10. The input voltage of the potentiometer shown in Fig. 2 is 200 V. To what % should the wiper be adjusted so that the output voltage becomes

Size: px
Start display at page:

Download "10. The input voltage of the potentiometer shown in Fig. 2 is 200 V. To what % should the wiper be adjusted so that the output voltage becomes"

Transcription

1 mplifier. voltage divider consists of the resistors R kω and R 0 kω. a) What is the put voltage taken away from the R resistor if the put voltage is 30 V? b) What is the voltage ga? c) What is the power ga? (Neglect the difference between R and R.) d) What is the power ga level decibel units?. How many kiloohms should be the R resistor of the voltage divider, if we want to take away 5% of the put voltage from the R 00 Ω resistor? 3. The power ga level of a voltage divider is - 3. (Neglect the difference between R and R.) a) What is the power ga? b) What is the voltage ga? c) How many ohms should be the R resistor if the put voltage is taken away from R kω? 4. For the voltage divider shown Fig. 00 V, R 700 Ω, R 300 Ω. Fd and. 5. For the voltage divider shown Fig. 00 V, R 700 Ω, R 300 Ω. Fd and. 6. For the voltage divider shown Fig. 50 V, R 800 Ω, 75 V. Fd R. Fig. 7. For the voltage divider shown Fig. 50 V, R 800 Ω, 75 V. Fd R. 8. For the voltage divider shown Fig and R kω. Fd R. 9. For the voltage divider shown Fig and R 4 kω. Fd R. 0. The put voltage of the potentiometer shown Fig. is 00 V. To what % should the wiper be adjusted so that the put voltage becomes a) 40 V b) 00 V c) 0 V d) 00 V?. The put voltage of the potentiometer shown Fig. is 0 V. What is the put voltage if the wiper stands at 0%? Fig.

2 . n amplifier amplifies the amplitude of the put signal voltage by one thousand fold. Fd the power ga level. (Suppose R R.) 3. n amplifier amplifies the signal power by a factor of one thousand. Fd a) the voltage ga (suppose R R) and b) the power ga level. 4. By how many times does an amplifier of 43 amplify the signal power? (R R) 5. How many change does the halvg of the signal voltage correspond to? (R R) 6. We double the voltage of a signal with an amplifier. What is the change signal power expressed on the decibel scale? (R R) 7. How many decibels is the power ga level if the put power belongg to the W put power is a) 000 W b) 00 W c) 4 W d) W e) W f) 0. W g) 0 W? 8. To what power does an amplifier amplify the 5 W put signal power if the power ga level for this signal is a) 50 b) 3.7 B c) 0 d) e) 0 f) - g) -? 9. Two harmonic (i.e. susoidal) signals of equal power but different frequencies (f and f) are amplified with an amplifier the power ga level of which is 30 at the f and 7 at the f frequency. What is the power ratio of the amplified signals? 0. Two harmonic signals of equal power but different frequencies (f and f) are amplified with an amplifier the power ga level of which is 50 at the f and 33 at the f frequency. What is the power ratio of the amplified signals?. The power ga level of an amplifier with feedback is 50. What will be the power ga level if % of the put signal voltage is fed back opposite phase? The difference between R and R can be neglected.. The power ga level of an amplifier is 3. It decreases to 0 as a result of negative feedback. What part of the put voltage is fed back? The difference between R and R is to be neglected. 3. The power ga level of an amplifier is 6. It decreases to 0 as a result of negative feedback. What percentage of the put voltage is fed back? The difference between R and R is negligible.

3 4. The voltage ga of an amplifier is 00. 3% of the put voltage is fed back opposite phase with a feedback loop. R and R can be considered equal. a) What is the power ga level with feedback? b) To what value does the voltage ga change as a result of the feedback? c) What will be the power ga level as a result of the negative feedback?

4 Formulæ R I (Ohm's law) I R I R (electric power) R (voltage divider) R R + (defition of voltage ga)! # "! # " $ & % $ & % R R R R R! $ # & R R R " % R R!## " ## $ R R (defition of power ga) n 0nB 0 log 0 log $!!!#!!!" R R (defition of power ga level), NFB + β (voltage ga of amplifier with negative feedback)

5 Solutions R kω. a) 30V 0. 9V R + R kω + 0kΩ 0.9V b) % 30V c) % d) n 0 log 0 log B. R R 00Ω 00Ω Ω R R R R 3. a) 0 n 0 log % 3 b) % R R kω c) R R kω 3.4kΩ 34Ω R + R V; V; R 867 Ω 7. R 343 Ω 8. R 05.3 Ω 9. R 46 kω 0. a) 0% b) 50% c) 0% d) 00%. V. n 0 log 0 log 0 log a) b) n 0 log 0 log log log 0 log log 0log 6.0

6 7. 0 log 0log a) 30 b) 7 c) 3 d) 0 e) - 3 f) - 0 g) log 0log a) 500 kw b) 5 kw c) 50 W d) 6.3 W e) 5 W f) 3.97 W g) 0 W n 0 log 0 log 0 30, 0 0 7, 0 0,, , , n 0 log , + β NFB n 0 log 0 log n 0 log , NFB , NFB β + β, NVCS 0.094

7 3., NFB β β, NVCS a) 0log 0log b) 5, + β NFB c) n 0 log 0 log 5 8

PHYSICS 330 LAB Operational Amplifier Frequency Response

PHYSICS 330 LAB Operational Amplifier Frequency Response PHYSICS 330 LAB Operational Amplifier Frequency Response Objectives: To measure and plot the frequency response of an operational amplifier circuit. History: Operational amplifiers are among the most widely

More information

Module 4 Unit 4 Feedback in Amplifiers

Module 4 Unit 4 Feedback in Amplifiers Module 4 Unit 4 Feedback in mplifiers eview Questions:. What are the drawbacks in a electronic circuit not using proper feedback? 2. What is positive feedback? Positive feedback is avoided in amplifier

More information

HOME ASSIGNMENT. Figure.Q3

HOME ASSIGNMENT. Figure.Q3 HOME ASSIGNMENT 1. For the differential amplifier circuit shown below in figure.q1, let I=1 ma, V CC =5V, v CM = -2V, R C =3kΩ and β=100. Assume that the BJTs have v BE =0.7 V at i C =1 ma. Find the voltage

More information

FEEDBACK AMPLIFIER. Learning Objectives. A feedback amplifier is one in which a fraction of the amplifier output is fed back to the input circuit

FEEDBACK AMPLIFIER. Learning Objectives. A feedback amplifier is one in which a fraction of the amplifier output is fed back to the input circuit C H P T E R6 Learning Objectives es Feedback mplifiers Principle of Feedback mplifiers dvantages of Negative Feedback Gain Stability Decreased Distortion Feedback Over Several Stages Increased Bandwidth

More information

Example #6 1. An amplifier with a nominal gain

Example #6 1. An amplifier with a nominal gain 1. An amplifier with a nominal gain A=1000 V/V exhibits a gain change of 10% as the operating temperature changes from 25 o C to 75 o C. If it is required to constrain the change to 0.1% by applying negative

More information

+ power. V out. - power +12 V -12 V +12 V -12 V

+ power. V out. - power +12 V -12 V +12 V -12 V Question 1 Questions An operational amplifier is a particular type of differential amplifier. Most op-amps receive two input voltage signals and output one voltage signal: power 1 2 - power Here is a single

More information

Section3 Chapter 2: Operational Amplifiers

Section3 Chapter 2: Operational Amplifiers 2012 Section3 Chapter 2: Operational Amplifiers Reference : Microelectronic circuits Sedra six edition 1/10/2012 Contents: 1- THE Ideal operational amplifier 2- Inverting configuration a. Closed loop gain

More information

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror.

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. Current Mirrors Basic BJT Current Mirror Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror. For its analysis, we assume identical transistors and neglect

More information

Lecture (06) BJT Amplifiers 3

Lecture (06) BJT Amplifiers 3 Lecture (06) BJT Amplifiers 3 By: Dr. Ahmed ElShafee 1 Current Gain 2 Power Gain The overall power gain is the product of the overall voltage gain (Av ) and the overall current gain (Ai). 3 THE COMMON

More information

An electronic unit that behaves like a voltagecontrolled

An electronic unit that behaves like a voltagecontrolled 1 An electronic unit that behaves like a voltagecontrolled voltage source. An active circuit element that amplifies, sums, subtracts, multiply, divide, differentiate or integrates a signal 2 A typical

More information

Experiment 6: Biasing Circuitry

Experiment 6: Biasing Circuitry 1 Objective UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE105 Lab Experiments Experiment 6: Biasing Circuitry Setting up a biasing

More information

ELEC207 LINEAR INTEGRATED CIRCUITS

ELEC207 LINEAR INTEGRATED CIRCUITS Concept of VIRTUAL SHORT For feedback amplifiers constructed with op-amps, the two op-amp terminals will always be approximately equal (V + = V - ) This condition in op-amp feedback amplifiers is known

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Outline 28.1 Electromotive Force 28.2 Resistors in Series and Parallel 28.3 Kirchhoff s Rules 28.1 Electromotive Force (emf) Because the potential difference at the battery

More information

Lesson number one. Operational Amplifier Basics

Lesson number one. Operational Amplifier Basics What About Lesson number one Operational Amplifier Basics As well as resistors and capacitors, Operational Amplifiers, or Op-amps as they are more commonly called, are one of the basic building blocks

More information

Experiment 6: Biasing Circuitry

Experiment 6: Biasing Circuitry 1 Objective UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE105 Lab Experiments Experiment 6: Biasing Circuitry Setting up a biasing

More information

Amplifier Performance Report

Amplifier Performance Report Amplifier Performance Report Report Date: February 3, 2015 Customer Name: SAMPLE Manufacturer: Dynaco Model: SCA-35 Special Notes: Amplifier appears unmodified and %100 original. It is in good overall

More information

Lecture (06) BJT Amplifiers 3

Lecture (06) BJT Amplifiers 3 Lecture (06) BJT Amplifiers 3 By: Dr. Ahmed ElShafee ١ THE COMMON COLLECTOR AMPLIFIER An emitter follower circuit with voltage divider bias is shown in Figure, the input signal is capacitively coupled

More information

OCR Electronics for A2 MOSFETs Variable resistors

OCR Electronics for A2 MOSFETs Variable resistors Resistance characteristic You are going to find out how the drain-source resistance R d of a MOSFET depends on its gate-source voltage V gs when the drain-source voltage V ds is very small. 1 Assemble

More information

Keywords: volume control, digital potentiometer, docking station, mute, stereo separation, MAX5486

Keywords: volume control, digital potentiometer, docking station, mute, stereo separation, MAX5486 Maxim > Design Support > Technical Documents > Tutorials > Audio Circuits > APP 4262 Keywords: volume control, digital potentiometer, docking station, mute, stereo separation, MAX5486 TUTORIAL 4262 Improve

More information

Kirchoff s Current Law

Kirchoff s Current Law Kirchoff s Current Law If you have water flowing into and out of a junction of several pipes, water flowing into the junction must equal water flowing out. The same applies to electric currents. I I 3.

More information

11. Chapter: Amplitude stabilization of the harmonic oscillator

11. Chapter: Amplitude stabilization of the harmonic oscillator Punčochář, Mohylová: TELO, Chapter 10 1 11. Chapter: Amplitude stabilization of the harmonic oscillator Time of study: 3 hours Goals: the student should be able to define basic principles of oscillator

More information

STATION NUMBER: LAB SECTION: RC Oscillators. LAB 5: RC Oscillators ELECTRICAL ENGINEERING 43/100. University Of California, Berkeley

STATION NUMBER: LAB SECTION: RC Oscillators. LAB 5: RC Oscillators ELECTRICAL ENGINEERING 43/100. University Of California, Berkeley YOUR NAME: YOUR SID: Lab 5: RC Oscillators EE43/100 Spring 2013 Kris Pister YOUR PARTNER S NAME: YOUR PARTNER S SID: STATION NUMBER: LAB SECTION: Pre- Lab GSI Sign- Off: Pre- Lab Score: /40 In- Lab Score:

More information

UNIVERSITI MALAYSIA PERLIS

UNIVERSITI MALAYSIA PERLIS UNIVERSITI MALAYSIA PERLIS ANALOG ELECTRONICS II EMT 212 2009/2010 EXPERIMENT # 3 OP-AMP (OSCILLATORS) 1 1. OBJECTIVE: 1.1 To demonstrate the Wien bridge oscillator 1.2 To demonstrate the RC phase-shift

More information

Transistor Biasing Nafees Ahamad

Transistor Biasing Nafees Ahamad Transistor Biasing Nafees Ahamad Asstt. Prof., EECE Deptt, DIT University, Dehradun Website: www.eedofdit.weebly.com Introduction The basic function of transistor is to do amplification. (CE connection)

More information

Lecture 6: Transistors Amplifiers. K.K. Gan Lecture 6: Transistors Amplifiers

Lecture 6: Transistors Amplifiers. K.K. Gan Lecture 6: Transistors Amplifiers Lecture 6: Transistors Amplifiers ommon mitter Amplifier ( Simplified ): What's common (ground) a common emitter amp? The emitter! The emitter is connected (tied) to ground usually by a capacitor To an

More information

658 Current to Position Converters

658 Current to Position Converters 658 Current to Position Converters Current to Position Converters for Solid State Switching Output Adjustable Zero, Span and Deadband Two Wire Input from Controller Operates with 90 to 1000 Ω Feedback

More information

Physical Limitations of Op Amps

Physical Limitations of Op Amps Physical Limitations of Op Amps The IC Op-Amp comes so close to ideal performance that it is useful to state the characteristics of an ideal amplifier without regard to what is inside the package. Infinite

More information

Amplifiers with Negative Feedback

Amplifiers with Negative Feedback 13 Amplifiers with Negatie Feedback 335 Amplifiers with Negatie Feedback 13.1 Feedback 13.2 Principles of Negatie Voltage Feedback In Amplifiers 13.3 Gain of Negatie Voltage Feedback Amplifier 13.4 Adantages

More information

INDIANA UNIVERSITY, DEPT. OF PHYSICS, P400/540 LABORATORY FALL Laboratory #6: Operational Amplifiers

INDIANA UNIVERSITY, DEPT. OF PHYSICS, P400/540 LABORATORY FALL Laboratory #6: Operational Amplifiers INDIANA UNIVERSITY, DEPT. OF PHYSICS, P400/540 LABORATORY FALL 008 Laboratory #: Operational Amplifiers Goal: Study the use of the operational amplifier in a number of different configurations: inverting

More information

UNIVERSITY OF PENNSYLVANIA EE 206

UNIVERSITY OF PENNSYLVANIA EE 206 UNIVERSITY OF PENNSYLVANIA EE 206 TRANSISTOR BIASING CIRCUITS Introduction: One of the most critical considerations in the design of transistor amplifier stages is the ability of the circuit to maintain

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road QUESTION BANK

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road QUESTION BANK SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK Subject with Code : Electronic Circuit Analysis (16EC407) Year & Sem: II-B.Tech & II-Sem

More information

EEE118: Electronic Devices and Circuits

EEE118: Electronic Devices and Circuits EEE118: Electronic Devices and Circuits Lecture XIV James E Green Department of Electronic Engineering University of Sheffield j.e.green@sheffield.ac.uk Review Review Considered several transistor switching

More information

Chapter 26: Direct current circuit

Chapter 26: Direct current circuit Chapter 26: Direct current circuit Resistors in circuits Equivalent resistance The nature of the electric potential and current in circuit Kirchhoff s rules (for complicated circuit analysis) Resistors

More information

Transformer circuit calculations

Transformer circuit calculations Transformer circuit calculations This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Inverting input R 2. R 1 Output

Inverting input R 2. R 1 Output nalogue Electronics 8: Feedback and Op mps Last lecture we introduced diodes and transistors and an outline of the semiconductor physics was given to understand them on a fundamental level. We use transistors

More information

Fig [5]

Fig [5] 1 (a) Fig. 4.1 shows the I-V characteristic of a light-emitting diode (LED). 40 I / 10 3 A 30 20 10 0 1.0 1.5 2.0 V / V Fig. 4.1 (i) In Describe the significant features of the graph in terms of current,

More information

Basic Compressor/Limiter Design with the THAT4305

Basic Compressor/Limiter Design with the THAT4305 THAT Corporation Design Brief 203 Abstract Basic Compressor/Limiter Design THAT Corporation s Analog Engines are ideal basic building blocks for compressor/limiter designs. This design brief describes

More information

Rowan University Freshman Clinic I Lab Project 2 The Operational Amplifier (Op Amp)

Rowan University Freshman Clinic I Lab Project 2 The Operational Amplifier (Op Amp) Rowan University Freshman Clinic I Lab Project 2 The Operational Amplifier (Op Amp) Objectives Become familiar with an Operational Amplifier (Op Amp) electronic device and it operation Learn several basic

More information

Assist Lecturer: Marwa Maki. Active Filters

Assist Lecturer: Marwa Maki. Active Filters Active Filters In past lecture we noticed that the main disadvantage of Passive Filters is that the amplitude of the output signals is less than that of the input signals, i.e., the gain is never greater

More information

Homework Assignment 10

Homework Assignment 10 Homework Assignment 10 Question The amplifier below has infinite input resistance, zero output resistance and an openloop gain. If, find the value of the feedback factor as well as so that the closed-loop

More information

Data Conversion and Lab Lab 1 Fall Operational Amplifiers

Data Conversion and Lab Lab 1 Fall Operational Amplifiers Operational Amplifiers Lab Report Objectives Materials See separate report form located on the course webpage. This form should be completed during the performance of this lab. 1) To construct and operate

More information

Lecture (05) BJT Amplifiers 2

Lecture (05) BJT Amplifiers 2 Lecture (05) BJT Amplifiers 2 By: Dr. Ahmed ElShafee 1 Effect of the Emitter Bypass Capacitor on Voltage Gain The emitter bypass capacitor, provides an effective short to the ac signal around the emitter

More information

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier.

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier. Oscillators An oscillator may be described as a source of alternating voltage. It is different than amplifier. An amplifier delivers an output signal whose waveform corresponds to the input signal but

More information

Lecture 8: More on Operational Amplifiers (Op Amps)

Lecture 8: More on Operational Amplifiers (Op Amps) Lecture 8: More on Operational mplifiers (Op mps) Input Impedance of Op mps and Op mps Using Negative Feedback: Consider a general feedback circuit as shown. ssume that the amplifier has input impedance

More information

Unit 8 Combination Circuits

Unit 8 Combination Circuits Unit 8 Combination Circuits Objectives: Define a combination circuit. List the rules for parallel circuits. List the rules for series circuits. Solve for combination circuit values. Characteristics There

More information

Discrete Op-Amp Kit MitchElectronics 2019

Discrete Op-Amp Kit MitchElectronics 2019 Discrete Op-Amp Kit MitchElectronics 2019 www.mitchelectronics.co.uk CONTENTS Introduction 3 Schematic 4 How It Works 5 Materials 9 Construction 10 Important Information 11 Page 2 INTRODUCTION Even if

More information

Homework Assignment 13

Homework Assignment 13 Question 1 Short Takes 2 points each. Homework Assignment 13 1. Classify the type of feedback uses in the circuit below (i.e., shunt-shunt, series-shunt, ) 2. True or false: an engineer uses series-shunt

More information

Figure 1: Closed Loop System

Figure 1: Closed Loop System SIGNAL GENERATORS 3. Introduction Signal sources have a variety of applications including checking stage gain, frequency response, and alignment in receivers and in a wide range of other electronics equipment.

More information

By: Dr. Ahmed ElShafee

By: Dr. Ahmed ElShafee Lecture (04) Transistor Bias Circuit 3 BJT Amplifiers 1 By: Dr. Ahmed ElShafee ١ Emitter Feedback Bias If an emitter resistor is added to the base bias circuit in Figure, the result is emitter feedback

More information

THE UNIVERSITY OF HONG KONG. Department of Electrical and Electrical Engineering

THE UNIVERSITY OF HONG KONG. Department of Electrical and Electrical Engineering THE UNIVERSITY OF HONG KONG Department of Electrical and Electrical Engineering Experiment EC1 The Common-Emitter Amplifier Location: Part I Laboratory CYC 102 Objective: To study the basic operation and

More information

Precision Rectifier Circuits

Precision Rectifier Circuits Precision Rectifier Circuits Rectifier circuits are used in the design of power supply circuits. In such applications, the voltage being rectified are usually much greater than the diode voltage drop,

More information

An amplifier increases the power (amplitude) of an

An amplifier increases the power (amplitude) of an Amplifiers Signal In Amplifier Signal Out An amplifier increases the power (amplitude) of an electronic signal, as shown in the figure above. Amplifiers are found everywhere in TV s, radios. MP3 players,

More information

University of Michigan EECS 311: Electronic Circuits Fall 2009 LAB 2 NON IDEAL OPAMPS

University of Michigan EECS 311: Electronic Circuits Fall 2009 LAB 2 NON IDEAL OPAMPS University of Michigan EECS 311: Electronic Circuits Fall 2009 LAB 2 NON IDEAL OPAMPS Issued 10/5/2008 Pre Lab Completed 10/12/2008 Lab Due in Lecture 10/21/2008 Introduction In this lab you will characterize

More information

School of Sciences. ELECTRONICS II ECE212A 2 nd Assignment

School of Sciences. ELECTRONICS II ECE212A 2 nd Assignment School of Sciences SPRING SEMESTER 2010 INSTRUCTOR: Dr Konstantinos Katzis COURSE / SECTION: ECE212N COURSE TITLE: Electronics II OFFICE RM#: 124 (1 st floor) OFFICE TEL#: 22713296 OFFICE HOURS: Monday

More information

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance v 2 v 1 ir 1 ir 1 2iR 1 R in v 2 i v 1 2R 1 Differential

More information

Model 176 and 178 DC Amplifiers

Model 176 and 178 DC Amplifiers Model 176 and 178 DC mplifiers Features*! Drifts to 100 MΩ! CMR: 120 db @! Gain Linearity of ±.005% *The key features of this amplifier series, listed above, do not necessarily apply

More information

PHASE CUT SIGNAL DRIVERS

PHASE CUT SIGNAL DRIVERS FEATURES Input to output isolation 27, 40 or 80 watts output power Fused 24VAC power supply Input and power LED indication DESCRIPTION & OPERATION The Digital Controller Interface Module Phase Cut Driver

More information

THE HONG KONG POLYTECHNIC UNIVERSITY EN107/1 Department of Electronic and Information Engineering. EN107: OCL Class AB Power Amplifier Objective

THE HONG KONG POLYTECHNIC UNIVERSITY EN107/1 Department of Electronic and Information Engineering. EN107: OCL Class AB Power Amplifier Objective THE HONG KONG POLYTECHNIC UNIVERSITY EN107/1 EN107: OCL Class AB Power Amplifier Objective 1. To study the circuit performance of an OCL amplifier. 2. To study the effects of biasing on cross-over distortion

More information

4.7 k V C 10 V I B. (b) V ma V. 3.3 k ma. (c)

4.7 k V C 10 V I B. (b) V ma V. 3.3 k ma. (c) 380 Chapter 6 Bipolar Junction Transistors (BJTs) Example 6.4 Consider the circuit shown in Fig. 6., which is redrawn in Fig. 6. to remind the reader of the convention employed throughout this book for

More information

Experiment #3 Kirchhoff's Laws

Experiment #3 Kirchhoff's Laws SAN FRANCSC STATE UNVERSTY ELECTRCAL ENGNEERNG Kirchhoff's Laws bjective To verify experimentally Kirchhoff's voltage and current laws as well as the principles of voltage and current division. ntroduction

More information

High voltage amplifiers and the ubiquitous 50 Ohm: Caveats and benefits. Falco Systems application note, version 1.0,

High voltage amplifiers and the ubiquitous 50 Ohm: Caveats and benefits. Falco Systems application note, version 1.0, Application note High voltage amplifiers and the ubiquitous Ohm: Caveats and benefits Falco Systems application note, version 1., www.falco-systems.com W. Merlijn van Spengen, PhD September 217 Wait, my

More information

CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN

CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN Hanoi, 9/24/2012 Contents 2 Structure and operation of BJT Different configurations of BJT Characteristic curves DC biasing method and analysis

More information

Source Transformations

Source Transformations Source Transformations Introduction The circuits in this set of problems consist of independent sources, resistors and a meter. In particular, these circuits do not contain dependent sources. Each of these

More information

Transistor fundamentals Nafees Ahamad

Transistor fundamentals Nafees Ahamad Transistor fundamentals Nafees Ahamad Asstt. Prof., EECE Deptt, DIT University, Dehradun Website: www.eedofdit.weebly.com Transistor A transistor consists of two PN junctions formed by sandwiching either

More information

ECE 3410 Homework 4 (C) (B) (A) (F) (E) (D) (H) (I) Solution. Utah State University 1 D1 D2. D1 v OUT. v IN D1 D2 D1 (G)

ECE 3410 Homework 4 (C) (B) (A) (F) (E) (D) (H) (I) Solution. Utah State University 1 D1 D2. D1 v OUT. v IN D1 D2 D1 (G) ECE 341 Homework 4 Problem 1. In each of the ideal-diode circuits shown below, is a 1 khz sinusoid with zero-to-peak amplitude 1 V. For each circuit, sketch the output waveform and state the values of

More information

Lab Experiment #2 Differential Amplifiers. Group Members

Lab Experiment #2 Differential Amplifiers. Group Members Lab Experiment #2 Differential Amplifiers Group Members Student 1 Student 2 Student 3 Student Name Surname First Name Student ID # Pre-Lab Mark (out of 30) Lab Demo and performance (out of 70) Total Lab

More information

Amplifier Performance Report

Amplifier Performance Report Amplifier Performance Report Report Date: February 30, 2015 Customer Name: (unsold) Manufacturer: Fisher Model: KX-100 Special Notes: Full Gold Level Restoration service completed. Chassis ultrasonically

More information

Lab #2 Voltage and Current Division

Lab #2 Voltage and Current Division In this experiment, we will be investigating the concepts of voltage and current division. Voltage and current division is an application of Kirchoff s Laws. Kirchoff s Voltage Law Kirchoff s Voltage Law

More information

DCIM SIGNAL CONVERTERS

DCIM SIGNAL CONVERTERS DCIM SIGNAL CONVERTERS FEATURES Optically isolated inputs Fused 24V AC power supply Field adjustable output Input & power LED indication Optional minimum position pot APPLICATIONS Phase cut to ma/v DC

More information

Preliminary Exam, Fall 2013 Department of Electrical and Computer Engineering University of California, Irvine EECS 170B

Preliminary Exam, Fall 2013 Department of Electrical and Computer Engineering University of California, Irvine EECS 170B Preliminary Exam, Fall 2013 Department of Electrical and Computer Engineering University of California, Irvine EECS 170B Problem 1. Consider the following circuit, where a saw-tooth voltage is applied

More information

Chapter 10: The Operational Amplifiers

Chapter 10: The Operational Amplifiers Chapter 10: The Operational Amplifiers Electronic Devices Operational Amplifiers (op-amp) Op-amp is an electronic device that amplify the difference of voltage at its two inputs. It has two input terminals,

More information

Transistor Configuration

Transistor Configuration Transistor Configuration 1 Objectives To review BJT biasing circuit. To study BJT amplifier circuit To understand the BJT configuration. To analyse single-stage BJT amplifier circuits. To study the differential

More information

Basic operational amplifier circuits In this lab exercise, we look at a variety of op-amp circuits. Note that this is a two-period lab.

Basic operational amplifier circuits In this lab exercise, we look at a variety of op-amp circuits. Note that this is a two-period lab. Basic operational amplifier circuits In this lab exercise, we look at a variety of op-amp circuits. Note that this is a two-period lab. Prior to Lab 1. If it has been awhile since you last used the lab

More information

Chapter 14 Operational Amplifiers

Chapter 14 Operational Amplifiers 1. List the characteristics of ideal op amps. 2. Identify negative feedback in op-amp circuits. 3. Analyze ideal op-amp circuits that have negative feedback using the summing-point constraint. ELECTRICAL

More information

(b) 25% (b) increases

(b) 25% (b) increases Homework Assignment 07 Question 1 (2 points each unless noted otherwise) 1. In the circuit 10 V, 10, and 5K. What current flows through? Answer: By op-amp action the voltage across is and the current through

More information

Lecture 9. Bipolar Junction Transistor (BJT) BJT 1-1

Lecture 9. Bipolar Junction Transistor (BJT) BJT 1-1 Lecture 9 ipolar Junction Transistor (JT) JT 1-1 Outline ontinue JT JT iasing D analysis Fixed-bias circuit mitter-stabilized bias circuit oltage divider bias circuit D bias with voltage feedback circuit

More information

Resistors and voltage. CSE1010 Jeffrey A. Meunier

Resistors and voltage. CSE1010 Jeffrey A. Meunier Resistors and voltage CSE1010 Jeffrey A. Meunier Consider this circuit Consider this circuit 5 Volt power supply Consider this circuit A resistive load Consider this circuit A resistive load (the load

More information

JFET Application Current Source

JFET Application Current Source MOSFET Op mps, 5 Imperfections Opamp applications Daylight sags cknowledgements: on oscoe, Neamen, Donald: Microelectronics Circuit nalysis and Design, rd Edition JFET pplication Current Source Household

More information

INDIANA UNIVERSITY, DEPT. OF PHYSICS, P400/540 LABORATORY FALL Laboratory #5: More Transistor Amplifier Circuits

INDIANA UNIVERSITY, DEPT. OF PHYSICS, P400/540 LABORATORY FALL Laboratory #5: More Transistor Amplifier Circuits INDIANA UNIVERSITY, DEPT. OF PHYSICS, P400/540 LABORATORY FALL 2008 Laboratory #5: More Transistor Amplifier Circuits Goal: Use and measure the behavior of transistor circuits used to implement different

More information

EE 233 Circuit Theory Lab 3: First-Order Filters

EE 233 Circuit Theory Lab 3: First-Order Filters EE 233 Circuit Theory Lab 3: First-Order Filters Table of Contents 1 Introduction... 1 2 Precautions... 1 3 Prelab Exercises... 2 3.1 Inverting Amplifier... 3 3.2 Non-Inverting Amplifier... 4 3.3 Integrating

More information

UNIT 1 MULTI STAGE AMPLIFIES

UNIT 1 MULTI STAGE AMPLIFIES UNIT 1 MULTI STAGE AMPLIFIES 1. a) Derive the equation for the overall voltage gain of a multistage amplifier in terms of the individual voltage gains. b) what are the multi-stage amplifiers? 2. Describe

More information

Emitter base bias. Collector base bias Active Forward Reverse Saturation forward Forward Cut off Reverse Reverse Inverse Reverse Forward

Emitter base bias. Collector base bias Active Forward Reverse Saturation forward Forward Cut off Reverse Reverse Inverse Reverse Forward SEMICONDUCTOR PHYSICS-2 [Transistor, constructional characteristics, biasing of transistors, transistor configuration, transistor as an amplifier, transistor as a switch, transistor as an oscillator] Transistor

More information

Small Signal Amplifiers - BJT. Definitions Small Signal Amplifiers Dimensioning of capacitors

Small Signal Amplifiers - BJT. Definitions Small Signal Amplifiers Dimensioning of capacitors Small Signal mplifiers BJT Defitions Small Signal mplifiers Dimensiong of capacitors 1 Defitions (1) Small signal condition When the put signal (v and, i ) is small so that output signal (v out and, i

More information

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps Introduction to Analog Interfacing ECE/CS 5780/6780: Embedded System Design Scott R. Little Lecture 19: Operational Amplifiers Most embedded systems include components that measure and/or control real-world

More information

Tabor Electronics Signal Amplifiers. Quick Start Guide

Tabor Electronics Signal Amplifiers. Quick Start Guide Tabor Electronics Signal Amplifiers Quick Start Guide Tabor Signal Amplifiers- Quick Start Guide - FAQ No. 0309757 Introduction Amplification is an increase in size of a signal by some factor which is

More information

Chapter 11 Operational Amplifiers and Applications

Chapter 11 Operational Amplifiers and Applications Chapter Operational Amplifiers and Applications Chapter Goals Understand the magic of negatie feedback and the characteristics of ideal op amps. Understand the conditions for non-ideal op amp behaior so

More information

CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - II

CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - II CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - II OBJECTIVE The purpose of the experiment is to examine non-ideal characteristics of an operational amplifier. The characteristics that are investigated include

More information

Chapter 3, Sections Electrical Filters

Chapter 3, Sections Electrical Filters Chapter 3, Sections 3.2.4-3.2.5 Electrical Filters Signals DC and AC Components - Many signals can be constructed as sums of AC and DC components: 2.5 2 1.5 2 1.5 1.5 1 2 3 4 1.5 -.5-1 1 2 3 4 = + 2.5

More information

EE12: Laboratory Project (Part-2) AM Transmitter

EE12: Laboratory Project (Part-2) AM Transmitter EE12: Laboratory Project (Part-2) AM Transmitter ECE Department, Tufts University Spring 2008 1 Objective This laboratory exercise is the second part of the EE12 project of building an AM transmitter in

More information

IT 318 SUPPLEMENTARY MATERIAL CHAPTER 2

IT 318 SUPPLEMENTARY MATERIAL CHAPTER 2 IT 318 SUPPLEMENTARY MATERIAL CHAPTER 2 Electronic Measuring Equipment V. 2013 BARRY M. LUNT Brigham Young University Table of Contents Chapter 2: Electronic Measuring Equipment... 2 Preview... 2 2-1 Precision,

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. The figure below shows a circuit containing a battery of e.m.f. 12 V, two resistors, a light-dependent resistor (LDR), an ammeter and a switch S. The battery has negligible

More information

Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers. Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers

Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers. Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers 1. Explain the purpose of a thin, lightly doped base region.

More information

Electronics Switches & Controls

Electronics Switches & Controls lectronics Switches & ontrols onventional controls Potentiometer switches Transistor as switches and controls FT-based JT-based ariable potentiometers -ariable resistance sometime needed (see Labs) - potentiometer

More information

ECE 363 FINAL (F16) 6 problems for 100 pts Problem #1: Fuel Pump Controller (18 pts)

ECE 363 FINAL (F16) 6 problems for 100 pts Problem #1: Fuel Pump Controller (18 pts) ECE 363 FINAL (F16) NAME: 6 problems for 100 pts Problem #1: Fuel Pump Controller (18 pts) You are asked to design a high-side switch for a remotely operated fuel pump. You decide to use the IRF9520 power

More information

UNIVERSITY OF UTAH ELECTRICAL ENGINEERING DEPARTMENT

UNIVERSITY OF UTAH ELECTRICAL ENGINEERING DEPARTMENT UNIVERSITY OF UTAH ELECTRICAL ENGINEERING DEPARTMENT ECE 3110 LAB EXPERIMENT NO. 4 CLASS AB POWER OUTPUT STAGE Objective: In this laboratory exercise you will build and characterize a class AB power output

More information

Laboratory 4 Operational Amplifier Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170

Laboratory 4 Operational Amplifier Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170 Laboratory 4 Operational Amplifier Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170 Megan Ong Diana Wu Wong B01 Tuesday 11am April 28 st, 2015 Abstract: The

More information

With integrated circuit amplifiers, it is possible to come close to ideal characteristics.

With integrated circuit amplifiers, it is possible to come close to ideal characteristics. Feedback With integrated circuit amplifiers, it is possible to come close to ideal characteristics. R i can be very large: 1 MΩ 1 GΩ R o can be quite small: 1 Ω 100 Ω A (gain) can be big Generally, huge

More information

Active Filters - Revisited

Active Filters - Revisited Active Filters - Revisited Sources: Electronic Devices by Thomas L. Floyd. & Electronic Devices and Circuit Theory by Robert L. Boylestad, Louis Nashelsky Ideal and Practical Filters Ideal and Practical

More information

Chapter 5 Transistor Bias Circuits

Chapter 5 Transistor Bias Circuits Chapter 5 Transistor Bias Circuits Objectives Discuss the concept of dc biasing of a transistor for linear operation Analyze voltage-divider bias, base bias, and collector-feedback bias circuits. Basic

More information

Q3.: When switch S is open, the ammeter in the circuit shown in Fig 2 reads 2.0 A. When S is closed, the ammeter reading: (Ans: increases)

Q3.: When switch S is open, the ammeter in the circuit shown in Fig 2 reads 2.0 A. When S is closed, the ammeter reading: (Ans: increases) Old Exams-Chapter 27 T081 Q1. Fig 1 shows two resistors 3.0 Ω and 1.5 Ω connected in parallel and the combination is connected in series to a 4.0 Ω resistor and a 10 V emf device. The potential difference

More information