PRAOGEN, A TOOL FOR STUDYING CONNECTION OF GENERATING PLANT ONTO THE MEDIUM- VOLTAGE NETWORK

Size: px
Start display at page:

Download "PRAOGEN, A TOOL FOR STUDYING CONNECTION OF GENERATING PLANT ONTO THE MEDIUM- VOLTAGE NETWORK"

Transcription

1 PRAOGEN, A TOOL FOR STUDYING CONNECTION OF GENERATING PLANT ONTO THE MEDIUM- VOLTAGE NETWORK J.L. Fraisse, F. Boulanger, Ph. Juston, P. Lemerle, O. Jeannin EDF-DEGS; EDF-R&D, France Since early in 1990 following price conditions changes, independent production connected to the medium voltage power system developed to a considerable extent. Distribution networks were not designed to take into account the connection of dispersed generation. Connection of the generators to MV networks can raise a certain number of problems, as follows : overshoot of thermal limits of conductors, increase in the voltage level of the MV system, overshoot of short circuit current limits, misoperation of protection system. Therefore Ministry of Industry published technical rules for the connection of embedding generation to MV distribution networks. According to this rules, EDF defined studies which must be done for connecting a new generator. The delay of the examination is short (three months). By consequent, EDF developed a new software which : detects thermal and voltage constraints caused by the connection of new producers, detects short-circuit constraints and check the right set of protections. In this paper, we present this second application of the new software PRAOGEN. Short-circuit currents limits Grid equipment (switch, circuit breaker) and conductors (overhead lines or cables) are specified to resist to a short-circuit level. The increase of the short-circuit current, caused by the connection of a new power plant, must not induce an overshoot of the grid equipment limits. The most difficulty comes from the fact we don t know previously which is the equipment under constraint. It is necessary therefore to calculate the short-circuit current for each equipment of the distribution network. It is also necessary to consider both the normal and contingency operation diagrams : by consequent, there are a several hundreds of simulation to carry out. PRAOGEN compute automatically these calculations of short-circuits currents and detect the possible constraints. Protection system The protection against multiphase faults used by EDF is definite time current protection. It is set at 0.8 times the two-phase short-circuit current calculated at the feeder end. Under these conditions, it is necessary to ensure that the short-circuit current injected by the generating units connected to a sound feeder remains lower than this setting for a fault located on an adjacent feeder. If not, unwanted tripping will take place. PRAOGEN calculates the protection thresholds taking into account the contingency schemes; it also detects risk for protection unexpected tripping and propose, if necessary, to install a directional overcurrent protection on the feeder. PRAOGEN is available on PC version under Windows operating system. Data necessary to this kind of calculation are available either in the supplier data bases (network data) or introduced by the user (producer data). The presentation of the results uses standard office tools (like EXCEL). Their integration in the study reports is consequently easier. Thanks to this new tool, EDF is able to quickly carry out the studies concerning new power plant connections on the Medium Voltage network and to fully comply with one of its functions of distribution system operator.

2 PRAOGEN, A TOOL FOR STUDYING CONNECTION OF GENERATING PLANT ONTO THE MEDIUM- VOLTAGE NETWORK J.L. Fraisse, F. Boulanger, Ph. Juston, P. Lemerle, O. Jeannin EDF-DEGS; EDF-R&D, France OVERVIEW In France, the medium-voltage distribution network has been traditionally free of anything but the smallest generating plants, chiefly in the form of hydroelectric generators rated at just a few megawatts. But changing price conditions in 1992 brought about a sharp rise in the number of independent generating plants connected onto the MV distribution network, first with peak demand plants (running 396 hours per year at power ratings from 4 to 8 MW), and then with rapid growth in two types of plant designed to benefit from the attractive price offers (involving distributor company s commitment to buy predetermined amounts of electricity) that were launched to stimulate rational energy utilization practices : combined heat and power plants meeting specified performance criteria, waste incineration plants. Then in 1995, EDF, with backing from the French Ministry for Industry, decided to go ahead with a programme for wind-power plants that would supply a total of 250 to 500 MW on the mediumvoltage network by And following the European directive on development of renewable energy sources, these initial figures are to be increased. All these developments explain the sharp rise in applications to connect generating plants (occasionally topping 10 MW) onto the MV network as from A recent survey (1999) found that generation on the MV network already totalled 3800 MVA, which is the equivalent of three nuclear units! And projects for forthcoming MV-network connections amount to an additional 2600 MVA. The phenomenon concerns one substation in two, and for 20% of these substations, MV power injection exceeds a quarter of the total transformer rating. As MV generation rose above marginal proportions, it became clear that the technical requirements for connection to the distribution network would require careful study. The French Ministry for Industry accordingly published technical decrees defining conditions for connecting generating plant [1]. When a generator company applies for connection, the distributor company has three months to check compliance with the technical conditions set out in these decrees. EDF therefore wrote up a technical reference manual defining computation methods, assumptions and modelling principles for carrying out MV-network connection studies. Connection studies cover the following main points: Steady state thermal constraints Power injected onto the network must not overload the system components (lines, cables, HV/MV transformer). Modification to network voltage profile The voltage profile of an MV feeder will rise when generating plant is connected, and the higher the power injected, the higher this rise will be. The rise will affect all LV networks powered by the feeder, and during slack periods it may cause the system to exceed its contractual MV or LV voltage thresholds. Short-circuit current When a network fault occurs, the generating plants on the network will contribute to feeding current through the fault, thus increasing the short-circuit current throughout the MV network. The total resulting short-circuit current must not exceed the limit specified for the network equipment and conductors. Protection system Because of the earthing policy adopted, protection against phase-to-earth faults will not be affected by connection of generating plants onto the MV network. But protection against phase-to-phase faults will be affected, on two counts : When a fault occurs on the generator feeder, the fault current contributed by the HV/MV transformer will decrease, and if it drops below

3 the protection threshold, the fault condition will escape detection. When a fault occurs on an adjacent feeder, the short-circuit injected by the generators may exceed the protection threshold, in which we will experience nuisance tripping on the generator feeder. Attenuation of 175 Hz ripple control signal Owing to the series injection mode used, a generator plant on the MV network will attenuate the 175 Hz ripple control signal received by customers [2]. This attenuation must remain within acceptable limits. centres during We set out the main features of this new module below. Short-circuit current The idea is to determine the network components whose short-circuit current rating is liable to be exceeded owing to connection of generating plants. The first difficulty stems from the fact that different parts of the network have different short-circuit current ratings. There is a degree of standardization among equipment like circuitbreakers and switches (8kA and 12.5kA thresholds), but conductor short-circuit ratings vary considerably, as we can see from the table below. TOOLS FOR CONNECTION STUDIES Though the individual principles involved are fairly simple, a full connection study is a complex task, that must be completed in a short space of time (three months). For this reason, it was decided that the teams responsible for examining connection applications should be provided with computer tools capable of automating the process. We already had a software tool Harmonique [3] for analysing propagation of the 175 Hz signal, so all we would have to do here was specify operating conditions (assumptions and modelling principles) to analyse the impact of generator connection. But there was no existing tool for computing overload, voltage-profile, short-circuit current and protection aspects of generation on the MV network. Here, EDF would have to develop a specific tool. PRAOGEN The Praogen software was developed in two stages. An initial module for computing overload and voltage aspects was completed in 1998 [4] and is currently operational at EDF distribution centres. This was followed by development of a second module covering short-circuit current and impact on protection systems. As with the first module, detailed functional specifications were drawn up to provide the basis for coding, which was performed in C++ language on the Mosaic software platform [5], a Windows PC system that provides developers with modular software building-block facilities to minimize development costs. Following an acceptance testing phase, Praogen module 2 is scheduled for deployment across user Almelec overhead line I scmax HN33 cable I scmax 34 mm ka 50 mm ka 75 mm ka 95 mm ka 117 mm ka 150 mm ka 148 mm ka 240 mm ka This means there is no way of knowing beforehand which part of the network will reach its short-circuit threshold first : it might be the substation feeder circuit-breakers, or the overhead line sections at the feeder end. So we are required to evaluate the short-circuit current at all points throughout the network. For a substation with ten feeders each feeding a hundred line sections, this means a thousand current computations. And as well as studying this for normal operating conditions, we must also examine backup scenarios, and this gives us several thousand short-circuit current calculations in all. A second self-imposed constraint was compliance with international standard IEC-909 [6], to avoid any risk of dispute on the results produced by the software. To summarize the method specified in IEC-909, we note that short-circuit currents are measured on the network under no-load conditions at 1.1 times the nominal network voltage. All network components (lines, transformers) are modelled by impedances (ignoring lateral capacitances), and generators are modelled by their subtransient reactances x d. This gives us the initial symmetrical short-circuit current I k, which is then transformed using formulas specified in the standard to obtain the breaking current Ib, for comparison with the equipment ratings.

4 Very briefly, we can summarize the software algorithm as follows : Import network data from databases existing at the centres (topology and component impedances), Enter data on generator plants. There are relatively few items here : apparent power, subtransient reactances of machines, reactances of step-up transformers, and impedance of connection line, Select required operational diagrams, Set three-phase fault condition for each diagram and each network component, Reduce network down to source nodes (MV network, generating plants), fault node and branch nodes, Compute short-circuit current on network component by inverting the bus impedance matrix. Computations give us short-circuit current values for each network component under each operational diagram. These values can then be compared with the rated short-circuit current thresholds. Results can be presented to the user in two forms, with on-screen identification of critically affected network components, and a summary table in Excel. In addition to a full result listing, the Excel table also logs all the computation assumptions and all the input data, ready for direct inclusion in the study report. Protection systems sensitivity may be decreased and zero- - sequence wattmetric protection installed. The MV busbar on the substation is protected by a phase overcurrent relay and a residual overcurrent relay on the incoming feeder. This protection system also performs a backup function in the event of failure of outgoing feeder protection. In addition, a plant connected to the network will be disconnected in the event of internal fault by a protection installed at the point of common coupling. Again, this protection consists of a zerosequence overcurrent relay and a phase overcurrent relay. Impact of generating plant on sensitivity and selectivity of protection system The protection against phase-to-earth faults is not affected by generating plant connected to the MV feeders, because connection is via a transformer with star-delta coupling (star on generator side and delta on network side). This means there will be no change in the zero- sequence currents detected by protection devices on the feeder under phase-toearth fault conditions. However, the protection system against phase-to-phase faults is affected by generating plant connected to the MV feeders, since the additional short-circuit current contributed by the generating plant does change the shortcircuit currents detected by the protection devices on the feeder. Fault on generator connection feeder. The fault current injected to the substation by the transformer will tend to decrease when the generating plant is running. The other feature of Praogen module 2 concerns setting of protection systems. EDF distribution networks consist of radial feeders (open-ring mode) powered by an HV/MV transformer. Each feeder is protected by the following devices : HV/MV transformer I Protection device Branch PI Phase overcurrent protection against phase-tophase faults, with a detection threshold set at 0.8 Iscbi, where Iscbi is the phase-to-phase short-circuit current at the point most electrically distant from the feeder. This setting will clear all two-phase or three-phase faults occurring on the feeder. Residual overcurrent protection (three times zero- sequence current) against phase-to-earth faults, set at 1.2 Ic (where Ic is the residual capacitive current on the feeder) to prevent nuisance tripping on fault-free feeders. For highly capacitive feeders, the detection Phase-to-phase fault Figure 1 : Fault on generator connection feeder It may therefore be necessary to adjust the setting of the protection device on the generator connection feeder. Fault on adjacent feeder. When a fault occurs on an adjacent feeder, the generators inject a shortcircuit current that is detected by the protection device on the connection feeder. If this current

5 exceeds the detection threshold, we will observe nuisance tripping on the connection feeder, in which case it will be necessary to replace this device by a directional overcurrent device. overcurrent, overvoltage, shirt-circuit current, HV/MV transformer I Protection device PI protection system. By enabling EDF to rapidly process applications for connecting generating plants onto the MV networks, this new tool will facilitate efficient accomplishment of an important network management function. Three-phase fault Figure 2 : Fault on adjacent feeder The Praogen software adjusts the protection plan automatically, by applying the following algorithm : Input user-specified operating diagrams, For each operating diagram, compute minimum phase-to-phase short-circuit current detected by protection device on generator connection feeder, by simulating phase-tophase on each feeder end, For each operating diagram, compute maximum short-circuit current detected by protection device on generator connection feeder for fault occurring on another feeder, by simulating three-phase fault on substation MV busbar. When computation is completed, Praogen proposes settings for the protection devices on the generator connection feeders, and may also recommend installation of directional protection devices. It also checks the setting of protection device installed at the point of common coupling, which is also liable to nuisance tripping when faults occur on the distribution network. As with the shortcircuit test, the software outputs setting results in two forms, with an on-screen display and an Excel file. CONCLUSION In the past, studies into the connection of generating plant onto the distribution network have suffered from oversimplification in certain aspects, owing to a lack of tools capable of performing the high number of computations required. The Praogen software solves this problem. Combined with the Harmonique software, it evaluates all the critical issues involved in studying connectability : Upgrades are planned to extend coverage of the Praogen software beyond the examination of connection applications. Future releases might, for example, compute maximum connectable power values at different points on the network, thus facilitating evaluation of connectability capacities for existing networks. REFERENCES [1] Conditions techniques de raccordement au réseau public des installations de production autonome d énergie électrique. Decrees of 21 July 1997 and 3 June 1998, Journal Officiel de la République Française [2] J.L. Fraisse, P. Michalak, P. Juston and A. Grandet. Technical conditions for the connection of generating facilities to the medium voltage network. Development of a 175Hz active filter for independent power producers, in Proceedings of CIRED 97, Vol. 1, Article N 5.14, Birmingham, UK, 2 to 5 June 1997 [3] S. Arson, J. Martinon, P. Rioual. «Intégration et utilisation d une méthode d analyse statistique dans un logiciel de simulation des réseaux électriques en régime harmonique». Electrimacs [4] D. Cortinas, Ph. Juston «Assessing the Impact of Dispersed Generation on Medium Voltage Networks: Analysis Methods». in IEEE PowerTech 99 Budapest. [5] D. Voirin, O. Jeannin and P. Haberstich. A configurable software platform for the distribution network research. in Proceedings of CIRED 99, Article N 5.22, Nice, France, 1 to 4 June [6] Calculation of short-circuit currents in threephase AC networks. International standard IEC_909, first edition 1988.

GRID CODE COMPATIBLE PROTECTION SCHEME FOR SMART GRIDS

GRID CODE COMPATIBLE PROTECTION SCHEME FOR SMART GRIDS GRID CODE COMPATIBLE PROTECTION SCHEME FOR SMART GRIDS Hannu LAAKSONEN ABB Oy Finland hannu.laaksonen@fi.abb.com ABSTRACT Medium-voltage (MV) network short-circuit protection operation time delays have

More information

PRC Generator Relay Loadability. Guidelines and Technical Basis Draft 5: (August 2, 2013) Page 1 of 76

PRC Generator Relay Loadability. Guidelines and Technical Basis Draft 5: (August 2, 2013) Page 1 of 76 PRC-025-1 Introduction The document, Power Plant and Transmission System Protection Coordination, published by the NERC System Protection and Control Subcommittee (SPCS) provides extensive general discussion

More information

PSV3St _ Phase-Sequence Voltage Protection Stage1 (PSV3St1) Stage2 (PSV3St2)

PSV3St _ Phase-Sequence Voltage Protection Stage1 (PSV3St1) Stage2 (PSV3St2) 1MRS752324-MUM Issued: 3/2000 Version: D/23.06.2005 Data subject to change without notice PSV3St _ Phase-Sequence Voltage Protection Stage1 (PSV3St1) Stage2 (PSV3St2) Contents 1. Introduction... 2 1.1

More information

PRC Generator Relay Loadability. Guidelines and Technical Basis Draft 4: (June 10, 2013) Page 1 of 75

PRC Generator Relay Loadability. Guidelines and Technical Basis Draft 4: (June 10, 2013) Page 1 of 75 PRC-025-1 Introduction The document, Power Plant and Transmission System Protection Coordination, published by the NERC System Protection and Control Subcommittee (SPCS) provides extensive general discussion

More information

Protection Scheme for Energy Storage Systems Operating in Island or Grid Connected Modes

Protection Scheme for Energy Storage Systems Operating in Island or Grid Connected Modes 24 th International Conference on Electricity Distribution Glasgow, 12-15 June 217 Paper 182 Protection Scheme for Energy Storage Systems Operating in Island or Grid Connected Modes Andre NEVES Bernardo

More information

EVALUATION OF DIFFERENT SOLUTIONS OF FAULTED PHASE EARTHING TECHNIQUE FOR AN EARTH FAULT CURRENT LIMITATION

EVALUATION OF DIFFERENT SOLUTIONS OF FAULTED PHASE EARTHING TECHNIQUE FOR AN EARTH FAULT CURRENT LIMITATION EVALUATION OF DIFFERENT SOLUTIONS OF FAULTED PHASE EARTHING TECHNIQUE FOR AN EARTH FAULT CURRENT LIMITATION David TOPOLANEK Petr TOMAN Michal PTACEK Jaromir DVORAK Brno University of Technology - Czech

More information

MV network design & devices selection EXERCISE BOOK

MV network design & devices selection EXERCISE BOOK MV network design & devices selection EXERCISE BOOK EXERCISES 01 - MV substation architectures 02 - MV substation architectures 03 - Industrial C13-200 MV substation 04 - Max. distance between surge arrester

More information

ESB National Grid Transmission Planning Criteria

ESB National Grid Transmission Planning Criteria ESB National Grid Transmission Planning Criteria 1 General Principles 1.1 Objective The specific function of transmission planning is to ensure the co-ordinated development of a reliable, efficient, and

More information

Table of Contents. Introduction... 1

Table of Contents. Introduction... 1 Table of Contents Introduction... 1 1 Connection Impact Assessment Initial Review... 2 1.1 Facility Design Overview... 2 1.1.1 Single Line Diagram ( SLD )... 2 1.1.2 Point of Disconnection - Safety...

More information

Impact Assessment Generator Form

Impact Assessment Generator Form Impact Assessment Generator Form This connection impact assessment form provides information for the Connection Assessment and Connection Cost Estimate. Date: (dd/mm/yyyy) Consultant/Developer Name: Project

More information

TABLE OF CONTENT

TABLE OF CONTENT Page : 1 of 34 Project Engineering Standard www.klmtechgroup.com KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru Malaysia TABLE OF CONTENT SCOPE 3 REFERENCES

More information

Company Directive STANDARD TECHNIQUE: SD7F/2. Determination of Short Circuit Duty for Switchgear on the WPD Distribution System

Company Directive STANDARD TECHNIQUE: SD7F/2. Determination of Short Circuit Duty for Switchgear on the WPD Distribution System Company Directive STANDARD TECHNIQUE: SD7F/2 Determination of Short Circuit Duty for Switchgear on the WPD Distribution System Policy Summary This document provides guidance on calculation of fault levels

More information

SHORT CIRCUIT ANALYSIS OF 220/132 KV SUBSTATION BY USING ETAP

SHORT CIRCUIT ANALYSIS OF 220/132 KV SUBSTATION BY USING ETAP SHORT CIRCUIT ANALYSIS OF 220/132 KV SUBSTATION BY USING ETAP Kiran V. Natkar 1, Naveen Kumar 2 1 Student, M.E., Electrical Power System, MSS CET/ Dr. B.A.M. University, (India) 2 Electrical Power System,

More information

Southern Company Interconnection Requirements for Inverter-Based Generation

Southern Company Interconnection Requirements for Inverter-Based Generation Southern Company Interconnection Requirements for Inverter-Based Generation September 19, 2016 Page 1 of 16 All inverter-based generation connected to Southern Companies transmission system (Point of Interconnection

More information

Current Transformer Requirements for VA TECH Reyrolle ACP Relays. PREPARED BY:- A Allen... APPROVED :- B Watson...

Current Transformer Requirements for VA TECH Reyrolle ACP Relays. PREPARED BY:- A Allen... APPROVED :- B Watson... TECHNICAL REPORT APPLICATION GUIDE TITLE: Current Transformer Requirements for VA TECH Reyrolle ACP Relays PREPARED BY:- A Allen... APPROVED :- B Watson... REPORT NO:- 990/TIR/005/02 DATE :- 24 Jan 2000

More information

Protection of Electrical Networks. Christophe Prévé

Protection of Electrical Networks. Christophe Prévé Protection of Electrical Networks Christophe Prévé This Page Intentionally Left Blank Protection of Electrical Networks This Page Intentionally Left Blank Protection of Electrical Networks Christophe Prévé

More information

Electricity Ten Year Statement November Electricity Ten Year Statement November Appendix D

Electricity Ten Year Statement November Electricity Ten Year Statement November Appendix D Electricity Ten Year Statement November 2017 01 Electricity Ten Year Statement November 2017 001 Appendix D 1 Short-circuit currents 02 2 Short-circuit current terminology 04 3 Data requirements 07 4 Fault

More information

Differential Protection for Microgrids with Embedded Generations

Differential Protection for Microgrids with Embedded Generations Differential Protection for Microgrids with Embedded Generations Paul Moroke Dept. of Electrical Engineering Tshwane University of Technology Pretoria, South Africa paulmoroke@gmail.com Abstract The permeation

More information

Application for A Sub-harmonic Protection Relay. ERLPhase Power Technologies

Application for A Sub-harmonic Protection Relay. ERLPhase Power Technologies Application for A Sub-harmonic Protection Relay ERLPhase Power Technologies 1 Outline Introduction System Event at Xcel Energy Event Analysis Microprocessor based relay hardware architecture Sub harmonic

More information

RAIDK, RAIDG, RAPDK and RACIK Phase overcurrent and earth-fault protection assemblies based on single phase measuring elements

RAIDK, RAIDG, RAPDK and RACIK Phase overcurrent and earth-fault protection assemblies based on single phase measuring elements RAIDK, RAIDG, RAPDK and RACIK Phase overcurrent and earth-fault protection assemblies based on single phase measuring elements User s Guide General Most faults in power systems can be detected by applying

More information

Integration between the MV protection and control unit REF542 and the LV protection trip unit PR123: selectivity and earth fault 1SDC007402G0201

Integration between the MV protection and control unit REF542 and the LV protection trip unit PR123: selectivity and earth fault 1SDC007402G0201 1SDC007402G0201 Index 1. Introduction... 2 2. Theoretical outline 2.1 Restricted earth fault... 3 2.2 Selectivity between medium and low voltage... 4 3. Application examples and wiring logic 3.1 Restricted

More information

A Tutorial on the Application and Setting of Collector Feeder Overcurrent Relays at Wind Electric Plants

A Tutorial on the Application and Setting of Collector Feeder Overcurrent Relays at Wind Electric Plants A Tutorial on the Application and Setting of Collector Feeder Overcurrent Relays at Wind Electric Plants Martin Best and Stephanie Mercer, UC Synergetic, LLC Abstract Wind generating plants employ several

More information

Feeder Protection Challenges with High Penetration of Inverter Based Distributed Generation

Feeder Protection Challenges with High Penetration of Inverter Based Distributed Generation Feeder Protection Challenges with High Penetration of Inverter Based Distributed Generation Harag Margossian 1, Florin Capitanescu 2, Juergen Sachau 3 Interdisciplinary Centre for Security, Reliability

More information

Numbering System for Protective Devices, Control and Indication Devices for Power Systems

Numbering System for Protective Devices, Control and Indication Devices for Power Systems Appendix C Numbering System for Protective Devices, Control and Indication Devices for Power Systems C.1 APPLICATION OF PROTECTIVE RELAYS, CONTROL AND ALARM DEVICES FOR POWER SYSTEM CIRCUITS The requirements

More information

ADVANCED VECTOR SHIFT ALGORITHM FOR ISLANDING DETECTION

ADVANCED VECTOR SHIFT ALGORITHM FOR ISLANDING DETECTION 23 rd International Conference on Electricity Distribution Lyon, 5-8 June 25 Paper 48 ADVANCED VECT SHIFT ALGITHM F ISLANDING DETECTION Murali KANDAKATLA Hannu LAAKSONEN Sudheer BONELA ABB GISL India ABB

More information

R10. III B.Tech. II Semester Supplementary Examinations, January POWER SYSTEM ANALYSIS (Electrical and Electronics Engineering) Time: 3 Hours

R10. III B.Tech. II Semester Supplementary Examinations, January POWER SYSTEM ANALYSIS (Electrical and Electronics Engineering) Time: 3 Hours Code No: R3 R1 Set No: 1 III B.Tech. II Semester Supplementary Examinations, January -14 POWER SYSTEM ANALYSIS (Electrical and Electronics Engineering) Time: 3 Hours Max Marks: 75 Answer any FIVE Questions

More information

1

1 Guidelines and Technical Basis Introduction The document, Power Plant and Transmission System Protection Coordination, published by the NERC System Protection and Control Subcommittee (SPCS) provides extensive

More information

ELECTRICAL POWER ENGINEERING

ELECTRICAL POWER ENGINEERING Introduction This trainer has been designed to provide students with a fully comprehensive knowledge in Electrical Power Engineering systems. The trainer is composed of a set of modules for the simulation

More information

Embedded Generation Connection Application Form

Embedded Generation Connection Application Form Embedded Generation Connection Application Form This Application Form provides information required for an initial assessment of the Embedded Generation project. All applicable sections must be completed

More information

EDS FAULT LEVELS

EDS FAULT LEVELS Document Number: EDS 08-1110 Network(s): Summary: EPN, LPN, SPN ENGINEERING DESIGN STANDARD EDS 08-1110 FAULT LEVELS This standard provides guidance on the calculation, application and availability of

More information

Short Circuit Calculation in Networks with a High Share of Inverter Based Distributed Generation

Short Circuit Calculation in Networks with a High Share of Inverter Based Distributed Generation Short Circuit Calculation in Networks with a High Share of Inverter Based Distributed Generation Harag Margossian, Juergen Sachau Interdisciplinary Center for Security, Reliability and Trust University

More information

Embedded Generation Connection Application Form

Embedded Generation Connection Application Form Embedded Generation Connection Application Form This Application Form provides information required for an initial assessment of the Embedded Generation project. All applicable sections must be completed

More information

Busbars and lines are important elements

Busbars and lines are important elements CHAPTER CHAPTER 23 Protection of Busbars and Lines 23.1 Busbar Protection 23.2 Protection of Lines 23.3 Time-Graded Overcurrent Protection 23.4 Differential Pilot-Wire Protection 23.5 Distance Protection

More information

BE Semester- VI (Electrical Engineering) Question Bank (E 605 ELECTRICAL POWER SYSTEM - II) Y - Y transformer : 300 MVA, 33Y / 220Y kv, X = 15 %

BE Semester- VI (Electrical Engineering) Question Bank (E 605 ELECTRICAL POWER SYSTEM - II) Y - Y transformer : 300 MVA, 33Y / 220Y kv, X = 15 % BE Semester- V (Electrical Engineering) Question Bank (E 605 ELECTRCAL POWER SYSTEM - ) All questions carry equal marks (10 marks) Q.1 Explain per unit system in context with three-phase power system and

More information

Electrical Protection System Design and Operation

Electrical Protection System Design and Operation ELEC9713 Industrial and Commercial Power Systems Electrical Protection System Design and Operation 1. Function of Electrical Protection Systems The three primary aims of overcurrent electrical protection

More information

MV/LV transformer substations: theory and examples of short-circuit calculation

MV/LV transformer substations: theory and examples of short-circuit calculation 2 September 2005 1SDC007101G0201 Technical Application Papers MV/LV transformer substations: theory and examples of short-circuit calculation Technical Application Papers MV/LV transformer substations:

More information

Level 6 Graduate Diploma in Engineering Electrical Energy Systems

Level 6 Graduate Diploma in Engineering Electrical Energy Systems 9210-114 Level 6 Graduate Diploma in Engineering Electrical Energy Systems Sample Paper You should have the following for this examination one answer book non-programmable calculator pen, pencil, ruler,

More information

A Pyrotechnic Fault Current Limiter Model for Transient Calculations in Industrial Power Systems

A Pyrotechnic Fault Current Limiter Model for Transient Calculations in Industrial Power Systems A Pyrotechnic Fault Current Limiter Model for Transient Calculations in Industrial Power Systems T. C. Dias, B. D. Bonatto, J. M. C. Filho Abstract-- Isolated industrial power systems or with high selfgeneration,

More information

AUTOMATIC CALCULATION OF RELAY SETTINGS FOR A BLOCKING PILOT SCHEME

AUTOMATIC CALCULATION OF RELAY SETTINGS FOR A BLOCKING PILOT SCHEME AUTOMATIC CALCULATION OF RELAY SETTINGS FOR A BLOCKING PILOT SCHEME Donald M. MACGREGOR Electrocon Int l, Inc. USA eii@electrocon.com Venkat TIRUPATI Electrocon Int l, Inc. USA eii@electrocon.com Russell

More information

Improvement of Electricity Distribution Services Using a DVR with a Constant DC Voltage Source Instaled in MV Connection Substations

Improvement of Electricity Distribution Services Using a DVR with a Constant DC Voltage Source Instaled in MV Connection Substations Improvement of Electricity Distribution Services Using a DVR with a Constant DC Voltage Source Instaled in MV Connection Substations Gheorghe Ioan Nicolaescu, Horia Andrei, Stefan Radulescu Electrical

More information

Digital Fault Recorder Deployment at HVDC Converter Stations

Digital Fault Recorder Deployment at HVDC Converter Stations Digital Fault Recorder Deployment at HVDC Converter Stations On line continuous monitoring at HVDC Converter Stations is an important asset in determining overall system performance and an essential diagnostic

More information

Course ELEC Introduction to electric power and energy systems. Additional exercises with answers December reactive power compensation

Course ELEC Introduction to electric power and energy systems. Additional exercises with answers December reactive power compensation Course ELEC0014 - Introduction to electric power and energy systems Additional exercises with answers December 2017 Exercise A1 Consider the system represented in the figure below. The four transmission

More information

Smart Grid Where We Are Today?

Smart Grid Where We Are Today? 1 Smart Grid Where We Are Today? Meliha B. Selak, P. Eng. IEEE PES DLP Lecturer melihas@ieee.org 2014 IEEE ISGT Asia, Kuala Lumpur 22 nd May 2014 2 Generation Transmission Distribution Load Power System

More information

CONTENTS. 1. Introduction Generating Stations 9 40

CONTENTS. 1. Introduction Generating Stations 9 40 CONTENTS 1. Introduction 1 8 Importance of Electrical Energy Generation of Electrical Energy Sources of Energy Comparison of Energy Sources Units of Energy Relationship among Energy Units Efficiency Calorific

More information

Impedance protection on power transformer.

Impedance protection on power transformer. Impedance protection on power transformer www.siemens.com/siprotec5 SIPROTEC 5 Application Impedance Protection on Power Transformer APN-045, Edition 1 Content 1...3 1.1 Introduction...3 1.2 Application

More information

Harmonic distortion analysis on the MV and LV distribution networks: problems, influencing factors and possible solutions

Harmonic distortion analysis on the MV and LV distribution networks: problems, influencing factors and possible solutions Harmonic distortion analysis on the MV and LV distribution networks: problems, influencing factors and possible solutions Fernando Bastião and Humberto Jorge Department of Electrical Engineering and Computers

More information

Transmission Interconnection Requirements for Inverter-Based Generation

Transmission Interconnection Requirements for Inverter-Based Generation Transmission Requirements for Inverter-Based Generation June 25, 2018 Page 1 Overview: Every generator interconnecting to the transmission system must adhere to all applicable Federal and State jurisdictional

More information

Power Quality Requirements for Connection to the Transmission System

Power Quality Requirements for Connection to the Transmission System Power Quality Requirements for Connection to the Transmission System Revision: 1.0 Date: September 2015 Introduction and Purpose of this Document The purpose of this document is to provide clarity to Customers

More information

POWER SYSTEM ANALYSIS TADP 641 SETTING OF OVERCURRENT RELAYS

POWER SYSTEM ANALYSIS TADP 641 SETTING OF OVERCURRENT RELAYS POWER SYSTEM ANALYSIS TADP 641 SETTING OF OVERCURRENT RELAYS Juan Manuel Gers, PhD Protection coordination principles Relay coordination is the process of selecting settings that will assure that the relays

More information

Embedded Generation Connection Application Form

Embedded Generation Connection Application Form Embedded Generation Connection Application Form This Application Form provides information required for an initial assessment of the Embedded Generation project. All applicable sections must be completed

More information

PRC Generator Relay Loadability. A. Introduction 1. Title: Generator Relay Loadability 2. Number: PRC-025-1

PRC Generator Relay Loadability. A. Introduction 1. Title: Generator Relay Loadability 2. Number: PRC-025-1 PRC-025-1 Generator Relay Loadability A. Introduction 1. Title: Generator Relay Loadability 2. Number: PRC-025-1 Purpose: To set load-responsive protective relays associated with generation Facilities

More information

PROTECTION of electricity distribution networks

PROTECTION of electricity distribution networks PROTECTION of electricity distribution networks Juan M. Gers and Edward J. Holmes The Institution of Electrical Engineers Contents Preface and acknowledgments x 1 Introduction 1 1.1 Basic principles of

More information

THE IMPACT OF NETWORK SPLITTING ON FAULT LEVELS AND OTHER PERFORMANCE MEASURES

THE IMPACT OF NETWORK SPLITTING ON FAULT LEVELS AND OTHER PERFORMANCE MEASURES THE IMPACT OF NETWORK SPLITTING ON FAULT LEVELS AND OTHER PERFORMANCE MEASURES C.E.T. Foote*, G.W. Ault*, J.R. McDonald*, A.J. Beddoes *University of Strathclyde, UK EA Technology Limited, UK c.foote@eee.strath.ac.uk

More information

ABSTRACT 1 INTRODUCTION

ABSTRACT 1 INTRODUCTION ELECTROMAGNETIC ANALYSIS OF WIND TURBINE GROUNDING SYSTEMS Maria Lorentzou*, Ian Cotton**, Nikos Hatziargyriou*, Nick Jenkins** * National Technical University of Athens, 42 Patission Street, 1682 Athens,

More information

Session Four: Practical Insulation Co-ordination for Lightning Induced Overvoltages

Session Four: Practical Insulation Co-ordination for Lightning Induced Overvoltages Session Four: ractical Insulation Co-ordination Session Four: ractical Insulation Co-ordination for Lightning Induced Overvoltages Jason Mayer Technical Director, Energy Services, Aurecon Introduction

More information

G. KOEPPL Koeppl Power Experts Switzerland

G. KOEPPL Koeppl Power Experts Switzerland PS3: Substation Design: New Solutions and Experiences Bus-Node Substation A Big Improvement in Short-Circuit and Switching Properties at Reduced Substation Costs G. KOEPPL Koeppl Power Experts Switzerland

More information

Voltage Source Converter Modelling

Voltage Source Converter Modelling Voltage Source Converter Modelling Introduction The AC/DC converters in Ipsa represent either voltage source converters (VSC) or line commutated converters (LCC). A single converter component is used to

More information

Voltage Sags Evaluating Methods, Power Quality and Voltage Sags Assessment regarding Voltage Dip Immunity of Equipment

Voltage Sags Evaluating Methods, Power Quality and Voltage Sags Assessment regarding Voltage Dip Immunity of Equipment s Evaluating Methods, Power Quality and s Assessment regarding Voltage Dip Immunity of Equipment ANTON BELÁŇ, MARTIN LIŠKA, BORIS CINTULA, ŽANETA ELESCHOVÁ Institute of Power and Applied Electrical Engineering

More information

POWER TRANSFORMER SPECIFICATION, DESIGN, QUALITY CONTROL AND TESTING 18 MARCH 2009

POWER TRANSFORMER SPECIFICATION, DESIGN, QUALITY CONTROL AND TESTING 18 MARCH 2009 POWER TRANSFORMER SPECIFICATION, DESIGN, QUALITY CONTROL AND TESTING 18 MARCH 2009 Nkosinathi Buthelezi Senior Consultant: Power Transformers and Reactors Presentation Content Standardization of Power

More information

Auxiliary DC Voltage

Auxiliary DC Voltage THE 9 th INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING May 7-9, 2015 Bucharest, Romania DVR with Auxiliary DC Voltage Source Provided by A High Power Diode Based Rectifier Used in

More information

Appendix D Fault Levels

Appendix D Fault Levels Appendix D Fault Levels Page 1 Electricity Ten Year Statement November 2013 D.1 Short Circuit Currents Short Circuit Currents Three phase to earth and single phase to earth short circuit current analyses

More information

ekor.rpa Protection, metering and control multifunction unit General Instructions IG-267-EN, version 01, 07/04/2017 LIB

ekor.rpa Protection, metering and control multifunction unit General Instructions IG-267-EN, version 01, 07/04/2017 LIB Protection, metering and control multifunction unit General Instructions IG-267-EN, version 01, 07/04/2017 LIB CAUTION! When medium-voltage equipment is operating, certain components are live, other parts

More information

ALI UMAIR DETECTION ALGORITHM FOR THE CROSS COUNTRY EARTH FAULTS IN MEDIUM VOLTAGE NETWORK

ALI UMAIR DETECTION ALGORITHM FOR THE CROSS COUNTRY EARTH FAULTS IN MEDIUM VOLTAGE NETWORK ALI UMAIR DETECTION ALGORITHM FOR THE CROSS COUNTRY EARTH FAULTS IN MEDIUM VOLTAGE NETWORK Masters of Science Thesis Examiner: Professor Pertti Järventausta and Dr Tech. Ari Nikander Examiner and topic

More information

Focused Directional Overcurrent Elements (67P, Q and N) for DER Interconnection Protection

Focused Directional Overcurrent Elements (67P, Q and N) for DER Interconnection Protection Engineered Solutions for Power System Protection, Automaton and Control APPLICATION NOTE Focused Directional Overcurrent Elements (67P, Q and N) for DER Interconnection Protection 180622 Abstract This

More information

Improving Network Availability with Intelligent Electronic Devices

Improving Network Availability with Intelligent Electronic Devices Improving Network Availability with Intelligent Electronic Devices Guillaume Verneau - Schneider Electric - France Yves Chollot - Schneider Electric - France Pascal Cumunel - Schneider Electric - France

More information

DG TRANSFER CONNECTION SCHEME IN ACTIVE DISTRIBUTION NETWORKS

DG TRANSFER CONNECTION SCHEME IN ACTIVE DISTRIBUTION NETWORKS DG TRANSFER CONNECTION SCHEME IN ACTIVE DISTRIBUTION NETWORKS Abdelrahman AKILA Ahmed HELAL Hussien ELDESOUKI SDEDCO Egypt AASTMT Egypt AASTMT Egypt Abdurrahman.akela@gmail.com ahmedanas@aast.edu hdesouki@aast.edu

More information

Single Line Diagram of Substations

Single Line Diagram of Substations Single Line Diagram of Substations Substations Electric power is produced at the power generating stations, which are generally located far away from the load centers. High voltage transmission lines are

More information

Residual Current Operated Circuit-Breakers (RCCBs)

Residual Current Operated Circuit-Breakers (RCCBs) Product Overview Residual Current Operated Circuit-Breakers (RCCBs) Residual current operated circuit-breakers Number of poles Rated current A Rated residual current ma MW Auxiliary contacts can be mounted

More information

NERC Protection Coordination Webinar Series June 16, Phil Tatro Jon Gardell

NERC Protection Coordination Webinar Series June 16, Phil Tatro Jon Gardell Power Plant and Transmission System Protection Coordination Phase Distance (21) and Voltage-Controlled or Voltage-Restrained Overcurrent Protection (51V) NERC Protection Coordination Webinar Series June

More information

LIMITING THE DANGER OF ELECTRIC CURRENT SHOCK IN RELATION TO THE MEAN OF NEUTRAL POINT EARTHING IN THE MV NETWORKS

LIMITING THE DANGER OF ELECTRIC CURRENT SHOCK IN RELATION TO THE MEAN OF NEUTRAL POINT EARTHING IN THE MV NETWORKS LIMITING THE DANGER OF ELECTRIC CURRENT SHOCK IN RELATION TO THE MEAN OF NEUTRAL POINT EARTHING IN THE MV NETWORKS Witold Hoppel, Józef Lorenc!" ph.+48 61 8782279 - FAX + 48 61 8782280 Jerzy Andruszkiewicz

More information

MV ELECTRICAL TRANSMISSION DESIGN AND CONSTRUCTION STANDARD. PART 1: GENERAL 1.01 Transformer

MV ELECTRICAL TRANSMISSION DESIGN AND CONSTRUCTION STANDARD. PART 1: GENERAL 1.01 Transformer PART 1: GENERAL 1.01 Transformer A. This section includes liquid filled, pad mounted distribution transformers with primary voltage of 12kV or 4.16kV (The University will determine primary voltage), with

More information

This webinar brought to you by The Relion Product Family Next Generation Protection and Control IEDs from ABB

This webinar brought to you by The Relion Product Family Next Generation Protection and Control IEDs from ABB This webinar brought to you by The Relion Product Family Next Generation Protection and Control IEDs from ABB Relion. Thinking beyond the box. Designed to seamlessly consolidate functions, Relion relays

More information

Adaptive Relaying of Radial Distribution system with Distributed Generation

Adaptive Relaying of Radial Distribution system with Distributed Generation Adaptive Relaying of Radial Distribution system with Distributed Generation K.Vijetha M,Tech (Power Systems Engineering) National Institute of Technology-Warangal Warangal, INDIA. Email: vijetha258@gmail.com

More information

Hamdy Faramawy Senior Application Specialist ABB Sweden

Hamdy Faramawy Senior Application Specialist ABB Sweden Design, Engineering and Application of New Firm Capacity Control System (FCCS) Mohammed Y. Tageldin, MSc. MIET Senior Protection Systems Engineer ABB United Kingdom mohammed.tageldin@gb.abb.com Hamdy Faramawy

More information

ABB AG - EPDS. I S -limiter The worldʼs fastest limiting and switching device

ABB AG - EPDS. I S -limiter The worldʼs fastest limiting and switching device ABB AG - EPDS The worldʼs fastest limiting and switching device Agenda The world s fastest limiting and switching device Customers Function: Insert-holder with insert Comparison: I S -limiter Circuit-breaker

More information

Connection Impact Assessment Application

Connection Impact Assessment Application Connection Impact Assessment Application This form is for generators applying for Connection Impact Assessment (CIA) and for generators with a project size >10 kw. Please return the completed form by email,

More information

(Circuits Subject to Requirements R1 R5) Generator Owner with load-responsive phase protection systems as described in

(Circuits Subject to Requirements R1 R5) Generator Owner with load-responsive phase protection systems as described in A. Introduction 1. Title: Transmission Relay Loadability 2. Number: PRC-023-3 3. Purpose: Protective relay settings shall not limit transmission loadability; not interfere with system operators ability

More information

EH2741 Communication and Control in Electric Power Systems Lecture 2

EH2741 Communication and Control in Electric Power Systems Lecture 2 KTH ROYAL INSTITUTE OF TECHNOLOGY EH2741 Communication and Control in Electric Power Systems Lecture 2 Lars Nordström larsno@kth.se Course map Outline Transmission Grids vs Distribution grids Primary Equipment

More information

Document C-29. Procedures for System Modeling: Data Requirements & Facility Ratings. January 5 th, 2016 TFSS Revisions Clean Open Process Posting

Document C-29. Procedures for System Modeling: Data Requirements & Facility Ratings. January 5 th, 2016 TFSS Revisions Clean Open Process Posting Document C-29 Procedures for System Modeling: January 5 th, 2016 TFSS Revisions Clean Open Process Posting Prepared by the SS-37 Working Group on Base Case Development for the Task Force on System Studies.

More information

New solution for feeder earth-fault protection

New solution for feeder earth-fault protection Application Note New solution to feeder earth-fault protection 1 (8) APPLICATION NOTE New solution for feeder earth-fault protection AQ-200 IED series Application Note New solution to feeder earth-fault

More information

Short-Circuit Apparent Power of System Survey Comments

Short-Circuit Apparent Power of System Survey Comments WG Item 87 Short-Circuit Apparent Power of System Survey Comments Again, the values given in Table 18 are totally unrealistic of system conditions. I do not know any systems for which the short-circuit

More information

Coil Products Beginnings 1960 State of the Art. Customer partnership around the globe. Continuous innovation since 1900

Coil Products Beginnings 1960 State of the Art. Customer partnership around the globe. Continuous innovation since 1900 Coil Products Coil Products Customer partnership around the globe More than 250,000 coil products delivered to more than 170 countries. More than 60 years of operational experience. 35,000 in Europe 13,000

More information

This document covers common questions concerning the design of an effectively grounded system.

This document covers common questions concerning the design of an effectively grounded system. This document covers common questions concerning the design of an effectively grounded system. To prevent against temporary overvoltage conditions when a line-to-ground fault occurs on the power grid.

More information

INVESTIGATING THE BENEFITS OF MESHING REAL UK LV NETWORKS

INVESTIGATING THE BENEFITS OF MESHING REAL UK LV NETWORKS INVESTIGATING THE BENEFITS OF MESHING REAL UK LV NETWORKS Muhammed S. AYDIN Alejandro NAVARRO Espinosa Luis F. OCHOA The University of Manchester UK The University of Manchester UK The University of Manchester

More information

OPEN-PHASE DETECTION TECHNIQUES FOR CRITICAL STANDBY SUPPLIES

OPEN-PHASE DETECTION TECHNIQUES FOR CRITICAL STANDBY SUPPLIES OPEN-PHASE DETECTION TECHNIQUES FOR CRITICAL STANDBY SUPPLIES U AJMAL, GE Grid Solutions UK Ltd, usman.ajmal@ge.com S SUBRAMANIAN, GE Grid Solutions UK Ltd, sankara.subramanian@ge.com H Ha GE Grid Solutions

More information

RESEARCH ON CLASSIFICATION OF VOLTAGE SAG SOURCES BASED ON RECORDED EVENTS

RESEARCH ON CLASSIFICATION OF VOLTAGE SAG SOURCES BASED ON RECORDED EVENTS 24 th International Conference on Electricity Distribution Glasgow, 2-5 June 27 Paper 97 RESEARCH ON CLASSIFICATION OF VOLTAGE SAG SOURCES BASED ON RECORDED EVENTS Pengfei WEI Yonghai XU Yapen WU Chenyi

More information

Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems by Kamran Sharifabadi, Lennart Harnefors, Hans-Peter

Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems by Kamran Sharifabadi, Lennart Harnefors, Hans-Peter 1 Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems by Kamran Sharifabadi, Lennart Harnefors, Hans-Peter Nee, Staffan Norrga, Remus Teodorescu ISBN-10: 1118851560

More information

ARC FLASH PPE GUIDELINES FOR INDUSTRIAL POWER SYSTEMS

ARC FLASH PPE GUIDELINES FOR INDUSTRIAL POWER SYSTEMS The Electrical Power Engineers Qual-Tech Engineers, Inc. 201 Johnson Road Building #1 Suite 203 Houston, PA 15342-1300 Phone 724-873-9275 Fax 724-873-8910 www.qualtecheng.com ARC FLASH PPE GUIDELINES FOR

More information

EH27401 Communication and Control in Electric Power Systems Lecture 2. Lars Nordström

EH27401 Communication and Control in Electric Power Systems Lecture 2. Lars Nordström EH27401 Communication and Control in Electric Power Systems Lecture 2 Lars Nordström larsn@ics.kth.se 1 Course map 2 Outline 1. Power System Topologies Transmission Grids vs Distribution grids Radial grids

More information

Line protection with transformer in the protection zone

Line protection with transformer in the protection zone Line protection with transformer in the protection zone www.siemens.com/siprotec5 Three-end line protection with transformer in the protection range SIPROTEC 5 Application Three-end line protection with

More information

C&G Level 3 Award in the Periodic Inspection, Testing and Certification of Electrical Installations

C&G Level 3 Award in the Periodic Inspection, Testing and Certification of Electrical Installations C&G 2395-01 Level 3 Award in the Periodic Inspection, Testing and Certification of Electrical Installations Phase rotation and verification of voltage drop 1 Outcomes of this Session describe how to assess

More information

Index. b back-flashover 245 biomass 207 breakers 74 buchholz protection 235 busbar sectionalizer 193 business enterprises 18

Index. b back-flashover 245 biomass 207 breakers 74 buchholz protection 235 busbar sectionalizer 193 business enterprises 18 331 Index a activity plan 318 agricultural enterprise 21 annual increase factor 12 annuity factor 44, 156 annuity method 38 ANSI code numbers 237 arrester, protection level 245 assessment of losses 38

More information

When surge arres t ers are installed close to a power transformer, overvoltage TRANSFORMER IN GRID ABSTRACT KEYWORDS

When surge arres t ers are installed close to a power transformer, overvoltage TRANSFORMER IN GRID ABSTRACT KEYWORDS TRANSFORMER IN GRID When surge arres t ers are installed close to a power transformer, they provide protection against lightning overvoltage ABSTRACT The aim of this research article is to determine the

More information

Cork Institute of Technology. Autumn 2008 Electrical Energy Systems (Time: 3 Hours)

Cork Institute of Technology. Autumn 2008 Electrical Energy Systems (Time: 3 Hours) Cork Institute of Technology Bachelor of Science (Honours) in Electrical Power Systems - Award Instructions Answer FIVE questions. (EELPS_8_Y4) Autumn 2008 Electrical Energy Systems (Time: 3 Hours) Examiners:

More information

Unit 2. Single Line Diagram of Substations

Unit 2. Single Line Diagram of Substations Unit 2 Single Line Diagram of Substations Substations Electric power is produced at the power generating stations, which are generally located far away from the load centers. High voltage transmission

More information

Protection of MV Converters in the Grid: The Case of MV/LV Solid-State Transformers

Protection of MV Converters in the Grid: The Case of MV/LV Solid-State Transformers 2017 IEEE IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 5, No. 1, pp. 393-408, March 2017 Protection of MV Converters in the Grid: The Case of MV/LV Solid-State Transformers T.

More information

Electrical Power Systems

Electrical Power Systems Electrical Power Systems CONCEPT, THEORY AND PRACTICE SECOND EDITION SUBIR RAY Professor MVJ College of Engineering Bangalore PHI Learning Pfcte tofm Delhi-110092 2014 Preface xv Preface to the First Edition

More information

METHOD TO DETERMINE CONTRIBUTION OF THE CUSTOMER AND THE POWER SYSTEM TO THE HARMONIC DISTURBANCE

METHOD TO DETERMINE CONTRIBUTION OF THE CUSTOMER AND THE POWER SYSTEM TO THE HARMONIC DISTURBANCE C I R E D 17 th International Conference on Electricity Distribution Barcelona, 1-15 May 3 METHOD TO DETERMINE CONTRIBUTION OF THE CUSTOMER AND THE POWER SYSTEM TO THE HARMONIC DISTURBANCE Olivier GONBEAU

More information

High Voltage DC Transmission Prof. Dr. S. N. Singh Department of Electrical Engineering Indian Institute of Technology, Kanpur

High Voltage DC Transmission Prof. Dr. S. N. Singh Department of Electrical Engineering Indian Institute of Technology, Kanpur High Voltage DC Transmission Prof. Dr. S. N. Singh Department of Electrical Engineering Indian Institute of Technology, Kanpur Module No. # 01 Lecture No. # 02 Comparison of HVAC and HVDC Systems Welcome

More information

TS RES - OUTSTANDING ISSUES

TS RES - OUTSTANDING ISSUES TS RES - OUTSTANDING ISSUES This document has been officially issued as DRAFT until the following outstanding issues have been resolved. At that time the document will be officially reissued as the next

More information