CLC1200 Instrumentation Amplifier

Size: px
Start display at page:

Download "CLC1200 Instrumentation Amplifier"

Transcription

1 CLC2 Instrumentation Amplifier General Description The CLC2 is a low power, general purpose instrumentation amplifier with a gain range of to,. The CLC2 is offered in 8-lead SOIC or DIP packages and requires only one external gain setting resistor making it smaller and easier to implement than discrete, 3-amp designs. While consuming only 2.2mA of supply current, the CLC2 offers a low 6.6nV/Hz input voltage noise and.2μvpp noise from.hz to Hz. The CLC2 offers a low input offset voltage of ±25μV that only varies.μv/ C over it s operating temperature range of -4 C to 85 C. The CLC2 also features 5ppm maximum nonlinearity. These features make it well suited for use in data acquisition systems. FEATURES ±2.3V to ±8V supply voltage range Gain range of to, Gain set with one external resistor ±25μV maximum input offset voltage.μv/ C input offset drift 7kHz bandwidth at G =.2V/μs slew rate 9dB minimum CMRR at G = 2.2mA maximum supply current 6.6nV/ Hz input voltage noise 7nV/ Hz output voltage noise.2μv pp input noise (.Hz to Hz) DIP-8 or Pb-free SOIC-8 APPLICATIONS Bridge amplifier Weigh scales Thermocouple amplifier ECG and medical instrumentation MRI (Magnetic Resonance Imaging) Patient monitors Transducer interface Data acquisition systems Strain gauge amplifier Industrial process controls Ordering Information - back page Typical Application Competitive Plot 3 Input 2 V S 2 Competitor A 8 3 Input R G 7 CLC Reference V S Load V OUT Normalized Gain (db) G = V S = ±5V V OUT =.2V pp R L = 2kΩ CLC2 To Power Supply Ground Frequency (MHz) Thermocouple Amplifier Exar Corporation / 5 exar.com/clc2

2 CLC2 Absolute Maximum Ratings Stresses beyond the limits listed below may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. Supply Voltage...±8V Input Voltage Range... ±V S V Differential Input Voltage (G = to )... 25V Differential Input Voltage (G > )....5 (R G 8) V Load Resistance (min)... Ω Operating Conditions Supply Voltage Range...±2.3V to ±8V (4.6V to 36V) Gain Range... to, Operating Temperature Range...-4 C to 85 C Junction Temperature...5 C Storage Temperature Range C to 5 C Lead Temperature (Soldering, s)...26 C Package Thermal Resistance θ JA (DIP-8)... C/W θ JA (SOIC-8)...5 C/W Package thermal resistance (θ JA ), JEDEC standard, multi-layer test boards, still air. ESD Protection SOIC-8 (HBM)....5kV ESD Rating for HBM (Human Body Model) Exar Corporation 2 / 5 exar.com/clc2

3 CLC2 Electrical Characteristics T A = 25 C, V S = ±5V, R L = 2kΩ to GND; unless otherwise noted. Gain = (49.4k/R G ); Total RTI Error = V OSI (V OSO /G) Symbol Parameter Conditions Min Typ Max Units Gain Voltage Offset Gain Range, Gain Error () Gain Nonlinearity Gain vs. Temperature G =, V OUT = ±V -.. % G =, V OUT = ±V % G =, V OUT = ±V % G =,, V OUT = ±V % G = -, V OUT = -V to V, R L = kω 5 ppm G = -, V OUT = -V to V, R L = 2kΩ 95 ppm G = < ppm/ C G > < ppm/ C Reference Gain Error () V S = ±6.5V % V OSI Input Offset Voltage V S = ±4.5V to ±6.5V μv Average Temperature Coefficient V S = ±4.5V to ±6.5V. μv/ C V OSO Output Offset Voltage V S = ±4.5V to ±6.5V, G = 2 5 μv PSR Input Current Average Temperature Coefficient V S = ±4.5V to ±6.5V 2.5 μv/ C Offset Referred to the Input vs. Supply G =, V S = ±2.3V to ±8V 8 db G =, V S = ±2.3V to ±8V 95 2 db G =, V S = ±2.3V to ±8V 4 db G =, V S = ±2.3V to ±8V 4 db I B Input Bias Current V S = ±6.5V na Average Temperature Coefficient V S = ±6.5V 3 pa/ C I OS Input Offset Current V S = ±6.5V - na Input Input Impedance Differential, 2 GΩ, pf Common-Mode, 2 GΩ, pf IVR Input Voltage Range (2) V S = ±4.5V, G = -V S.9 V S -.2 V V S = ±6.5V, G = -V S.9 V S -.4 V CMRR Output V OUT Common-Mode Rejection Ratio Output Swing G =, V S = ±6.5V 7 9 db G =, V S = ±6.5V 9 db G =, V S = ±6.5V 8 3 db G =, V S = ±6.5V 8 3 db V S = ±2.3V to ±4.5V -V S. V S -.2 V V S = ±8V, G = -V S.4 V S -.2 V I SC Short Circuit Current ±2 ma Dynamic Performance BW -3dB Small Signal -3dB Bandwidth G = 7 khz G = 4 khz G = khz G = 2 khz SR Slew Rate G =, V S = ±5V.6.2 V/μs t S Settling Time to.% 5V step, G = to 3 μs 5V step, G = μs Exar Corporation 3 / 5 exar.com/clc2

4 CLC2 Electrical Characteristics continued T A = 25 C, V S = ±5V, R L = 2kΩ to GND; unless otherwise noted. Gain = (49.4k/R G ); Total RTI Error = V OSI (V OSO /G) Symbol Parameter Conditions Min Typ Max Units Noise e ni Input Voltage Noise khz, G =, V S = ±5V nv/ Hz e no Output Voltage Noise khz, G =, V S = ±5V 7 nv/ Hz e npp Peak-to-Peak Noise (RTI) G =,.Hz to Hz 5 μv pp G =,.Hz to Hz, V S = ±5V.8 μv pp G =,.Hz to Hz, V S = ±5V.2.4 μv pp i n Current Noise f = khz fa/ Hz i npp Peak-to-Peak Current Noise.Hz to Hz pa pp Reference Input R IN Input Resistance 2 kω I IN Input Current V S = ±6.5V 5 6 μa Voltage Range -V S.6 V S -.6 V Gain to Output ±. Power Supply V S Operating Range ±2.3 ±8 V I S Supply Current V S = ±6.5V ma Notes:. Nominal reference voltage gain is. 2. Input voltage range = CMV (G V DIFF )/ Exar Corporation 4 / 5 exar.com/clc2

5 CLC2 CLC2 Pin Configurations SOIC-8, DIP-8 CLC2 Pin Assignments SOIC-8, DIP-8 Pin No. Pin Name Description R G -IN R G V s, 8 R G R G sets gain 2 -IN Negative input 3 IN Positive input IN 3 6 OUT 4 -V S Negative supply 5 REF Output is referred to the REF pin potential -V s 4 5 REF 6 OUT Output 7 V S Positive supply Exar Corporation 5 / 5 exar.com/clc2

6 CLC2 Typical Performance Characteristics T A = 25 C, V S = ±5V, R L = 2kΩ to GND; unless otherwise noted. Input Offset Distribution (typical) Input Bias Current Distribution (typical) Input Offset Current Distribution (typical) Exar Corporation 6 / 5 exar.com/clc2

7 CLC2 Typical Performance Characteristics T A = 25 C, V S = ±5V, R L = 2kΩ to GND; unless otherwise noted. Gain vs. Frequency Gain (db) 7 6 G = 5 4 G = 3 2 G = G = Frequency (MHz) Output Voltage Swing vs. V S V S -.5 G = R L =2kΩ Output Voltage Swing (V) R L =kω R L =kω - R L =2kΩ Referred to Supply Voltages -V S Supply Voltage (/- V) Input Voltage Range vs. V S Output Voltage Swing vs. R L V S -- 2 G G = = Referred to Supply Voltages 3 Input Voltage Swing (V) - Output Voltage Swing (V pp ) 2 -V S Supply Voltage (/- V) Load Resistance (kω) Large Signal Pulse Response (G = ) Large Signal Settling Time (G = ) 7.5 G =, R L =2K..9 G =, 5V Step Output Settling (%) Exar Corporation 7 / 5 exar.com/clc2

8 CLC2 Typical Performance Characteristics T A = 25 C, V S = ±5V, R L = 2kΩ to GND; unless otherwise noted. Large Signal Pulse Response (G = ) Large Signal Settling Time (G = ) 7.5 G =, R L =2K..9 G =, 5V Step Output Settling (%) Large Signal Pulse Response (G = ) Large Signal Settling Time (G = ) 7.5 G =, R L =2K..9 G =, 5V Step Output Settling (%) Large Signal Pulse Response (G = ) Large Signal Settling Time (G = ) 7.5 G =, R L =2K..9 G =, 5V Step Output Settling (%) Exar Corporation 8 / 5 exar.com/clc2

9 CLC2 Typical Performance Characteristics T A = 25 C, V S = ±5V, R L = 2kΩ to GND; unless otherwise noted. Small Signal Pulse Response (G = ) Small Signal Pulse Response (G = ).. G =, R L =2K, C L =pf G =, R L =2K, C L =pf Small Signal Pulse Response (G = ) Small Signal Pulse Response (G = ).. G =, R L =2K, C L =pf G =, R L =2K, C L =pf Exar Corporation 9 / 5 exar.com/clc2

10 CLC2 Typical Competitive Comparison Plots T A = 25 C, V S = ±5V, R L = 2kΩ, Exar evaluation board; unless otherwise noted. Frequency Response (G = ) Frequency Response (G = ) Normalized Gain (db) G = V S = ±5V V OUT =.2V pp R L = 2kΩ Competitor A CLC2 Normalized Gain (db) G = V S = ±5V V OUT =.2V pp R L = 2kΩ CLC2 Competitor A Frequency (MHz) Frequency (MHz) Frequency Response (G = ) Frequency Response (G = ) Normalized Gain (db) G = V S = ±5V Competitor A CLC2 Normalized Gain (db) Competitor A G =, V S = ±5V CLC2-6 V OUT =.2V pp R L = 2kΩ -6 V OUT =.2V pp R L = 2kΩ Frequency (MHz) Frequency (MHz) Small Signal Pulse Response (G = ) Small Signal Pulse Response (G = ) Competitor A. Competitor A Output Amplitude (V) CLC2 Output Amplitude (V) CLC V OUT =.V pp C L = pf. V OUT =.V pp C L = pf Exar Corporation / 5 exar.com/clc2

11 CLC2 Application Information Basic Information % R G (Ω) Caclulated Gain.% R G (Ω) Calculated Gain The CLC2 is a monolithic instrumentation amplifier based on the classic three op amp solution, refer to the Functional Block Diagram shown in Figure. The CLC2 produces a single-ended output referred to the REF pin potential. 49.9k k k k k k k k 9.93.k 5.4.k IN ,3. R G OUT Table : Recommended R G Values Follow these guidelines for improved performance: IN REF To maintain gain accuracy, use.% to % resistors To minimize gain error, avoid high parasitic resistance in series with R G Figure : Functional Block Diagram To minimize gain drift, use low TC resistors (<ppm/ C) The internal resistors are trimmed which allows the gain to be accurately adjusted with one external resistor R G. 49.4k 49.4k G = ; R G = R G G - R G also determines the transconductance of the preamp stage. As R G is reduced for larger gains, the transconductance increases to that of the input transistors. Producing the following advantages: Open-loop gain increases as the gain is increased, reducing gain related errors Gain-bandwidth increases as the gain is increased, optimizing frequency response Reduced input voltage noise which is determined by the collector current and base resistance of the input devices Common Mode Rejection The CLC2 offers high CMRR. To achieve optimal CMRR performance: Connect the reference terminal (pin 5) to a low impedance source Minimize capacitive and resistive differences between the inputs In many applications, shielded cables are used to minimize noise. Properly drive the shield for best CMRR performance over frequency. Figures and 2 show active data guards that are configured to improve AC common-mode rejections. the capacitances of input cable shields are bootstrapped to minimize the capacitance mismatch between the inputs. Input V S Gain Selection The impedance between pins and 8, R G, sets the gain of the CLC2. Table shows the required standard table values of R G for various calculated gains. For G =, R G =. _ CLCxxx - Input R G / 2 R G / 2 _ CLC2 -V S REF Output Figure 2: Common-mode Shield Driver Exar Corporation / 5 exar.com/clc2

12 CLC2 - Input _ V S Small size and low cost make the CLC2 especially attractive for voltage output pressure transducers. Since it delivers low noise and drift, it will also serve applications such as diagnostic noninvasive blood pressure measurement. R G CLC2 Output - -V S - Input -V S Figure 3: Differential Shield Driver Pressure Measurement Applications The CLC2 is especially suitable for higher resistance pressure sensors powered at lower voltages where small size and low power become more significant. Figure 3 shows a 3kΩ pressure transducer bridge powered from 5V. In such a circuit, the bridge consumes only.7ma. Adding the CLC2 and a buffered voltage divider allows the signal to be conditioned for only 3.8mA of total supply current. REF Medical ECG The CLC2 is perfect for ECG monitors because of its low current noise. A typical application is shown in Figure 4. The CLC2 s low power, low supply voltage requirements, and space-saving 8-lead SOIC package offerings make it an excellent choice for battery-powered data recorders. Furthermore, the low bias currents and low current noise, coupled with the low voltage noise of the CLC2, improve the dynamic range for better performance. The value of capacitor C is chosen to maintain stability of the right leg drive loop. Proper safeguards, such as isolation, must be added to this circuit to protect the patient from possible harm. 5V 5V 3k 3k 5V 2k 3k 3k G = 499 CLC2 _ REF k 5V Ref IN.7mA.3mA.mA 2k CLCxxx _ AGND Digital Data Output Figure 4: Pressure Monitoring Circuits Operating on a Single 5V Supply Patient/Circuit Protection/Isolation 3V 3 7 C R4 MΩ R kω R3 24.9kΩ R2 24.9kΩ R G 8.25kΩ 8 2 CLC2 G = Hz High-Pass Filter G = 43 Output Amplifier Output V/mV CLC3 3V Figure 5: Typical Circuit for ECG Monitor Applications Exar Corporation 2 / 5 exar.com/clc2

13 CLC2 Grounding The output voltage of the CLC2 is developed with respect to the potential on the reference terminal (pin 8). Simply tie the REF pin to the appropriate local ground to resolve many grounding problems. To isolate low level analog signals from a noisy digital environment, many data acquisition components have separate analog and digital ground pins. Use separate ground lines (analog and digital) to minimize current flow from sensitive areas to system ground. These ground returns must be tied together at some point, usually best at the ADC. Layout Considerations General layout and supply bypassing play major roles in high frequency performance. Exar has evaluation boards to use as a guide for high frequency layout and as an aid in device testing and characterization. Follow the steps below as a basis for high frequency layout: Include 6.8µF and.µf ceramic capacitors for power supply decoupling Place the 6.8µF capacitor within.75 inches of the power pin Place the.µf capacitor within. inches of the power pin Remove the ground plane under and around the part, especially near the input and output pins to reduce parasitic capacitance Minimize all trace lengths to reduce series inductances Refer to the evaluation board layouts below for more information. Figure 6. CEB24 Schematic Evaluation Board Information The following evaluation boards are available to aid in the testing and layout of these devices: Figure 7. CEB24 Top View Evaluation Board # CEB24 Products CLC2 in SOIC-8 Evaluation Board Schematics Evaluation board schematics and layouts are shown in Figures 6-8. These evaluation boards are built for dualsupply operation. Follow these steps to use the board in a single-supply application:. Short -V S to ground. 2. Use C3 and C4, if the -V S pin of the amplifier is not directly connected to the ground plane. Figure 8. CEB24 Bottom View Exar Corporation 3 / 5 exar.com/clc2

14 CLC2 Mechanical Dimensions SOIC-8 Package DIP-8 Package Exar Corporation 4 / 5 exar.com/clc2

15 CLC2 Ordering Information Part Number Package Green Operating Temperature Range Packaging CLC2ISO8X SOIC-8 Yes -4 C to 85 C Tape & Reel CLC2ISO8MTR SOIC-8 Yes -4 C to 85 C Mini Tape & Reel CLC2ISO8EVB Evaluation Board N/A N/A N/A CLC2IDP8 DIP-8 Yes -4 C to 85 C Rail Moisture sensitivity level for all parts is MSL-. Mini Tape and Reel contains 25 pieces. Revision History Revision Date Description 2E (ECN 53-2) March 25 Reformat into Exar data sheet template. Updated PODs and thermal resistance numbers. Updated ordering information table to include MTR and EVB part numbers. Updated evaluation board top and bottom views to Rev b. Added schematic used for evaluation boards. For Further Assistance: CustomerSupport@exar.com or HPATechSupport@exar.com Exar Technical Documentation: Exar Corporation Headquarters and Sales Offices 4876 Kato Road Tel.: (5) Fremont, CA USA Fax: (5) NOTICE EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user s specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies. EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances. Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited Exar Corporation 5 / 5 exar.com/clc2

CLC2011, CLC4011 Low Power, Low Cost, Rail-to-Rail I/O Amplifiers

CLC2011, CLC4011 Low Power, Low Cost, Rail-to-Rail I/O Amplifiers Low Power, Low Cost, Rail-to-Rail I/O Amplifiers General Description The CLC2011 (dual) and CLC4011 (quad) are ultra-low cost, low power, voltage feedback amplifiers. At 2.7V, the CLCx011 family uses only

More information

XR1009, XR mA, 35MHz Rail-to-Rail Amplifiers

XR1009, XR mA, 35MHz Rail-to-Rail Amplifiers 0.2mA, 35MHz RailtoRail Amplifiers General Description The XR1009 (single) and XR2009 (dual) are ultralow power, low cost, voltage feedback amplifiers. These amplifiers use only 208μA of supply current

More information

Low Cost, Low Power Instrumentation Amplifier AD620

Low Cost, Low Power Instrumentation Amplifier AD620 a FEATURES EASY TO USE Gain Set with One External Resistor (Gain Range to 000) Wide Power Supply Range (.3 V to V) Higher Performance than Three Op Amp IA Designs Available in -Lead DIP and SOIC Packaging

More information

CLC1007, CLC2007, CLC4007 Single, Dual, and Quad Low Cost, High Speed RRO Amplifiers

CLC1007, CLC2007, CLC4007 Single, Dual, and Quad Low Cost, High Speed RRO Amplifiers CLC17, CLC27, CLC47 Single, Dual, and Quad Low Cost, High Speed RRO Amplifiers General Description The CLC17 (single), CLC27 (dual) and CLC47(quad) are low cost, voltage feedback amplifiers. These amplifiers

More information

CLC2058 Dual 4V to 36V Amplifier

CLC2058 Dual 4V to 36V Amplifier Comlinear CLC8 Dual 4V to 6V Amplifier FEATURES n Unity gain stable n db voltage gain n.mhz gain bandwidth product n.mω input resistance n db power supply rejection ratio n 9dB common mode rejection ratio

More information

CLC2011, CLC4011 Low Power, Low Cost, Rail-to-Rail I/O Amplifiers

CLC2011, CLC4011 Low Power, Low Cost, Rail-to-Rail I/O Amplifiers Comlinear CLC211, CLC411 Low Power, Low Cost, Rail-to-Rail I/O Amplifiers FEATURES n 136μA supply current n 4.9MHz bandwidth n Output swings to within 2mV of either rail n Input voltage range exceeds the

More information

CLC2000, CLC4000 High Output Current Dual and Quad Amplifiers

CLC2000, CLC4000 High Output Current Dual and Quad Amplifiers Comlinear CLC2, CLC4 High Output Current Dual and Quad Amplifiers FEATURES n 9.4V pp output drive into R L = 25Ω n Using both amplifiers, 8.8V pp differential output drive into R L = 25Ω n ±2mA @ V o =

More information

Low Cost Instrumentation Amplifier AD622

Low Cost Instrumentation Amplifier AD622 a FEATURES Easy to Use Low Cost Solution Higher Performance than Two or Three Op Amp Design Unity Gain with No External Resistor Optional Gains with One External Resistor (Gain Range 2 to ) Wide Power

More information

General Description Normalized Gain (db) V OUT = 2V pp Normalized Gain (db)

General Description Normalized Gain (db) V OUT = 2V pp Normalized Gain (db) Comlinear CLC Triple, Standard Definition Video Amplifier FEATURES n Integrated 4th-order, MHz filters n Integrated db video drivers n.ma total supply current n.%/.4 differential gain/phase error n DC

More information

High Accuracy 8-Pin Instrumentation Amplifier AMP02

High Accuracy 8-Pin Instrumentation Amplifier AMP02 a FEATURES Low Offset Voltage: 100 V max Low Drift: 2 V/ C max Wide Gain Range 1 to 10,000 High Common-Mode Rejection: 115 db min High Bandwidth (G = 1000): 200 khz typ Gain Equation Accuracy: 0.5% max

More information

CLC1011, CLC2011, CLC4011 Low Power, Low Cost, Rail-to-Rail I/O Amplifiers

CLC1011, CLC2011, CLC4011 Low Power, Low Cost, Rail-to-Rail I/O Amplifiers Comlinear CLC1011, CLC2011, CLC4011 Low Power, Low Cost, Rail-to-Rail I/O Amplifiers Amplify the Human Experience F E A T U R E S n 136μA supply current n 4.9MHz bandwidth n Output swings to within 20mV

More information

Quad Picoampere Input Current Bipolar Op Amp AD704

Quad Picoampere Input Current Bipolar Op Amp AD704 a FEATURES High DC Precision 75 V Max Offset Voltage V/ C Max Offset Voltage Drift 5 pa Max Input Bias Current.2 pa/ C Typical I B Drift Low Noise.5 V p-p Typical Noise,. Hz to Hz Low Power 6 A Max Supply

More information

Quad Picoampere Input Current Bipolar Op Amp AD704

Quad Picoampere Input Current Bipolar Op Amp AD704 a FEATURES High DC Precision 75 V Max Offset Voltage V/ C Max Offset Voltage Drift 5 pa Max Input Bias Current.2 pa/ C Typical I B Drift Low Noise.5 V p-p Typical Noise,. Hz to Hz Low Power 6 A Max Supply

More information

Quad Picoampere Input Current Bipolar Op Amp AD704

Quad Picoampere Input Current Bipolar Op Amp AD704 a FEATURES High DC Precision 75 V max Offset Voltage V/ C max Offset Voltage Drift 5 pa max Input Bias Current.2 pa/ C typical I B Drift Low Noise.5 V p-p typical Noise,. Hz to Hz Low Power 6 A max Supply

More information

KM4110/KM mA, Low Cost, +2.7V & +5V, 75MHz Rail-to-Rail Amplifiers

KM4110/KM mA, Low Cost, +2.7V & +5V, 75MHz Rail-to-Rail Amplifiers + + www.fairchildsemi.com KM411/KM41.5mA, Low Cost, +.7V & +5V, 75MHz Rail-to-Rail Amplifiers Features 55µA supply current 75MHz bandwidth Power down to I s = 33µA (KM41) Fully specified at +.7V and +5V

More information

Low Drift, Low Power Instrumentation Amplifier AD621

Low Drift, Low Power Instrumentation Amplifier AD621 a FEATURES EASY TO USE Pin-Strappable Gains of and All Errors Specified for Total System Performance Higher Performance than Discrete In Amp Designs Available in 8-Lead DIP and SOIC Low Power,.3 ma Max

More information

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820 Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820 FEATURES True single-supply operation Output swings rail-to-rail Input voltage range extends below ground Single-supply capability from 5

More information

FHP3350, FHP3450 Triple and Quad Voltage Feedback Amplifiers

FHP3350, FHP3450 Triple and Quad Voltage Feedback Amplifiers FHP335, FHP345 Triple and Quad Voltage Feedback Amplifiers Features.dB gain flatness to 3MHz.7%/.3 differential gain/phase error 2MHz full power -3dB bandwidth at G = 2,V/μs slew rate ±55mA output current

More information

Micropower, Single and Dual Supply Rail-to-Rail Instrumentation Amplifier AD627

Micropower, Single and Dual Supply Rail-to-Rail Instrumentation Amplifier AD627 a FEATURES Micropower, 85 A Max Supply Current Wide Power Supply Range (+2.2 V to 8 V) Easy to Use Gain Set with One External Resistor Gain Range 5 (No Resistor) to, Higher Performance than Discrete Designs

More information

CDK bit, 1 GSPS, Flash A/D Converter

CDK bit, 1 GSPS, Flash A/D Converter CDK1303 8-bit, 1 GSPS, Flash A/D Converter FEATURES n 1:2 Demuxed ECL compatible outputs n Wide input bandwidth 900MHz n Low input capacitance 15pF n Metastable errors reduced to 1 LSB n Gray code output

More information

Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers MAX4194 MAX4197

Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers MAX4194 MAX4197 General Description The is a variable-gain precision instrumentation amplifier that combines Rail-to-Rail single-supply operation, outstanding precision specifications, and a high gain bandwidth. This

More information

High Speed FET-Input INSTRUMENTATION AMPLIFIER

High Speed FET-Input INSTRUMENTATION AMPLIFIER High Speed FET-Input INSTRUMENTATION AMPLIFIER FEATURES FET INPUT: I B = 2pA max HIGH SPEED: T S = 4µs (G =,.%) LOW OFFSET VOLTAGE: µv max LOW OFFSET VOLTAGE DRIFT: µv/ C max HIGH COMMON-MODE REJECTION:

More information

Comlinear. CLC1003 Low Distortion, Low Offset, RRIO Amplifier. Comlinear CLC1003 Low Distortion, Low Offset, RRIO Amplifier Rev 1B.

Comlinear. CLC1003 Low Distortion, Low Offset, RRIO Amplifier. Comlinear CLC1003 Low Distortion, Low Offset, RRIO Amplifier Rev 1B. Comlinear CLC Low Distortion, Low Offset, RRIO Amplifier F E A T U R E S n mv max input offset voltage n.5% THD at khz n 5.nV/ Hz input voltage noise >khz n -9dB/-85dB HD/HD at khz, R L =Ω n

More information

Dual Picoampere Input Current Bipolar Op Amp AD706. Data Sheet. Figure 1. Input Bias Current vs. Temperature

Dual Picoampere Input Current Bipolar Op Amp AD706. Data Sheet. Figure 1. Input Bias Current vs. Temperature Data Sheet Dual Picoampere Input Current Bipolar Op Amp Rev. F Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by

More information

November 2011 Rev FEATURES. Fig. 1: XRP6272 Application Diagram

November 2011 Rev FEATURES. Fig. 1: XRP6272 Application Diagram November 2011 Rev. 1.2.0 GENERAL DESCRIPTION The XRP6272 is a low dropout voltage regulator capable of a constant output current up to 2 Amps. A wide 1.8V to 6V input voltage range allows for single supply

More information

Low Cost Low Power Instrumentation Amplifier AD620

Low Cost Low Power Instrumentation Amplifier AD620 Low Cost Low Power Instrumentation Amplifier AD60 FEATURES Easy to use Gain set with one external resistor (Gain range to 0,000) Wide power supply range (±.3 V to ±8 V) Higher performance than 3 op amp

More information

Dual Picoampere Input Current Bipolar Op Amp AD706

Dual Picoampere Input Current Bipolar Op Amp AD706 Dual Picoampere Input Current Bipolar Op Amp FEATURES High DC Precision V Max Offset Voltage.5 V/ C Max Offset Drift 2 pa Max Input Bias Current.5 V p-p Voltage Noise,. Hz to Hz 75 A Supply Current Available

More information

Low Cost Low Power Instrumentation Amplifier AD620

Low Cost Low Power Instrumentation Amplifier AD620 Low Cost Low Power Instrumentation Amplifier FEATURES Easy to use Gain set with one external resistor (Gain range to,) Wide power supply range (±2.3 V to ±8 V) Higher performance than 3 op amp IA designs

More information

1A 1.5MHz PFM/PWM Synchronous Step-Down Converter. January 2014 Rev FEATURES. Fig. 1: XRP6658 Application Diagram

1A 1.5MHz PFM/PWM Synchronous Step-Down Converter. January 2014 Rev FEATURES. Fig. 1: XRP6658 Application Diagram January 2014 Rev. 1.6.0 GENERAL DESCRIPTION The XRP6658 is a synchronous current mode PWM step down (buck) converter capable of delivering up to 1 Amp of current and optimized for portable battery-operated

More information

Improved Second Source to the EL2020 ADEL2020

Improved Second Source to the EL2020 ADEL2020 Improved Second Source to the EL ADEL FEATURES Ideal for Video Applications.% Differential Gain. Differential Phase. db Bandwidth to 5 MHz (G = +) High Speed 9 MHz Bandwidth ( db) 5 V/ s Slew Rate ns Settling

More information

High Common-Mode Voltage Difference Amplifier AD629

High Common-Mode Voltage Difference Amplifier AD629 a FEATURES Improved Replacement for: INAP and INAKU V Common-Mode Voltage Range Input Protection to: V Common Mode V Differential Wide Power Supply Range (. V to V) V Output Swing on V Supply ma Max Power

More information

September 2010 Rev FEATURES. Fig. 1: XRP431L Application Diagram

September 2010 Rev FEATURES. Fig. 1: XRP431L Application Diagram September 2010 Rev. 1.2.0 GENERAL DESCRIPTION The XRP431L is a three-terminal adjustable shunt voltage regulator providing a highly accurate bandgap reference. The XRP431L acts as an open-loop error amplifier

More information

Very Low Distortion, Precision Difference Amplifier AD8274

Very Low Distortion, Precision Difference Amplifier AD8274 Very Low Distortion, Precision Difference Amplifier AD8274 FEATURES Very low distortion.2% THD + N (2 khz).% THD + N ( khz) Drives Ω loads Excellent gain accuracy.3% maximum gain error 2 ppm/ C maximum

More information

CLC2600, CLC3600, CLC4600 Dual, Triple, and Quad 300MHz Amplifiers

CLC2600, CLC3600, CLC4600 Dual, Triple, and Quad 300MHz Amplifiers Comlinear CLC26, CLC36, CLC46 Dual, Triple, and Quad 3MHz Amplifiers FEATURES n.db gain flatness to 95MHz n.3%/.4 differential gain/ phase error n 23MHz db bandwidth at G = 2 n 3MHz db bandwidth at G =

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from V to V Dual Supply Capability from. V to 8 V Excellent Load Drive

More information

Dual Picoampere Input Current Bipolar Op Amp AD706

Dual Picoampere Input Current Bipolar Op Amp AD706 a FEATURE HIGH DC PRECISION V max Offset Voltage.6 V/ C max Offset Drift pa max Input Bias Current LOW NOISE. V p-p Voltage Noise,. Hz to Hz LOW POWER A Supply Current Available in -Lead Plastic Mini-DlP,

More information

Low Cost, General Purpose High Speed JFET Amplifier AD825

Low Cost, General Purpose High Speed JFET Amplifier AD825 a FEATURES High Speed 41 MHz, 3 db Bandwidth 125 V/ s Slew Rate 8 ns Settling Time Input Bias Current of 2 pa and Noise Current of 1 fa/ Hz Input Voltage Noise of 12 nv/ Hz Fully Specified Power Supplies:

More information

FET-Input, Low Power INSTRUMENTATION AMPLIFIER

FET-Input, Low Power INSTRUMENTATION AMPLIFIER FET-Input, Low Power INSTRUMENTATION AMPLIFIER FEATURES LOW BIAS CURRENT: ±4pA LOW QUIESCENT CURRENT: ±4µA LOW INPUT OFFSET VOLTAGE: ±µv LOW INPUT OFFSET DRIFT: ±µv/ C LOW INPUT NOISE: nv/ Hz at f = khz

More information

Precision, Low Power, Micropower Dual Operational Amplifier OP290

Precision, Low Power, Micropower Dual Operational Amplifier OP290 Precision, Low Power, Micropower Dual Operational Amplifier OP9 FEATURES Single-/dual-supply operation:. V to 3 V, ±.8 V to ±8 V True single-supply operation; input and output voltage Input/output ranges

More information

16 V Rail-to-Rail, Zero-Drift, Precision Instrumentation Amplifier AD8230

16 V Rail-to-Rail, Zero-Drift, Precision Instrumentation Amplifier AD8230 V Rail-to-Rail, Zero-Drift, Precision Instrumentation Amplifier AD FEATURES Resistor programmable gain range: to Supply voltage range: ± V to ± V, + V to + V Rail-to-rail input and output Maintains performance

More information

Single-Supply, Low Cost Instrumentation Amplifier AD8223

Single-Supply, Low Cost Instrumentation Amplifier AD8223 Single-Supply, Low Cost Instrumentation Amplifier FEATURES Gain set with resistor Gain = 5 to Inputs Voltage range to 5 mv below negative rail 5 na maximum input bias current 3 nv/ Hz, RTI noise @ khz

More information

Precision INSTRUMENTATION AMPLIFIER

Precision INSTRUMENTATION AMPLIFIER Precision INSTRUMENTATION AMPLIFIER FEATURES LOW OFFSET VOLTAGE: µv max LOW DRIFT:.µV/ C max LOW INPUT BIAS CURRENT: na max HIGH COMMON-MODE REJECTION: db min INPUT OVER-VOLTAGE PROTECTION: ±V WIDE SUPPLY

More information

XR8051, XR8052, XR8054 Low Cost, High Speed Rail-to-Rail Amplifiers

XR8051, XR8052, XR8054 Low Cost, High Speed Rail-to-Rail Amplifiers XR851, XR852, XR854 Low Cost, High Speed Rail-to-Rail Amplifiers FEATURES n 175MHz bandwidth n Fully specified at +V, +5V and +/-5V supplies n Output voltage range:.v to 4.95V; V s = +5; R L = 2kΩ n Input

More information

150 μv Maximum Offset Voltage Op Amp OP07D

150 μv Maximum Offset Voltage Op Amp OP07D 5 μv Maximum Offset Voltage Op Amp OP7D FEATURES Low offset voltage: 5 µv max Input offset drift:.5 µv/ C max Low noise:.25 μv p-p High gain CMRR and PSRR: 5 db min Low supply current:. ma Wide supply

More information

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820 a FEATURES True Single Supply Operation Output Swings Rail-to-Rail Input Voltage Range Extends Below Ground Single Supply Capability from + V to + V Dual Supply Capability from. V to 8 V Excellent Load

More information

CLC2601, CLC3601, CLC4601 Dual, Triple, and Quad 550MHz Amplifiers

CLC2601, CLC3601, CLC4601 Dual, Triple, and Quad 550MHz Amplifiers Comlinear CLC26, CLC36, CLC46 Dual, Triple, and Quad 55MHz Amplifiers FEATURES n.db gain flatness to 2MHz n.%/.6 differential gain/ phase error n 335MHz db bandwidth at G = 2 n 55MHz db bandwidth at G

More information

SGM8551XN Single-Supply, Single Rail-to-Rail I/O Precision Operational Amplifier

SGM8551XN Single-Supply, Single Rail-to-Rail I/O Precision Operational Amplifier PRODUCT DESCRIPTION The SGM8551XN is a single rail-to-rail input and output precision operational amplifier which has low input offset voltage, and bias current. It is guaranteed to operate from 2.5V to

More information

Dual Picoampere Input Current Bipolar Op Amp AD706

Dual Picoampere Input Current Bipolar Op Amp AD706 Dual Picoampere Input Current Bipolar Op Amp FEATURES High DC Precision V Max Offset Voltage.5 V/ C Max Offset Drift 2 pa Max Input Bias Current.5 V p-p Voltage Noise,. Hz to Hz 75 A Supply Current Available

More information

GENERAL DESCRIPTION APPLICATIONS FEATURES TYPICAL APPLICATION DIAGRAM

GENERAL DESCRIPTION APPLICATIONS FEATURES TYPICAL APPLICATION DIAGRAM January 2010 Rev. 2.0.0 GENERAL DESCRIPTION The SP7121 LED driver provides a simple solution for a matched current source for any color common cathode LEDs. The common cathode connection allows the user

More information

Very Low Distortion, Dual-Channel, High Precision Difference Amplifier AD8274 FUNCTIONAL BLOCK DIAGRAM +V S FEATURES APPLICATIONS GENERAL DESCRIPTION

Very Low Distortion, Dual-Channel, High Precision Difference Amplifier AD8274 FUNCTIONAL BLOCK DIAGRAM +V S FEATURES APPLICATIONS GENERAL DESCRIPTION Very Low Distortion, Dual-Channel, High Precision Difference Amplifier AD8273 FEATURES ±4 V HBM ESD Very low distortion.25% THD + N (2 khz).15% THD + N (1 khz) Drives 6 Ω loads Two gain settings Gain of

More information

SGM8631/2/3/4 470μA, 6MHz, Rail-to-Rail I/O CMOS Operational Amplifiers

SGM8631/2/3/4 470μA, 6MHz, Rail-to-Rail I/O CMOS Operational Amplifiers PRODUCT DESCRIPTION The SGM863 (single), SGM863 (dual), SGM8633 (single with shutdown) and SGM8634 (quad) are low noise, low voltage, and low power operational amplifiers, that can be designed into a wide

More information

Features. Applications SOT-23-5

Features. Applications SOT-23-5 135MHz, Low-Power SOT-23-5 Op Amp General Description The is a high-speed, unity-gain stable operational amplifier. It provides a gain-bandwidth product of 135MHz with a very low, 2.4mA supply current,

More information

February 2014 Rev FEATURES. Fig. 1: SP34063A Application Diagram

February 2014 Rev FEATURES. Fig. 1: SP34063A Application Diagram February 2014 Rev. 2.1.1 GENERAL DESCRIPTION The SP34063A is a monolithic switching regulator control circuit containing the primary functions required for DC-DC converters. This device consists of an

More information

SGM8621/2/3/4 3MHz, Rail-to-Rail I/O CMOS Operational Amplifiers

SGM8621/2/3/4 3MHz, Rail-to-Rail I/O CMOS Operational Amplifiers SGM8621/2/3/4 3MHz, Rail-to-Rail I/O PRODUCT DESCRIPTION The SGM8621 (single), SGM8622 (dual), SGM8623 (single with shutdown) and SGM8624 (quad) are low noise, low voltage, and low power operational amplifiers,

More information

AD MHz, 20 V/μs, G = 1, 10, 100, 1000 i CMOS Programmable Gain Instrumentation Amplifier. Preliminary Technical Data FEATURES

AD MHz, 20 V/μs, G = 1, 10, 100, 1000 i CMOS Programmable Gain Instrumentation Amplifier. Preliminary Technical Data FEATURES Preliminary Technical Data 0 MHz, 20 V/μs, G =, 0, 00, 000 i CMOS Programmable Gain Instrumentation Amplifier FEATURES Small package: 0-lead MSOP Programmable gains:, 0, 00, 000 Digital or pin-programmable

More information

SGM8554 Single-Supply, Quad Rail-to-Rail I/O Precision Operational Amplifier

SGM8554 Single-Supply, Quad Rail-to-Rail I/O Precision Operational Amplifier PRODUCT DESCRIPTION The SGM8554 is a quad rail-to-rail input and output precision operational amplifier which has low input offset voltage, and bias current. It is guaranteed to operate from 2.5V to 5.5V

More information

INA126. MicroPOWER INSTRUMENTATION AMPLIFIER Single and Dual Versions IN ) G V IN G = 5 +

INA126. MicroPOWER INSTRUMENTATION AMPLIFIER Single and Dual Versions IN ) G V IN G = 5 + INA6 INA6 INA6 INA6 INA6 INA6 INA6 SBOS06A JANUARY 996 REVISED AUGUST 005 MicroPOWER INSTRUMENTATION AMPLIFIER Single and Dual Versions FEATURES LOW QUIESCENT CURRENT: 75µA/chan. WIDE SUPPLY RANGE: ±.35V

More information

SGM8584 Single-Supply, Quad Rail-to-Rail I/O Precision Operational Amplifier

SGM8584 Single-Supply, Quad Rail-to-Rail I/O Precision Operational Amplifier PRODUCT DESCRIPTION The SGM8584 is a quad rail-to-rail input and output precision operational amplifier which has low input offset voltage, and bias current. It is guaranteed to operate from 2.5V to 5.5V

More information

NE/SA5234 Matched quad high-performance low-voltage operational amplifier

NE/SA5234 Matched quad high-performance low-voltage operational amplifier INTEGRATED CIRCUITS Supersedes data of 2001 Aug 03 File under Integrated Circuits, IC11 Handbook 2002 Feb 22 DESCRIPTION The is a matched, low voltage, high performance quad operational amplifier. Among

More information

CLC440 High Speed, Low Power, Voltage Feedback Op Amp

CLC440 High Speed, Low Power, Voltage Feedback Op Amp CLC440 High Speed, Low Power, Voltage Feedback Op Amp General Description The CLC440 is a wideband, low power, voltage feedback op amp that offers 750MHz unity-gain bandwidth, 1500V/µs slew rate, and 90mA

More information

Single, 500MHz Voltage Feedback Amplifier

Single, 500MHz Voltage Feedback Amplifier Amplify the Human Experience Comlinear CLC1006 Single, 500MHz Voltage Feedback Amplifier features n 500MHz -3dB bandwidth at G=2 n 1,400V/μs slew rate n 0.06%/0.06 differential gain/ phase error n 5.5mA

More information

Ultraprecision, 36 V, 2.8 nv/ Hz Dual Rail-to-Rail Output Op Amp AD8676

Ultraprecision, 36 V, 2.8 nv/ Hz Dual Rail-to-Rail Output Op Amp AD8676 FEATURES Very low voltage noise 2.8 nv/ Hz @ khz Rail-to-rail output swing Low input bias current: 2 na maximum Very low offset voltage: 2 μv typical Low input offset drift:.6 μv/ C maximum Very high gain:

More information

OBSOLETE. Parameter AD9621 AD9622 AD9623 AD9624 Units

OBSOLETE. Parameter AD9621 AD9622 AD9623 AD9624 Units a FEATURES MHz Small Signal Bandwidth MHz Large Signal BW ( V p-p) High Slew Rate: V/ s Low Distortion: db @ MHz Fast Settling: ns to.%. nv/ Hz Spectral Noise Density V Supply Operation Wideband Voltage

More information

High Common-Mode Rejection. Differential Line Receiver SSM2141 REV. B FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection

High Common-Mode Rejection. Differential Line Receiver SSM2141 REV. B FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection a FEATURES High Common-Mode Rejection DC: 100 db typ 60 Hz: 100 db typ 20 khz: 70 db typ 40 khz: 62 db typ Low Distortion: 0.001% typ Fast Slew Rate: 9.5 V/ s typ Wide Bandwidth: 3 MHz typ Low Cost Complements

More information

High Voltage, Current Shunt Monitor AD8215

High Voltage, Current Shunt Monitor AD8215 High Voltage, Current Shunt Monitor AD825 FEATURES ±4 V HBM ESD High common-mode voltage range 2 V to +65 V operating 3 V to +68 V survival Buffered output voltage Wide operating temperature range 8-Lead

More information

SGM MHz, 48μA, Rail-to-Rail I/O CMOS Operational Amplifier

SGM MHz, 48μA, Rail-to-Rail I/O CMOS Operational Amplifier PRODUCT DESCRIPTION The is a low cost, single rail-to-rail input and output voltage feedback amplifier. It has a wide input common mode voltage range and output voltage swing, and takes the minimum operating

More information

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier AD8226

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier AD8226 Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier FEATURES Gain set with 1 external resistor Gain range: 1 to 1 Input voltage goes below ground Inputs protected beyond supplies Very wide

More information

200 ma Output Current High-Speed Amplifier AD8010

200 ma Output Current High-Speed Amplifier AD8010 a FEATURES 2 ma of Output Current 9 Load SFDR 54 dbc @ MHz Differential Gain Error.4%, f = 4.43 MHz Differential Phase Error.6, f = 4.43 MHz Maintains Video Specifications Driving Eight Parallel 75 Loads.2%

More information

SGM8631/2/3 6MHz, Rail-to-Rail I/O CMOS Operational Amplifiers

SGM8631/2/3 6MHz, Rail-to-Rail I/O CMOS Operational Amplifiers /2/3 6MHz, Rail-to-Rail I/O PRODUCT DESCRIPTION The (single), SGM8632 (dual) and SGM8633 (single with shutdown) are low noise, low voltage, and low power operational amplifiers that can be designed into

More information

Low Noise, Low Distortion INSTRUMENTATION AMPLIFIER

Low Noise, Low Distortion INSTRUMENTATION AMPLIFIER Low Noise, Low Distortion INSTRUMENTATION AMPLIFIER FEATURES LOW NOISE: nv/ Hz LOW THDN:.9% at khz, G = HIGH GBW: MHz at G = WIDE SUPPLY RANGE: ±9V to ±V HIGH CMRR: >db BUILT-IN GAIN SETTING RESISTORS:

More information

September 2010 Rev FEATURES. Fig. 1: XRP6668 Application Diagram

September 2010 Rev FEATURES. Fig. 1: XRP6668 Application Diagram September 2010 Rev. 1.0.0 GENERAL DESCRIPTION The XRP6668 is a dual channel synchronous current mode PWM step down (buck) converter capable of delivering up to 1 Amp of current per channel and optimized

More information

High Speed, Low Power Dual Op Amp AD827

High Speed, Low Power Dual Op Amp AD827 a FEATURES HIGH SPEED 50 MHz Unity Gain Stable Operation 300 V/ s Slew Rate 120 ns Settling Time Drives Unlimited Capacitive Loads EXCELLENT VIDEO PERFORMANCE 0.04% Differential Gain @ 4.4 MHz 0.19 Differential

More information

GENERAL DESCRIPTION APPLICATIONS FEATURES TYPICAL APPLICATION DIAGRAM

GENERAL DESCRIPTION APPLICATIONS FEATURES TYPICAL APPLICATION DIAGRAM August 2012 Rev. 1.2.0 GENERAL DESCRIPTION The XRP7659 is a current-mode PWM stepdown (buck) voltage regulator capable of delivering an output current up to 1.5Amps. A wide 4.5V to 18V input voltage range

More information

Dual, Current Feedback Low Power Op Amp AD812

Dual, Current Feedback Low Power Op Amp AD812 a FEATURES Two Video Amplifiers in One -Lead SOIC Package Optimized for Driving Cables in Video Systems Excellent Video Specifications (R L = ): Gain Flatness. db to MHz.% Differential Gain Error. Differential

More information

Wideband, High Output Current, Fast Settling Op Amp AD842

Wideband, High Output Current, Fast Settling Op Amp AD842 a FEATURES AC PERFORMAE Gain Bandwidth Product: 8 MHz (Gain = 2) Fast Settling: ns to.1% for a V Step Slew Rate: 375 V/ s Stable at Gains of 2 or Greater Full Power Bandwidth: 6. MHz for V p-p DC PERFORMAE

More information

GENERAL DESCRIPTION APPLICATIONS FEATURES TYPICAL APPLICATION DIAGRAM

GENERAL DESCRIPTION APPLICATIONS FEATURES TYPICAL APPLICATION DIAGRAM October 2012 Rev. 1.2.0 GENERAL DESCRIPTION The XRP2997 is a Double Data Rate (DDR) termination voltage regulator supporting all power requirements of DDR I, II and III memories and is capable of sinking

More information

5 A SPX29501/02. Now Available in Lead Free Packaging

5 A SPX29501/02. Now Available in Lead Free Packaging November 2008 5 A P SPX29501/02 5A Low Dropout Voltage Regulator Rev. B FEATURES Adjustable Output Down to 1.25V 1% Output Accuracy Output Current of 5A Low Dropout Voltage: 420mV @ 5A Tight Line Regulation:

More information

GENERAL DESCRIPTION APPLICATIONS FEATURES TYPICAL APPLICATION DIAGRAM

GENERAL DESCRIPTION APPLICATIONS FEATURES TYPICAL APPLICATION DIAGRAM April 2009 Rev. 2.0.0 GENERAL DESCRIPTION The SPX431A is a three-terminal adjustable shunt voltage regulator providing a highly accurate bandgap reference. The SPX431A acts as an open-loop error amplifier

More information

Zero Drift, Unidirectional Current Shunt Monitor AD8219

Zero Drift, Unidirectional Current Shunt Monitor AD8219 Zero Drift, Unidirectional Current Shunt Monitor FEATURES High common-mode voltage range 4 V to 8 V operating.3 V to +85 V survival Buffered output voltage Gain = 6 V/V Wide operating temperature range:

More information

Dual Low Offset, Low Power Operational Amplifier OP200

Dual Low Offset, Low Power Operational Amplifier OP200 Dual Low Offset, Low Power Operational Amplifier OP200 FEATURES Low input offset voltage: 75 μv maximum Low offset voltage drift, over 55 C < TA < +25 C 0.5 μv/ C maximum Low supply current (per amplifier):

More information

Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifier AD8276

Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifier AD8276 Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifier AD87 FEATURES Wide input range Rugged input overvoltage protection Low supply current: μa maximum Low power dissipation:. mw at VS

More information

High Precision OPERATIONAL AMPLIFIERS

High Precision OPERATIONAL AMPLIFIERS OPA OPA OPA OPA OPA OPA OPA OPA OPA For most current data sheet and other product information, visit www.burr-brown.com High Precision OPERATIONAL AMPLIFIERS FEATURES ULTRA LOW OFFSET VOLTAGE: µv ULTRA

More information

Dual, Ultralow Distortion, Ultralow Noise Op Amp AD8599

Dual, Ultralow Distortion, Ultralow Noise Op Amp AD8599 Dual, Ultralow Distortion, Ultralow Noise Op Amp FEATURES Low noise: 1 nv/ Hz at 1 khz Low distortion: 5 db THD @ khz

More information

6 db Differential Line Receiver

6 db Differential Line Receiver a FEATURES High Common-Mode Rejection DC: 9 db typ Hz: 9 db typ khz: 8 db typ Ultralow THD:.% typ @ khz Fast Slew Rate: V/ s typ Wide Bandwidth: 7 MHz typ (G = /) Two Gain Levels Available: G = / or Low

More information

Precision G = 100 INSTRUMENTATION AMPLIFIER

Precision G = 100 INSTRUMENTATION AMPLIFIER Precision G = INSTRUMENTATION AMPLIFIER FEATURES LOW OFFSET VOLTAGE: 5µV max LOW DRIFT:.5µV/ C max LOW INPUT BIAS CURRENT: na max HIGH COMMON-MODE REJECTION: db min INPUT OVERVOLTAGE PROTECTION: ±V WIDE

More information

High Voltage, Current Shunt Monitor AD8215

High Voltage, Current Shunt Monitor AD8215 FEATURES ±4 V human body model (HBM) ESD High common-mode voltage range V to +6 V operating 3 V to +68 V survival Buffered output voltage Wide operating temperature range 8-Lead SOIC: 4 C to + C Excellent

More information

Dual, Low Power Video Op Amp AD828

Dual, Low Power Video Op Amp AD828 a FEATURES Excellent Video Performance Differential Gain and Phase Error of.% and. High Speed MHz db Bandwidth (G = +) V/ s Slew Rate ns Settling Time to.% Low Power ma Max Power Supply Current High Output

More information

Precision, Low-Power and Low-Noise Op Amp with RRIO

Precision, Low-Power and Low-Noise Op Amp with RRIO MAX41 General Description The MAX41 is a low-power, zero-drift operational amplifier available in a space-saving, 6-bump, wafer-level package (WLP). Designed for use in portable consumer, medical, and

More information

High Speed BUFFER AMPLIFIER

High Speed BUFFER AMPLIFIER High Speed BUFFER AMPLIFIER FEATURES WIDE BANDWIDTH: MHz HIGH SLEW RATE: V/µs HIGH OUTPUT CURRENT: 1mA LOW OFFSET VOLTAGE: 1.mV REPLACES HA-33 IMPROVED PERFORMANCE/PRICE: LH33, LTC11, HS APPLICATIONS OP

More information

Precision, Low Power INSTRUMENTATION AMPLIFIER

Precision, Low Power INSTRUMENTATION AMPLIFIER Precision, Low Power INSTRUMENTATION AMPLIFIER FEATURES LOW OFFSET VOLTAGE: µv max LOW DRIFT:.µV/ C max LOW INPUT BIAS CURRENT: na max HIGH CMR: db min INPUTS PROTECTED TO ±V WIDE SUPPLY RANGE: ±. to ±V

More information

High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628

High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628 High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628 FEATURES FUNCTIONAL BLOCK DIAGRAM High common-mode input voltage range ±20 V at VS = ±5 V Gain range 0. to 00 Operating temperature

More information

Low Cost Low Power Instrumentation Amplifier AD620

Low Cost Low Power Instrumentation Amplifier AD620 Low Cost Low Power Instrumentation Amplifier FEATURES Easy to use Gain set with one external resistor (Gain range to,) Wide power supply range (±2.3 V to ±8 V) Higher performance than 3 op amp IA designs

More information

MIC915. Features. General Description. Applications. Ordering Information. Pin Configuration. Pin Description. Dual 135MHz Low-Power Op Amp

MIC915. Features. General Description. Applications. Ordering Information. Pin Configuration. Pin Description. Dual 135MHz Low-Power Op Amp MIC915 Dual 135MHz Low-Power Op Amp General Description The MIC915 is a high-speed, unity-gain stable operational amplifier. It provides a gain-bandwidth product of 135MHz with a very low, 2.4mA supply

More information

SGM321/SGM358/SGM324 1MHz, 60μA, Rail-to-Rail I/O CMOS Operational Amplifiers

SGM321/SGM358/SGM324 1MHz, 60μA, Rail-to-Rail I/O CMOS Operational Amplifiers /SGM358/SGM324 1MHz, 60μA, Rail-to-Rail I/O CMOS Operational Amplifiers GENERAL DESCRIPTION The (single), SGM358 (dual) and SGM324 (quad) are low cost, rail-to-rail input and output voltage feedback amplifiers.

More information

Ultraprecision, 36 V, 2.8 nv/ Hz Dual Rail-to-Rail Output Op Amp AD8676

Ultraprecision, 36 V, 2.8 nv/ Hz Dual Rail-to-Rail Output Op Amp AD8676 Ultraprecision, 36 V, 2. nv/ Hz Dual Rail-to-Rail Output Op Amp AD676 FEATURES Very low voltage noise: 2. nv/ Hz @ khz Rail-to-rail output swing Low input bias current: 2 na maximum Very low offset voltage:

More information

Precision OPERATIONAL AMPLIFIER

Precision OPERATIONAL AMPLIFIER OPA77 查询 OPA77 供应商 OPA77 OPA77 Precision OPERATIONAL AMPLIFIER FEATURES LOW OFFSET VOLTAGE: µv max LOW DRIFT:.µV/ C HIGH OPEN-LOOP GAIN: db min LOW QUIESCENT CURRENT:.mA typ REPLACES INDUSTRY-STANDARD

More information

High-Speed, Low-Power Dual Operational Amplifier AD826

High-Speed, Low-Power Dual Operational Amplifier AD826 a FEATURES High Speed: MHz Unity Gain Bandwidth 3 V/ s Slew Rate 7 ns Settling Time to.% Low Power: 7. ma Max Power Supply Current Per Amp Easy to Use: Drives Unlimited Capacitive Loads ma Min Output Current

More information

Precision, Low Power INSTRUMENTATION AMPLIFIERS

Precision, Low Power INSTRUMENTATION AMPLIFIERS INA9 INA9 INA9 Precision, Low Power INSTRUMENTATION AMPLIFIERS FEATURES LOW OFFSET VOLTAGE: µv max LOW DRIFT:.µV/ C max LOW INPUT BIAS CURRENT: na max HIGH CMR: db min INPUTS PROTECTED TO ±V WIDE SUPPLY

More information

Precision Instrumentation Amplifier AD8221

Precision Instrumentation Amplifier AD8221 Precision Instrumentation Amplifier FEATURES Easy to use Available in space-saving MSOP Gain set with external resistor (gain range to ) Wide power supply range: ±2.3 V to ±8 V Temperature range for specified

More information

15 MHz, Rail-to-Rail, Dual Operational Amplifier OP262-EP

15 MHz, Rail-to-Rail, Dual Operational Amplifier OP262-EP 5 MHz, Rail-to-Rail, Dual Operational Amplifier OP262-EP FEATURES Supports defense and aerospace applications (AQEC standard) Military temperature range ( 55 C to +25 C) Controlled manufacturing baseline

More information