cutting - 5. Content. Milling Characteristics. Parts made by milling Example of Part Produced on a CNC Milling Machine 7. Content Metal Cutting - 5 Assoc Prof Zainal Abidin Ahmad Dept. of Manufacturing & Industrial Engineering Faculty of Mechanical Engineering Universiti Teknologi Malaysia 7. MILLING Introduction Horizontal

More information

Chapter 24 Machining Processes Used to Produce Various Shapes.

Chapter 24 Machining Processes Used to Produce Various Shapes. Chapter 24 Machining Processes Used to Produce Various Shapes. 24.1 Introduction In addition to parts with various external or internal round profiles, machining operations can produce many other parts

More information

Machining Processes IME 240

Machining Processes IME 240 Machining Processes IME 240 Material Removal Processes Machining is the broad term used to describe removal of material from a workpiece Includes Cutting, Abrasive Processes (grinding), Advanced Machining

More information

Machining Processes Used to Produce Various Shapes. Dr. Mohammad Abuhaiba

Machining Processes Used to Produce Various Shapes. Dr. Mohammad Abuhaiba Machining Processes Used to Produce Various Shapes 1 Homework Assignment Due Wensday 28/4/2010 1. Show that the distance lc in slab milling is approximately equal to for situations where D>>d. (see Figure

More information

Machine Tools MILLING PROCESS. BY LAKSHMIPATHI YERRA Asst.professor Dept.of Mechanical Engg.

Machine Tools MILLING PROCESS. BY LAKSHMIPATHI YERRA Asst.professor Dept.of Mechanical Engg. Machine Tools MILLING PROCESS BY LAKSHMIPATHI YERRA Asst.professor Dept.of Mechanical Engg. FIG. 1 Typical parts and shapes produced by various cutting processes Fig. 2 Schematic illustration of milling

More information

Lecture 15. Chapter 23 Machining Processes Used to Produce Round Shapes. Turning

Lecture 15. Chapter 23 Machining Processes Used to Produce Round Shapes. Turning Lecture 15 Chapter 23 Machining Processes Used to Produce Round Shapes Turning Turning part is rotating while it is being machined Typically performed on a lathe Turning produces straight, conical, curved,

More information

Chapter 24. Machining Processes Used to Produce Various Shapes: Milling

Chapter 24. Machining Processes Used to Produce Various Shapes: Milling Chapter 24 Machining Processes Used to Produce Various Shapes: Milling Parts Made with Machining Processes of Chapter 24 Figure 24.1 Typical parts and shapes that can be produced with the machining processes

More information

Typical Parts Made with These Processes

Typical Parts Made with These Processes Turning Typical Parts Made with These Processes Machine Components Engine Blocks and Heads Parts with Complex Shapes Parts with Close Tolerances Externally and Internally Threaded Parts Products and Parts

More information

Common Machining Processes

Common Machining Processes Common Machining Processes FIGURE 8.1 Some examples of common machining processes. Orthogonal Cutting FIGURE 8.2 Schematic illustration of a two-dimensional cutting process, or orthogonal cutting. (a)

More information

MACHINING PROCESSES: TURNING AND HOLE MAKING. Dr. Mohammad Abuhaiba 1

MACHINING PROCESSES: TURNING AND HOLE MAKING. Dr. Mohammad Abuhaiba 1 MACHINING PROCESSES: TURNING AND HOLE MAKING Dr. Mohammad Abuhaiba 1 HoweWork Assignment Due Wensday 7/7/2010 1. Estimate the machining time required to rough cut a 0.5 m long annealed copper alloy round

More information

Milling. Chapter 24. Veljko Samardzic. ME-215 Engineering Materials and Processes

Milling. Chapter 24. Veljko Samardzic. ME-215 Engineering Materials and Processes Milling Chapter 24 24.1 Introduction Milling is the basic process of progressive chip removal to produce a surface. Mill cutters have single or multiple teeth that rotate about an axis, removing material.

More information

Chapter 23: Machining Processes: Turning and Hole Making

Chapter 23: Machining Processes: Turning and Hole Making Manufacturing Engineering Technology in SI Units, 6 th Edition Chapter 23: Machining Processes: Turning and Hole Making Chapter Outline 1. Introduction 2. The Turning Process 3. Lathes and Lathe Operations

More information

Lecture 18. Chapter 24 Milling, Sawing, and Filing; Gear Manufacturing (cont.) Planing

Lecture 18. Chapter 24 Milling, Sawing, and Filing; Gear Manufacturing (cont.) Planing Lecture 18 Chapter 24 Milling, Sawing, and Filing; Gear Manufacturing (cont.) Planing For production of: Flat surfaces Grooves Notches Performed on long (on average 10 m) workpieces Workpiece moves / Tool

More information

Chapter 22 MACHINING OPERATIONS AND MACHINE TOOLS

Chapter 22 MACHINING OPERATIONS AND MACHINE TOOLS Chapter 22 MACHINING OPERATIONS AND MACHINE TOOLS Turning and Related Operations Drilling and Related Operations Milling Machining Centers and Turning Centers Other Machining Operations High Speed Machining

More information

Chapter 23: Machining Processes: Hole Making Part A (Lathe Operations, Boring, Reaming, Tapping)

Chapter 23: Machining Processes: Hole Making Part A (Lathe Operations, Boring, Reaming, Tapping) 1 Manufacturing Processes (2), IE-352 Ahmed M El-Sherbeeny, PhD Spring 2017 Manufacturing Engineering Technology in SI Units, 6 th Edition Chapter 23: Machining Processes: Hole Making Part A (Lathe Operations,

More information

DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK ME6402 MANUFACTURING TECHNOLOGY II UNIT I PART A 1. List the various metal removal processes? 2. How chip formation occurs in metal cutting? 3. What is

More information

VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK ME6402 MANUFACTURING TECHNOLOGY II UNIT-I PART A 1. List the various metal removal processes? (BT1) 2. Explain how chip

More information

11/15/2009. There are three factors that make up the cutting conditions: cutting speed depth of cut feed rate

11/15/2009. There are three factors that make up the cutting conditions: cutting speed depth of cut feed rate s Geometry & Milling Processes There are three factors that make up the cutting conditions: cutting speed depth of cut feed rate All three of these will be discussed in later lessons What is a cutting

More information

Chapter 23 Drilling and Hole Making Processes. Materials Processing. Hole Making Processes. MET Manufacturing Processes

Chapter 23 Drilling and Hole Making Processes. Materials Processing. Hole Making Processes. MET Manufacturing Processes MET 33800 Manufacturing Processes Chapter 23 Drilling and Hole Making Processes Before you begin: Turn on the sound on your computer. There is audio to accompany this presentation. Materials Processing

More information

UNIT 5: Indexing: Simple, compound, differential and angular indexing calculations. Simple problems on simple and compound indexing.

UNIT 5: Indexing: Simple, compound, differential and angular indexing calculations. Simple problems on simple and compound indexing. UNIT 5: Milling machines: Classification, constructional features, milling cutters nomenclature, milling operations, up milling and down milling concepts. Indexing: Simple, compound, differential and angular

More information

TRAINING MANUAL. Part INTRODUCTION TO TWIST DRILLS

TRAINING MANUAL. Part INTRODUCTION TO TWIST DRILLS PRESTO INTERNATIONAL UK LTD TRAINING MANUAL Part 2 INTRODUCTION TO TWIST DRILLS - 1 - DEFINITION:- A rotary end cutting tool having two or more cutting lips, and having two or more spiral (helical) or

More information

Milling operations TA 102 Workshop Practice. By Prof.A.chANDRASHEKHAR

Milling operations TA 102 Workshop Practice. By Prof.A.chANDRASHEKHAR Milling operations TA 102 Workshop Practice By Prof.A.chANDRASHEKHAR Introduction Milling machines are used to produce parts having flat as well as curved shapes. Milling machines are capable of performing

More information

Metal Cutting (Machining)

Metal Cutting (Machining) Metal Cutting (Machining) Metal cutting, commonly called machining, is the removal of unwanted portions from a block of material in the form of chips so as to obtain a finished product of desired size,

More information

ROOP LAL Unit-6 (Milling) Mechanical Engineering Department

ROOP LAL Unit-6 (Milling) Mechanical Engineering Department Notes: Milling Basic Mechanical Engineering (Part B, Unit - I) 1 Introduction: Milling is a machining process which is performed with a rotary cutter with several cutting edges arranged on the periphery

More information

Application and Technical Information Thread Milling System (TMS) Minimum Bore Diameters for Thread Milling

Application and Technical Information Thread Milling System (TMS) Minimum Bore Diameters for Thread Milling Inserts Application and Technical Information Minimum Bore iameters for Thread Milling UN-ISO-BSW tpi 48 3 4 0 16 1 10 8 7 6 5 4.5 4 Technical ata Accessories Vintage Cutters Widia Cutters Thread Milling

More information

MANUFACTURING PROCESSES

MANUFACTURING PROCESSES 1 MANUFACTURING PROCESSES - AMEM 201 Lecture 5: Milling Processes DR. SOTIRIS L. OMIROU Milling Machining - Definition Milling machining is one of the very common manufacturing processes used in machinery

More information

MANUFACTURING TECHNOLOGY

MANUFACTURING TECHNOLOGY MANUFACTURING TECHNOLOGY UNIT V Machine Tools Milling cutters Classification of milling cutters according to their design HSS cutters: Many cutters like end mills, slitting cutters, slab cutters, angular

More information

Chapter 25. Other Machining Processes. Materials Processing. MET Manufacturing Processes. Shaping Planing Broaching Sawing Filing

Chapter 25. Other Machining Processes. Materials Processing. MET Manufacturing Processes. Shaping Planing Broaching Sawing Filing MET 33800 Manufacturing Processes Chapter 25 Other Machining Processes Before you begin: Turn on the sound on your computer. There is audio to accompany this presentation. Other Machining Processes Shaping

More information

Optimized flute design Better chip evacuation. Carbide substrate Higher heat resistance, higher speed.

Optimized flute design Better chip evacuation. Carbide substrate Higher heat resistance, higher speed. Thread Mills Available for the first time, our solid thread mills are designed to be the highest quality thread milling solution. WIDIA-GTD Cut up to 63 HRC. Improved overall thread quality. Optimized

More information

MAXWELL TOOLS CO. Mfrs of Milling Cutters; Gear Cutters; Gear Hobs; Gear Shapers; Broaches

MAXWELL TOOLS CO. Mfrs of Milling Cutters; Gear Cutters; Gear Hobs; Gear Shapers; Broaches ISO 9001 : 2008 Certified MAXWELL TOOLS CO. Mfrs of Milling Cutters; Gear Cutters; Gear Hobs; Gear Shapers; Broaches # 3, Industrial Estate, RAJPURA - 140 401 Tel. +91 1762-224427, Fax : +91-1762-223372

More information

Think efficiency, Think HSS MILLING

Think efficiency, Think HSS MILLING Think efficiency, Think HSS MILLING SUMMARY MILLING TOOLS 2 Zoom on a milling cutter 3 Which HSS for maximum efficiency? 4 Coatings for the best performance 5 Vocabulary 6 Choose the right design 7 Select

More information

Solid Carbide Thread Milling Cutters

Solid Carbide Thread Milling Cutters Solid Carbide Thread Milling Cutters Second Edition Thread milling cutters by Features and Benefits: Sub-micro grain carbide substrate Longer tool life with tighter tolerances More cost-effective than

More information

CoroMill. All solutions at a glance

CoroMill. All solutions at a glance CoroMill All solutions at a glance CoroMill Product overview Milling grades according to groups Shoulder milling CoroMill 316 CoroMill 490 CoroMill 790 Long edge cutter Insert size Max. cutting depth a

More information

Workshop Practice TA 102 Lec 6 & 7 :Theory of Metal Cutting. By Prof.A.Chandrashekhar

Workshop Practice TA 102 Lec 6 & 7 :Theory of Metal Cutting. By Prof.A.Chandrashekhar Workshop Practice TA 102 Lec 6 & 7 :Theory of Metal Cutting By Prof.A.Chandrashekhar Theory of Metal cutting INTRODUCTION: The process of manufacturing a component by removing the unwanted material using

More information

External Turning. Outline Review of Turning. Cutters for Turning Centers

External Turning. Outline Review of Turning. Cutters for Turning Centers Outline Review of Turning External Turning 3 External Turning Parameters Cutting Tools Inserts Toolholders Machining Operations Roughing Finishing General Recommendations Turning Calculations Machining

More information

SHAPER, MILLING AND GEAR CUTTING MACHINES

SHAPER, MILLING AND GEAR CUTTING MACHINES UNIT 3 SHAPER, MILLING AND GEAR CUTTING MACHINES 1. Compare hydraulic shaper with mechanical shaper? SL.NO Hydrulic shaper Mechanical shaper 1. smooth cutting operation Rough and noisy cutting operation

More information

MANUFACTURING TECHNOLOGY

MANUFACTURING TECHNOLOGY MANUFACTURING TECHNOLOGY UNIT III THEORY OF METAL CUTTING Broad classification of Engineering Manufacturing Processes. It is extremely difficult to tell the exact number of various manufacturing processes

More information

DEPARTMENT OF MECHANICAL ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING SCSVMV UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING SUBJECT NAME : SUBJECT CODE : MANUFACTURING TECHNOLOGY-II EBM4DT055 QUESTION BANK UNIT-1 1. What is Grinding? 2. Briefly classify the Grinding Process.

More information

CNC Cooltool - Milling Machine

CNC Cooltool - Milling Machine CNC Cooltool - Milling Machine Module 1: Introduction to CNC Machining 1 Prepared By: Tareq Al Sawafta Module Objectives: 1. Define machining. 2. Know the milling machine parts 3. Understand safety rules

More information

Thread Mills. Solid Carbide Thread Milling Cutters

Thread Mills. Solid Carbide Thread Milling Cutters Thread Mills Solid Carbide Thread Milling Cutters Thread milling cutters by Features and Benefits: Sub-micro grain carbide substrate Longer tool life with tighter tolerances More cost-effective than indexable

More information

Materials Removal Processes (Machining)

Materials Removal Processes (Machining) Chapter Six Materials Removal Processes (Machining) 6.1 Theory of Material Removal Processes 6.1.1 Machining Definition Machining is a manufacturing process in which a cutting tool is used to remove excess

More information

Various other types of drilling machines are available for specialized jobs. These may be portable, bench type, multiple spindle, gang, multiple

Various other types of drilling machines are available for specialized jobs. These may be portable, bench type, multiple spindle, gang, multiple Drilling The process of making holes is known as drilling and generally drilling machines are used to produce the holes. Drilling is an extensively used process by which blind or though holes are originated

More information

no mm no Dividers with scriber 150 mm NEW Square wedge-shaped knife edges on the length side

no mm no Dividers with scriber 150 mm NEW Square wedge-shaped knife edges on the length side Summer Promotion valid until 30.06.2013 all quoted prices are incl. VAT for deliveries to EU countries to customers with valid VAT-no. and for deliveries in non EU member countries the VAT is not applicable

More information

GEARS MACHINING. GEAR TYPES Cylindrical gears: - spur - helical Bevel gears: - straight - curved (spiral) Worm wheels and worms

GEARS MACHINING. GEAR TYPES Cylindrical gears: - spur - helical Bevel gears: - straight - curved (spiral) Worm wheels and worms GEARS MACHINING GEAR TYPES Cylindrical gears: - spur - helical Bevel gears: - straight - curved (spiral) Worm wheels and worms 1 Involute tooth profile 2 Spur and helical gears cutting METHODS: form milling

More information

Broaches The basic characteristic

Broaches The basic characteristic Broaches The basic characteristic Broaches handle mass production with high accuracy and high efficiency. It is very important to point out that complex shapes can be steadily produced without requiring

More information

MANUFACTURING TECHNOLOGY

MANUFACTURING TECHNOLOGY MANUFACTURING TECHNOLOGY UNIT IV SURFACE FINISHING PROCESS Grinding Grinding is the most common form of abrasive machining. It is a material cutting process which engages an abrasive tool whose cutting

More information

Reaming. MAPAL MonoReam. Systematic versatility NEW

Reaming. MAPAL MonoReam. Systematic versatility NEW Reaming MAPAL MonoReam Systematic versatility NEW MAPAL MonoReam With the newly developed multi-bladed reamers in the 600, 700 and 800 series, MAPAL is offering a new, simple, highperformance, standardised

More information

A H M 531 The Civil Engineering Center

A H M 531 The Civil Engineering Center Title Page Introduction 2 Objectives 2 Theory 2 Fitting 3 Turning 5 Shaping and Grinding 7 Milling 8 Conclusion 11 Reference 11 1 Introduction Machining Machining is a manufacturing process in which a

More information

End Mills 4. Cutting Tools 1 (Cont d) End-mills (Cont d)

End Mills 4. Cutting Tools 1 (Cont d) End-mills (Cont d) Outline Review of Milling Cutting Tools Milling Milling Operations Workpiece Materials Tool Selection Machining Tips Toolholders Fixtures Cutting Tools HSS tools Coated (TiN, Al O 3, TiAlN,...) versions

More information

BASIC TECHNICAL INFORMATION FOR REAMERS FLUTE STYLES

BASIC TECHNICAL INFORMATION FOR REAMERS FLUTE STYLES BASIC TECHNICAL INFORMATION FOR HANNIBAL CARBIDE would like to inform you of some basic technical knowledge regarding reamers. Following these guidelines will reduce overall set-up time, while increasing

More information

Machining Strenx and Hardox. Drilling, countersinking, tapping, turning and milling

Machining Strenx and Hardox. Drilling, countersinking, tapping, turning and milling Machining and Drilling, countersinking, tapping, turning and milling and are registered trademarks. These steel grades are manufactured only by SSAB. high strength steel and wear plate are steel grades

More information

TOP WORK ISO 9001.CE UNIVERSAL CUTTER & TOOL GRINDER

TOP WORK ISO 9001.CE UNIVERSAL CUTTER & TOOL GRINDER TOP WORK ISO 9001.CE UNIVERSAL CUTTER Precise ball groove of conformation Inclination of Wheelhead The wheelhead can easily tilt up to ±15 degrees, with a 360-degrees swivel on the horizontal plane. The

More information

Drilling. Drilling is the operation of producing circular hole in the work-piece by using a rotating cutter called DRILL.

Drilling. Drilling is the operation of producing circular hole in the work-piece by using a rotating cutter called DRILL. Drilling Machine Drilling Drilling is the operation of producing circular hole in the work-piece by using a rotating cutter called DRILL. The machine used for drilling is called drilling machine. The drilling

More information

INDEXABLE BORING BAR AND INSERTS FLAT TOP, CHIP CONTROL, CBN, AND PCD

INDEXABLE BORING BAR AND INSERTS FLAT TOP, CHIP CONTROL, CBN, AND PCD INDEXABLE BORING BAR AND S FLAT TOP, CHIP CONTROL,, AND 80 Diamond.156 IC R.156.040 80 DIAMOND FLAT TOP 80 DIAMOND CHIP CONTROL AT6+ 0.003 ACD5031 ACD5031E AT6+ 0.007 ACD5071 ACD5071E AT6+ 0.015 ACD5151

More information

Technology II. Manufacturing methods

Technology II. Manufacturing methods Technology II Manufacturing methods Gears Machining GEAR TYPES Cylindrical gears: - spur - helical Bevel gears: - straight - curved (spiral) Worm wheels and worms 2 Involute tooth profile 3 Spur and helical

More information

Applied Machining Technology

Applied Machining Technology Applied Machining Technology Heinz Tschätsch Applied Machining Technology 1 C Author Prof. Dr.-Ing. Heinz Tschätsch Paul-Gerhard-Str. 25 01309 Dresden Germany Translator Dr.-Ing. Anette Reichelt Technik

More information

The Selection of Manufacturing Engineering Process; By Dr. Saied. M. Darwish

The Selection of Manufacturing Engineering Process; By Dr. Saied. M. Darwish CONTENTS MILLING OPERATIONS CONTENTS 6.1 Milling operation Milling is a machining operation in which a workpiece is fed past a rotating cylindrical tool with multiple cutting edges. This cutting tool in

More information

+1-508-653-8897 800-992-4766 www.toolmex.com Dear Valued Customers, The TMX Team have broadened our line of round cutting tools and holders to ensure that you have the productivity tools that you need

More information

STATE UNIVERSITY OF NEW YORK SCHOOL OF TECHNOLOGY CANTON, NEW YORK

STATE UNIVERSITY OF NEW YORK SCHOOL OF TECHNOLOGY CANTON, NEW YORK STATE UNIVERSITY OF NEW YORK SCHOOL OF TECHNOLOGY CANTON, NEW YORK COURSE OUTLINE MECH 121 - MANUFACTURING PROCESSES I Prepared By: Daniel Miller Updated By: Daniel Miller (April 2015) CANINO SCHOOL OF

More information

90 Indexable Positive Milling Cutter

90 Indexable Positive Milling Cutter 90 Indexable Positive Cutter Inserts HIGH POSITIVE 90 MILLING CUTTER Cutting Rake - 20 for 11 positive 85 parallelogram AP inserts Application TOOL ANGLES: Cutting Rake +20 Axial Rake 6 Radial Rake -6

More information

Review of Various Machining Processes

Review of Various Machining Processes Review of Various Machining Processes Digambar O. Jumale 1, Akshay V kharat 2, Akash Tekale 3, Yogesh Sapkal 4,Vinay K. Ghusalkar 5 Department of mechanical engg. 1, 2, 3, 4,5 1, 2, 3, 4,5, PLITMS Buldana

More information

CARBIDE END MILLS SPECIFICATIONS

CARBIDE END MILLS SPECIFICATIONS SPECIFICATIONS COATING GUIDE Material Hardness TiN TiCN TiALN Austentic Stainless Steel < 35 HRc * X Martinistic Stainless Steel < 35 HRc * X Martinistic Stainless Steel >= 35 HRc X PH Stainless Steel

More information

PREVIEW COPY. Table of Contents. Using the Horizontal Milling Machine...3. Lesson Two Slab Milling Procedures...19

PREVIEW COPY. Table of Contents. Using the Horizontal Milling Machine...3. Lesson Two Slab Milling Procedures...19 Table of Contents Lesson One Using the Horizontal Milling Machine...3 Lesson Two Slab Milling Procedures...19 Lesson Three Milling Slots and Angles...35 Lesson Four Straddle, Side, and Face Milling...51

More information

Chapter 23. Machining Processes Used to Produce Round Shapes: Turning and Hole Making

Chapter 23. Machining Processes Used to Produce Round Shapes: Turning and Hole Making Chapter 23 Machining Processes Used to Produce Round Shapes: Turning and Hole Making R. Jerz 1 2/24/2006 Processes Turning (outside surface) straight, taper, facing, contour, form, cut-off, threading,

More information

APRIL 2009 / NEW-100 / PAGE 1 OF 13

APRIL 2009 / NEW-100 / PAGE 1 OF 13 APRIL 2009 / NEW-100 / PAGE 1 OF 13 The standard UNIDEX line covers reaming applications from 5/16 to 1 1/4 diameter. The single indexable blade and high wear resistant carbide or cermet pads provide a

More information

K E E P I N G T H E W O R L D I N M O T I O N TM P 90 G. Grinding and Hobbing Machine

K E E P I N G T H E W O R L D I N M O T I O N TM P 90 G. Grinding and Hobbing Machine K E E P I N G T H E W O R L D I N M O T I O N TM P 90 G Grinding and Hobbing Machine machine concept P 90 G three grinding methods + hobbing combined in one machine. The P 90 G is a new development based

More information

New. Products2013.

New. Products2013. T u n g a l o y www.tungaloy.com Company Overview Providing Complete Tooling Solutions for the Metal Removal and Industrial Product Sectors TUNGALOY is one of the world s leading manufacturers of carbide

More information

INTRODUCTION TO GRINDING PROCESS

INTRODUCTION TO GRINDING PROCESS GRINDING PART 2 Grinding Grinding is a material removal process accomplished by abrasive particles that are contained in a bonded grinding wheel rotating at very high surface speeds. The rotating grinding

More information

New type of broaching system

New type of broaching system New type of broaching system The construction of mechanical parts, even simple ones, sometimes involves difficult problems that require, for their resolution, lengthy times or the use of special machines.

More information

Other Machining Operations

Other Machining Operations Other Machining Operations Chapter 25 25.1 Introduction This chapter covers: Shaping Planing Broaching Sawing Filing 25.2 Introduction to Shaping and Planing Shaping and Planing among the oldest techniques

More information

LEADING SOLUTIONS IN THREAD MILLING TECHNOLOGY

LEADING SOLUTIONS IN THREAD MILLING TECHNOLOGY LEADING SOLUTIONS IN THREAD MILLING TECHNOLOGY Thread with Maximum Confidence, Depth, Versatility and Economy. Emuge Shur-Thread TM, Threads-All TM, Vario-Z and NPT Solid Carbide Thread Mills; and Gigant-ic

More information

UNIT 4: (iii) Illustrate the general kinematic system of drilling machine and explain its working principle

UNIT 4: (iii) Illustrate the general kinematic system of drilling machine and explain its working principle UNIT 4: Drilling machines: Classification, constructional features, drilling & related operations, types of drill & drill bit nomenclature, drill materials. Instructional Objectives At the end of this

More information

Fig. N 1 The indexing error between two consecutive flutes: (this must be measured half way up the tooth) as indicated in figure N 2.

Fig. N 1 The indexing error between two consecutive flutes: (this must be measured half way up the tooth) as indicated in figure N 2. Hob resharpening The accuracy of the hobbing process to a large extent on good hob resharpening and the performance of hob is very much affected by the type of resharpening carried out. If a hob is resharpened

More information

Reamer Basics. Fixed Reamers The reamer size is fixed and any size reduction due to wear or sharpening cannot be reclaimed

Reamer Basics. Fixed Reamers The reamer size is fixed and any size reduction due to wear or sharpening cannot be reclaimed 1 Reamer Basics Reamers are available in a variety of types, materials, flute styles and sizes The typical reamer is a rotary cutting tools designed to machine a previously formed hole to an exact diameter

More information

Manufacturing Processes (continued)

Manufacturing Processes (continued) Manufacturing (continued) Machining Some other processes Material compatibilities Process (shape) capabilities Manufacturing costs Correct pg 142, question 34i should read Fig 6.18 question 34j should

More information

New Leader of Carbide & Diamond Tools

New Leader of Carbide & Diamond Tools New Leader of Carbide & Diamond Tools www.jdtools.co.kr Special tools are strength! Dear Customers, We have been very much grateful of our all customers who love JD TOOLS. We, JD TOOLS is the leading supplier

More information

Kennametal Twist Drills KHSS Drill Dictionary

Kennametal Twist Drills KHSS Drill Dictionary Kennametal Twist KHSS Drill Dictionary shank diameter tang tang drive axis taper shank shank length neck straight shank point angle helix angle flutes flute length body overall length drill diameter lip

More information

March weeks. surcharge for

March weeks. surcharge for March weeks valid until 31.03.2012 all quoted prices are incl. 19% VAT for deliveries in the EU countries to customers with a valid VAT-no. and for deliveries in not EU member countries the VAT is not

More information

Turning. MECH Dr Ghassan Al-Kindi - Lecture 10 1

Turning. MECH Dr Ghassan Al-Kindi - Lecture 10 1 Turning Single point cutting tool removes material from a rotating workpiece to generate a cylinder Performed on a machine tool called a lathe Variations of turning performed on a lathe: Facing Contour

More information

grinding technologies

grinding technologies grinding technologies SPECIAL OFFERS February 2013 MX150 1500 KNIFE GRINDER MX150 1500 Knife grinder Magnetic chuck 1500*120mm; PLC controlling automatic down-feed, automatic working cycle, spark-out and

More information

PRODUCT INFORMATION CBN-SXR CBN-LN-SXR CBN-SXB CBN-LN-SXB. CBN End Mill Series

PRODUCT INFORMATION CBN-SXR CBN-LN-SXR CBN-SXB CBN-LN-SXB. CBN End Mill Series PRODUCT INFORMATION CBN-LN-SXR CBN-LN-SXB CBN End Mill Series The helical flutes are changing the CBN end mills! Highly Appealing OSG CBN End Mill Series Are you bothered by these issues? The work material

More information

COLLEGE OF ENGINEERING MACHINE SHOP FACILITIES AND PRACTICES Prepared by Mike Allen July 31, 2003 Edited by Scott Morton February 18, 2004

COLLEGE OF ENGINEERING MACHINE SHOP FACILITIES AND PRACTICES Prepared by Mike Allen July 31, 2003 Edited by Scott Morton February 18, 2004 1 COLLEGE OF ENGINEERING MACHINE SHOP FACILITIES AND PRACTICES Prepared by Mike Allen July 31, 2003 Edited by Scott Morton February 18, 2004 I. OBJECTIVE To provide an overview and basic knowledge of the

More information

HM-50 - Turret Milling Machine (X) 600mm (Y) 200mm (Z) 340mm Includes Digital Readout, Vice & Collet Chuck System

HM-50 - Turret Milling Machine (X) 600mm (Y) 200mm (Z) 340mm Includes Digital Readout, Vice & Collet Chuck System HM-50 - Turret Milling Machine (X) 600mm (Y) 200mm (Z) 340mm Includes Digital Readout, Vice & Collet Chuck System Ex GST Inc GST $5,500.00 $6,325.00 ORDER CODE: MODEL: Digital Readout: Type: Table Size

More information

STUB ACME - INTERNAL AND EXTERNAL

STUB ACME - INTERNAL AND EXTERNAL STUB ACME - INTERNAL AND EXTERNAL SOLID CARBIDE SINGLE PROFILE ACME Q A 29º B C S Solid carbide for maximum tool rigidity coating for increased performance Single start threads only SPECIALTY PORT - CAVITY

More information

Tool and Die Maker Level 2

Tool and Die Maker Level 2 Level 2 B2 Read and Interpret Drawings II Duration: 32 hours 32 hours 0 hours This unit of instruction introduces the Tool and Die Maker Apprentice with the knowledge and skills necessary to read and interpret

More information

PCD Cartridge Style Face Mill and End Mill Program

PCD Cartridge Style Face Mill and End Mill Program PC Cartridge Style Face Mill and End Mill Program soft, free- non-ferrous metals (eg: 6061 aluminum, brass, and copper) graphite, carbon, green ceramics, fiber-reinforced plastics, and fiberboard low-silicon

More information

Machining. Drilling Countersinking Tapping Turning Milling

Machining. Drilling Countersinking Tapping Turning Milling Machining Drilling Countersinking Tapping Turning Milling hardox and weldox are registered trademarks.these steel grades are manufactured only by SSAB Oxelösund AB. hardox wear plate and weldox extra-high

More information

MLR Institute of Technology

MLR Institute of Technology MLR Institute of Technology Dundigal, Quthbullapur (M), Hyderabad 500 043 MECHANICAL ENGINEERING MACHINE TOOLS OBJECTIVE QUESTIONS UNIT - I 1. A built up-edge is formed while machining [ B ] (Sep-2011,

More information

8029 S 200th St. Kent, WA USA Ph: Fax:

8029 S 200th St. Kent, WA USA   Ph: Fax: 8029 S 200th St. Kent, WA 98032 USA Ph: 253-872-7050 Fax: 253-395-0230 1 GENERAL INFORMATION Rottler CBN and PCD Inserts are laser marked with our part number on one side. On single sided inserts, the

More information

MILLING and GRINDING MACHINES Machine Tools

MILLING and GRINDING MACHINES Machine Tools ELEMENTS OF MECHANICAL ENGINEERING PART B UNIT VI MILLING and GRINDING MACHINES Machine Tools 1 Objectives: 1.1 To understand the Principle of working of Milling, Horizontal & Vertical Milling. 1.2 Classification/Types

More information

2. Special tools. swiss made

2. Special tools. swiss made 2. Special tools 13 14 2. Special tools SPECIAL 701S tools page 17 Turning tool with profiled insert page 30 Special T-slot cutters and end mills page 25 Offset whirl thread cutters page 31 Step drills

More information

Module 1. Classification of Metal Removal Processes and Machine tools. Version 2 ME IIT, Kharagpur

Module 1. Classification of Metal Removal Processes and Machine tools. Version 2 ME IIT, Kharagpur Module 1 Classification of Metal Removal Processes and Machine tools Lesson 2 Basic working principle, configuration, specification and classification of machine tools Instructional Objectives At the end

More information

Copy Milling Program Tools

Copy Milling Program Tools Millstar face mills are equally useful on newer high velocity machines and older slower equipment and will optimize milling performance of all your machine tools. The hardened tool bodies can be run at

More information

Cross Peen Hammer. Introduction. Lesson Objectives. Assumptions

Cross Peen Hammer. Introduction. Lesson Objectives. Assumptions Introduction In this activity plan students will develop various machining and metalworking skills by building a two-piece steel hammer. This project will introduce basic operations for initial familiarization

More information

METRIC THREAD MILLS SINGLE PROFILE (SPTM) - SOLID CARBIDE. Scientific Cutting Tools, Inc. Q A C OAL 60º THREAD MILLS METRIC

METRIC THREAD MILLS SINGLE PROFILE (SPTM) - SOLID CARBIDE. Scientific Cutting Tools, Inc. Q A C OAL 60º THREAD MILLS METRIC METRIC SINGLE PROFILE (SPTM) - SOLID CARBIDE METRIC Q A B 60º C S With just 19 varieties of Thread Mills, fine and coarse threads ranging from M1.2 to M30+ can be milled SPECIALTY PORT - CAVITY INDEXABLE

More information

Ahsanullah University of Science and Technology (AUST) Department of Mechanical and Production Engineering

Ahsanullah University of Science and Technology (AUST) Department of Mechanical and Production Engineering Ahsanullah University of Science and Technology (AUST) Department of Mechanical and Production Engineering LABORATORY MANUAL For the students of Department of Mechanical and Production Engineering 1 st

More information

Lathe is a machine, which removes the metal from a piece of work to the required shape & size HENRY MAUDSLAY

Lathe is a machine, which removes the metal from a piece of work to the required shape & size HENRY MAUDSLAY TURNING MACHINES LATHE Introduction Lathe is a machine, which removes the metal from a piece of work to the required shape & size HENRY MAUDSLAY - 1797 Types of Lathe Engine Lathe The most common form

More information

Broaching, External External Broach Tool Holders...18 Driven Broach Tool Holder for Multi's External Broaches...19

Broaching, External External Broach Tool Holders...18 Driven Broach Tool Holder for Multi's External Broaches...19 TABLE OF CONTENTS CATALOG 2017 TITLE PAGE Broaching, Internal Swiss Adjustment Free Broach Tool Holders...8 Swiss Broaching Heads for ER Collet Chucks...7 Adjustable Broach Tool Holders...10 CNC Adj. Free

More information

ROOP LAL Unit-6 Lathe (Turning) Mechanical Engineering Department

ROOP LAL Unit-6 Lathe (Turning) Mechanical Engineering Department Notes: Lathe (Turning) Basic Mechanical Engineering (Part B) 1 Introduction: In previous Lecture 2, we have seen that with the help of forging and casting processes, we can manufacture machine parts of

More information