A Small Area 5GHz LC VCO with an On-Chip Solenoid Inductor using a 0.13μm Digital CMOS Technology

Size: px
Start display at page:

Download "A Small Area 5GHz LC VCO with an On-Chip Solenoid Inductor using a 0.13μm Digital CMOS Technology"

Transcription

1 A Small Area 5GHz LC VCO with an On-Chip Solenoid Inductor using a 0.3μm Digital CMOS Technology Chul Nam, Byeungleul Lee 2, Tae-Young Byun 3, Yongjun Jon 4, and Bonghwan Kim 5,* R&D Center/Siliconharmony, Seong Nam-Si, Korea 2 Mechatronics Engineering, Korea University of Technology and Education, Chungnam, Korea 3 School of Information Technology Engineering, Catholic University of Daegu, Gyeongbuk, Korea 4 TIOS Inc., Gyeongbuk, Korea 5 Electronics Engineering, Catholic University of Daegu, Gyeongbuk, Korea * bhkim@cu.ac.kr ABSTRACT This paper presents a small area LC VCO with an on-chip solenoid inductor using 0.3μm digital CMOS technology. This on-chip solenoid inductor is vertically built by metal and via layers with a horizontal occupation which gives the advantages of small area due to 3-D nature compared to a spiral inductor. Based on 3-D EM simulation and analysis, the unified equivalent model for a solenoid inductor is proposed so that it could be adapted for LC Voltage controlled oscillator in the digital standard CMOS process. The designed LC VCO has the occupation area as 0.03 mm 2 and the frequency tuning range as GHz. The measured phase noise of VCO was measured as dBc/Hz at a MHz offset with the power consumption of 3.2mW with total area of 0.028mm 2. KEYWORDS On-chip solenoid inductor, LC VCO, EM simulation, CMOS. INTRODUCTION Even though the high speed digital complementary metal-oxide semiconductor (CMOS) technology has been developed up to several GHz in the frequency, the inductorcapacitor (LC) voltage controlled oscillator (VCO) are still requiring the RF process with the ultra-thick metal spiral inductor. In other hands, for the sake of low cost process, the digitally controlled oscillator (DCO)s have been studied operating at the several gigahertz range in the digital CMOS technology [-2]. The spiral inductor used in DCOs, however, is still a copy of one used in RF process sacrificing quality factor and occupying large area, what is worse, causing the high processing cost. In addition, circuit designers have to face the challenges in designing one s own spiral inductor and take responsibility for its performance even after electromagnetic (EM) simulation was done through EDA tools such as Agilent Momentum, FEMLAB, Sonnet, ASTIC [3] and HFSS [4] etc. A study of solenoid inductor has been done mainly in microelectro-mechanical-systems (MEMS) technology [5]. An electroplated MEMS inductor had been reported with a high quality factor and an inductance of a tenth of nh owing to the good conductivity of copper [6]. However, its application into CMOS process results in the additional mask steps and increases the processing cost. Before 0.3μm CMOS process, the poor conductivity of Al in CMOS process had to use a thick metallization method interconnecting more than two metals to reduce the series resistance of inductor. Therefore, the copper metallization below 0.3μm CMOS standard process has introduced the possibility of implementing a low series resistance inductor in LC type VCO while the large area spiral inductor is still obstacle for the low cost standard CMOS process. ISBN: SDIWC 22

2 In this paper, on-chip solenoid inductors using metal and via stacking were designed and their electrical characteristics in terms of inductance and quality factor were simulated using 3D-EM simulator [7]. Designed inductors according to the different dimension had been implemented and measured its characteristics by two port S- parameters using a HP E4440A. The measured S-parameters were used in analyzing the proposed equivalent lumped model and further the linearized equation through the parameter optimization. Based on this model, a LC type VCO with on-chip solenoid inductor had been designed and measured in regards to its tuning range and phase noise. number of turns (N) and the pitch (p) between each turn. As the cross area is determined by the process technology, the inductance is then proportional to the width (W) and the number of turns (L S N W). Normally, the series resistance of the inductor (R S ), which mainly affects the quality factor, is increased by the skin effect [8] and the proximity effect according to operating frequency. In solenoid inductor, the proximity effect can be ignored as the conductor moves farther from the adjacent turns. R S is rewritten approximately as; R s = R dc t δ ( e t δ ) = ρ 2NW + 2W w W l t δ ( e t δ ) () 2. ON-CHIP SOLENOID INDUCTOR Usually, the magnetic flux of the spiral inductor using the planar CMOS process penetrates the substrate with its axis perpendicular to the surface. Naturally, the spiral inductor has impairment about a low quality factor due to the substrate loss and a reason to put the pattern ground shield under the inductor. On the other hand, the building of solenoid inductor is completed to connect the top plates (M6) and the bottom plates (M) through vias (V-V5) as shown in Fig. [7]. Since its axis is parallel to the substrate, the solenoid inductor is less susceptible to the substrate losses due to the eddy current. 0.37µm H Wl Bottom Plate PORT l W p 0.28µm Ww W Top Plate PORT2 V5 V4 V3 V2 V Figure. A structure of the solenoid inductor [7]. In general analysis, the macro-scale inductance of solenoid is expressed in terms of its dimension such as cross-section area, the M6 M5 M4 M3 M2 M δ = ρ πμf (2) where t, W w and W l represent the metal thickness, the post width and the post length, and ρ, μ and ƒ are the resistivity of the copper, the permeability of the air and the operating frequency, respectively [7]. For 5GHz frequency applications, the skin depth, δ, is about 0.94μm and can be ignored as it is larger than the top metal thickness 0.9μm, for example, in 0.3μm digital CMOS process[7]. The series resistance, R S becomes.2 R dc and in the same way, the quality factor can be expressed as Q = ω L S R dc W N (3) In equation 3, the width (W) is quite larger than the post width (W w ) and length (W l ) and R dc is also proportional to N W, and then the quality factor becomes inversely proportional to N W. From equation (), (2) and (3), we can suggest the design parameters of the solenoid inductor as W and N. These parameters give the good golden rule designing the solenoid inductor. ISBN: SDIWC 23

3 3. LC VCO DESIGN & CHARACTERIZATION The proposed LC VCO with on-chip solenoid inductor consists of a negative-gm circuit, a pair of varactor for fine tuning, and a varactor tuning bank for coarse tuning as show in Fig. 2 and Fig. 3. Once the solenoid inductance (L S ) is determined according to the number of turn (N) from the linearized equation [7], the oscillation frequency of VCO can be calculated with the fine and coarse tuning capacitance by; Equation 4. f osc = P R SI 2π L s (C dsv + C fvar ) (4) N*R S N*C P C SI N*L S R SI P2 N*C P Figure 2. The proposed unified equivalent model of solenoid inductor. C SI the varactor capacitance at nth control signal can be expressed in terms of the effective switchable capacitance and control signals as; C dsv,n = C low,n + D[n] C dsv,n (5) Furthermore, if varactor capacitor array is binary-weighted, the total capacitance of the varactor bank becomes; C dsv = 2 3 C low,0 + C dsv (6) C dsv = C dsv,0 n=2 2 n n=0 D[n] (7) Then, the maximum variable capacitance which contributes the total frequency range is 7 times the effective switchable capacitance, that is ΔC dcv_max = 7 ΔC dsv,0 =7 (C high,0 -C low,0 ), in which the subscript 0 denotes LSB. This makes the tunable frequency range as; f = f max f min = f max ( C low,0 C high,0 (8) f max, f min 2πL s 7 C low,0 2πL s 7 C high,0 (9) where, C fvar < 7 C low,0 <7 C high,0. Figure 3. The proposed LC VCO circuit. In the proposed LC VCO, the varactor tuning bank composed of C -C 6 is controlled by signals, D[2:0] to cover the wide frequency tuning range. The varactor capacitance is highest (C high,n ) when the corresponding control signal, D[n] is asserted high and lowest(c low,n ) when D[n] is low. The difference between the highest and lowest capacitance by nth bit becomes the effective switchable capacitance (ΔC dsv,n ) using ΔC dsv,n =C high,n -C low,n [9]. Thus, Figure 4. The measured VCO spectrum output. The LC tuned VCO adopting of solenoid inductor with W=60μm and N=8 was measured with a spectrum analyzer (HP E4440A) as shown in Fig. 4. The center ISBN: SDIWC 24

4 frequency of VCO is tuned to 5.78 GHz with.5v supply. The measured phase noise was dBc/Hz at an offset frequency of MHz from the carrier frequency as shown in Fig. 5. Figure 6 shows that the measured total tuning range is about 924MHz (20% of the center frequency) by the coarse tuning from 4.8GHz to 5.9GHz. The fine tuning is done after the coarse tuning is performed by an analog signal, V ctrl. The VCO gain (KVCO) was measured at about 24MHz/Volt, which means either increasing the VCO gain or extending more coarse control bits to cover the missing frequency between steps. LC VCOs [0-2]. Figure 7 shows the layout and die photograph of the proposed LC VCO. The figure of merit (FOM) for VCOs can be calculated by; FOM = PN f 20 log( f o f ) + 0 log P mw (0) From the measured phase noise, the FOM was calculated to be -68 dbc/hz dBc/Hz (a) (b) Figure 7. The proposed LC VCO: (a) Layout and (b) die 4. CONCLUSIONS Frequency(GHz) Figure 5. The measured VCO phase noise. f=924mhz D<2:0>=00 D<2:0>=00 D<2:0>=0 D<2:0>=00 D<2:0>=0 D<2:0>=0 D<2:0>= Vctrl(Volt) D<2:0>=000 Figure 6. The VCO frequency tuning curves (W=60 μm N=8) The proposed LC VCO has the smallest size except for by using the small area solenoid; it is about 5 and 0 times smaller than the reported A small area LC VCO with an on-chip solenoid inductor was fabricated using the 0.3μm digital CMOS process without any additional thick metal option required for RF process. Due to the metal and via stacked on-chip solenoid inductor, the area of LC VCO is remarkably reduced to one tenth of the size of the conventional spiral inductor. The LC VCO operates from 4.8 to 5.9GHz with a 20% wide tuning range. The measured phase noise at the MHz offset frequency is dBc/Hz. The power consumption of the VCO core is 3.2mW. This small area LC VCO is suitable for low cost wireless PLLs in the standard CMOS process and can be used as an integrated matching network with small occupation area for LNA or Mixer. With further quality factor improvement, this solenoid inductor can be used in low power mobile applications. ISBN: SDIWC 25

5 ACKNOWLEDGMENT This research was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (203RAA4A002255). REFERENCES [] R. B. Staszewski and P. T. Balsara, All-Digital Frequency Sytheszer in Deep-submicron CMOS, A Jon Wiley & Sons, [2] P.-L. Chen, C.-C. Chung, and C.-Y. Lee, A portable Digitally Controlled Oscillator Using Novel Varactors, IEEE Trans. on Circuits and Systems, Vol. 52, No. 5, May 2005, pp [0] R. Tao and M. Berroth, The design of 5GHz voltage controlled ring oscillator using source capacitively coupled current amplifier, IEEE Radio Frequency Integrated Circuits Symposium, pp ,2003. [] B. Soltanian, H. Ainspan, W. Rhee, D. Friedman, and P. Kinget, An Ultra Compact Differentially Tuned 6 GHz CMOS LC VCO with Dynamic Common-Mode Feedback, IEEE Coustom Integrated Circuits Conference (CICC), Sept. 2006, pp [2] N. Fong, J. Plouchart, N. Zamdmer, L. Duixian, L. Wagner, C. Plett, and N. Tarr, A -V GHz wideband VCO with differentially tuned accumulation MOS varactor for common-mode noise rejection in CMOS SOI technology, IEEE transactions on Microwave Theory and Techniques, Vol. 5, No. 8, Aug. 2003, pp [3] ASTIC; Analysis of Si Inductors and Transformers for ICs, [4] Ansoft HFSS [5] J. B. Yoon, B. K. Kim, C. H. Han, E. Yoon, and C. K. Kim, Surface micromachined solenoid on-si and on-galss inductor for RF applications, IEEE Electron Device Letters, Vol. 20, No. 9, Sept. 999, pp [6] S. Seok, C. Nam, W. Choi, and K. Chun, A High Performance Solenoid-type MEMS Inductor, Journal of semiconductor technology and science, Vol., No. 3, Sep. 200, pp [7] C. Nam, B. Lee, H. C. Kim, J. Kim, D. W. Chang, and B. Kim, 3-D Solenoid Inductor Analysis in a 0.3 μm Digital CMOS Technology, International Journal of Electronics and Electrical Engineering, Vol. 2, No. 4, Dec. 204, pp [8] C. Nam, J.-S. Park, Y.-G. Pu, and K.-Y. Lee, A - GHz Tuning range DCO with a 3.9KHz discrete tuning step for UWB frequency Synthesizer, IEICE trans. on Electronics, E93-C, No.b, Jun. 200, pp [9] T. H. Lee, The Design of CMOS Radio-frequency integrated Circuits, Cambridge, United Kingdon, 998, pp. 50. ISBN: SDIWC 26

A Small-Area Solenoid Inductor Based Digitally Controlled Oscillator

A Small-Area Solenoid Inductor Based Digitally Controlled Oscillator http://dx.doi.org/10.5573/jsts.2013.13.3.198 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.13, NO.3, JUNE, 2013 A Small-Area Solenoid Inductor Based Digitally Controlled Oscillator Hyung-Gu Park,

More information

3-D Solenoid Inductor Analysis in a 0.13 μm Digital CMOS Technology

3-D Solenoid Inductor Analysis in a 0.13 μm Digital CMOS Technology International Journal of Electronics and Electrical Engineering Vol., No., December, -D Solenoid Inductor Analysis in a. μm Digital CMOS Technology Chul Nam R&D Center/Siliconharmony, Seong Nam-Si, Korea

More information

A Low Phase Noise LC VCO for 6GHz

A Low Phase Noise LC VCO for 6GHz A Low Phase Noise LC VCO for 6GHz Mostafa Yargholi 1, Abbas Nasri 2 Department of Electrical Engineering, University of Zanjan, Zanjan, Iran 1 yargholi@znu.ac.ir, 2 abbas.nasri@znu.ac.ir, Abstract: This

More information

A 2.4 GHz to 3.86 GHz digitally controlled oscillator with 18.5 khz frequency resolution using single PMOS varactor

A 2.4 GHz to 3.86 GHz digitally controlled oscillator with 18.5 khz frequency resolution using single PMOS varactor LETTER IEICE Electronics Express, Vol.9, No.24, 1842 1848 A 2.4 GHz to 3.86 GHz digitally controlled oscillator with 18.5 khz frequency resolution using single PMOS varactor Yangyang Niu, Wei Li a), Ning

More information

Chapter 2. Inductor Design for RFIC Applications

Chapter 2. Inductor Design for RFIC Applications Chapter 2 Inductor Design for RFIC Applications 2.1 Introduction A current carrying conductor generates magnetic field and a changing current generates changing magnetic field. According to Faraday s laws

More information

A GHz VCO using a new variable inductor for K band application

A GHz VCO using a new variable inductor for K band application Vol. 34, No. 12 Journal of Semiconductors December 2013 A 20 25.5 GHz VCO using a new variable for K band application Zhu Ning( 朱宁 ), Li Wei( 李巍 ), Li Ning( 李宁 ), and Ren Junyan( 任俊彦 ) State Key Laboratory

More information

Layout Design of LC VCO with Current Mirror Using 0.18 µm Technology

Layout Design of LC VCO with Current Mirror Using 0.18 µm Technology Wireless Engineering and Technology, 2011, 2, 102106 doi:10.4236/wet.2011.22014 Published Online April 2011 (http://www.scirp.org/journal/wet) 99 Layout Design of LC VCO with Current Mirror Using 0.18

More information

A Triple-Band Voltage-Controlled Oscillator Using Two Shunt Right-Handed 4 th -Order Resonators

A Triple-Band Voltage-Controlled Oscillator Using Two Shunt Right-Handed 4 th -Order Resonators JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.4, AUGUST, 2016 ISSN(Print) 1598-1657 http://dx.doi.org/10.5573/jsts.2016.16.4.506 ISSN(Online) 2233-4866 A Triple-Band Voltage-Controlled Oscillator

More information

On-Chip Passive Devices Embedded in Wafer-Level Package

On-Chip Passive Devices Embedded in Wafer-Level Package On-Chip Passive Devices Embedded in Wafer-Level Package Kazuya Masu 1, Kenichi Okada 1, Kazuhisa Itoi 2, Masakazu Sato 2, Takuya Aizawa 2 and Tatsuya Ito 2 On-chip high-q spiral and solenoid inductors

More information

A HIGH FIGURE-OF-MERIT LOW PHASE NOISE 15-GHz CMOS VCO

A HIGH FIGURE-OF-MERIT LOW PHASE NOISE 15-GHz CMOS VCO 82 Journal of Marine Science and Technology, Vol. 21, No. 1, pp. 82-86 (213) DOI: 1.6119/JMST-11-123-1 A HIGH FIGURE-OF-MERIT LOW PHASE NOISE 15-GHz MOS VO Yao-hian Lin, Mei-Ling Yeh, and hung-heng hang

More information

Ground-Adjustable Inductor for Wide-Tuning VCO Design Wu-Shiung Feng, Chin-I Yeh, Ho-Hsin Li, and Cheng-Ming Tsao

Ground-Adjustable Inductor for Wide-Tuning VCO Design Wu-Shiung Feng, Chin-I Yeh, Ho-Hsin Li, and Cheng-Ming Tsao Applied Mechanics and Materials Online: 2012-12-13 ISSN: 1662-7482, Vols. 256-259, pp 2373-2378 doi:10.4028/www.scientific.net/amm.256-259.2373 2013 Trans Tech Publications, Switzerland Ground-Adjustable

More information

WIDE tuning range is required in CMOS LC voltage-controlled

WIDE tuning range is required in CMOS LC voltage-controlled IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 55, NO. 5, MAY 2008 399 A Wide-Band CMOS LC VCO With Linearized Coarse Tuning Characteristics Jongsik Kim, Jaewook Shin, Seungsoo Kim,

More information

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver Arvin R. Shahani, Derek K. Shaeffer, Thomas H. Lee Stanford University, Stanford, CA At submicron channel lengths, CMOS is

More information

Design of low phase noise InGaP/GaAs HBT-based differential Colpitts VCOs for interference cancellation system

Design of low phase noise InGaP/GaAs HBT-based differential Colpitts VCOs for interference cancellation system Indian Journal of Engineering & Materials Sciences Vol. 17, February 2010, pp. 34-38 Design of low phase noise InGaP/GaAs HBT-based differential Colpitts VCOs for interference cancellation system Bhanu

More information

A 25-GHz Differential LC-VCO in 90-nm CMOS

A 25-GHz Differential LC-VCO in 90-nm CMOS A 25-GHz Differential LC-VCO in 90-nm CMOS Törmänen, Markus; Sjöland, Henrik Published in: Proc. 2008 IEEE Asia Pacific Conference on Circuits and Systems Published: 2008-01-01 Link to publication Citation

More information

An Equivalent Circuit Model for On-chip Inductors with Gradual Changed Structure

An Equivalent Circuit Model for On-chip Inductors with Gradual Changed Structure An Equivalent Circuit Model for On-chip Inductors with Gradual Changed Structure Xi Li 1, Zheng Ren 2, Yanling Shi 1 1 East China Normal University Shanghai 200241 People s Republic of China 2 Shanghai

More information

A NOVEL MICROSTRIP LC RECONFIGURABLE BAND- PASS FILTER

A NOVEL MICROSTRIP LC RECONFIGURABLE BAND- PASS FILTER Progress In Electromagnetics Research Letters, Vol. 36, 171 179, 213 A NOVEL MICROSTRIP LC RECONFIGURABLE BAND- PASS FILTER Qianyin Xiang, Quanyuan Feng *, Xiaoguo Huang, and Dinghong Jia School of Information

More information

Fully-Integrated Low Phase Noise Bipolar Differential VCOs at 2.9 and 4.4 GHz

Fully-Integrated Low Phase Noise Bipolar Differential VCOs at 2.9 and 4.4 GHz Fully-Integrated Low Phase Noise Bipolar Differential VCOs at 2.9 and 4.4 GHz Ali M. Niknejad Robert G. Meyer Electronics Research Laboratory University of California at Berkeley Joo Leong Tham 1 Conexant

More information

Implementation of Low Phase Noise Wide-Band VCO with Digital

Implementation of Low Phase Noise Wide-Band VCO with Digital Implementation of Low Phase Noise Wide-Band VCO with Digital Switching Capacitors 199 10 x Implementation of Low Phase Noise Wide-Band VCO with Digital Switching Capacitors Meng-Ting Hsu, Chien-Ta Chiu

More information

An On-Chip Differential Inductor and Its Use to RF VCO for 2 GHz Applications

An On-Chip Differential Inductor and Its Use to RF VCO for 2 GHz Applications JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL4, NO 2, JUNE, 2004 83 An On-Chip Differential Inductor and Its Use to RF VCO for 2 GHz Applications Je-Kwang Cho, Kyung-Suc Nah, and Byeong-Ha Park

More information

THE BASIC BUILDING BLOCKS OF 1.8 GHZ PLL

THE BASIC BUILDING BLOCKS OF 1.8 GHZ PLL THE BASIC BUILDING BLOCKS OF 1.8 GHZ PLL IN CMOS TECHNOLOGY L. Majer, M. Tomáška,V. Stopjaková, V. Nagy, and P. Malošek Department of Microelectronics, Slovak Technical University, Ilkovičova 3, Bratislava,

More information

A High Performance Solenoid-Type MEMS Inductor

A High Performance Solenoid-Type MEMS Inductor JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.1, NO. 3, SEPTEMBER, 2001 1 A High Performance Solenoid-Type MEMS Inductor Seonho Seok, Chul Nam, Wonseo Choi, and Kukjin Chnm Abstract A solenoid-type

More information

A COMPACT SIZE LOW POWER AND WIDE TUNING RANGE VCO USING DUAL-TUNING LC TANKS

A COMPACT SIZE LOW POWER AND WIDE TUNING RANGE VCO USING DUAL-TUNING LC TANKS Progress In Electromagnetics Research C, Vol. 25, 81 91, 2012 A COMPACT SIZE LOW POWER AND WIDE TUNING RANGE VCO USING DUAL-TUNING LC TANKS S. Mou *, K. Ma, K. S. Yeo, N. Mahalingam, and B. K. Thangarasu

More information

DISTRIBUTED amplification is a popular technique for

DISTRIBUTED amplification is a popular technique for IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 58, NO. 5, MAY 2011 259 Compact Transformer-Based Distributed Amplifier for UWB Systems Aliakbar Ghadiri, Student Member, IEEE, and Kambiz

More information

Miniature 3-D Inductors in Standard CMOS Process

Miniature 3-D Inductors in Standard CMOS Process IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 4, APRIL 2002 471 Miniature 3-D Inductors in Standard CMOS Process Chih-Chun Tang, Student Member, Chia-Hsin Wu, Student Member, and Shen-Iuan Liu, Member,

More information

A CMOS UWB Transmitter for Intra/Inter-chip Wireless Communication

A CMOS UWB Transmitter for Intra/Inter-chip Wireless Communication A CMOS UWB Transmitter for Intra/Inter-chip Wireless Communication Pran Kanai Saha, Nobuo Sasaki and Takamaro Kikkawa Research Center For Nanodevices and Systems, Hiroshima University 1-4-2 Kagamiyama,

More information

i. At the start-up of oscillation there is an excess negative resistance (-R)

i. At the start-up of oscillation there is an excess negative resistance (-R) OSCILLATORS Andrew Dearn * Introduction The designers of monolithic or integrated oscillators usually have the available process dictated to them by overall system requirements such as frequency of operation

More information

WITH advancements in submicrometer CMOS technology,

WITH advancements in submicrometer CMOS technology, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 3, MARCH 2005 881 A Complementary Colpitts Oscillator in CMOS Technology Choong-Yul Cha, Member, IEEE, and Sang-Gug Lee, Member, IEEE

More information

Efficient Electromagnetic Analysis of Spiral Inductor Patterned Ground Shields

Efficient Electromagnetic Analysis of Spiral Inductor Patterned Ground Shields Efficient Electromagnetic Analysis of Spiral Inductor Patterned Ground Shields James C. Rautio, James D. Merrill, and Michael J. Kobasa Sonnet Software, North Syracuse, NY, 13212, USA Abstract Patterned

More information

OPTIMIZED FRACTAL INDUCTOR FOR RF APPLICATIONS

OPTIMIZED FRACTAL INDUCTOR FOR RF APPLICATIONS OPTIMIZED FRACTAL INDUCTOR FOR RF APPLICATIONS B. V. N. S. M. Nagesh Deevi and N. Bheema Rao 1 Department of Electronics and Communication Engineering, NIT-Warangal, India 2 Department of Electronics and

More information

1P6M 0.18-µm Low Power CMOS Ring Oscillator for Radio Frequency Applications

1P6M 0.18-µm Low Power CMOS Ring Oscillator for Radio Frequency Applications 1P6M 0.18-µm Low Power CMOS Ring Oscillator for Radio Frequency Applications Ashish Raman and R. K. Sarin Abstract The monograph analysis a low power voltage controlled ring oscillator, implement using

More information

School of Electronics, Devi Ahilya University, Indore, Madhya Pradesh, India 3. Acropolis Technical Campus, Indore, Madhya Pradesh, India

School of Electronics, Devi Ahilya University, Indore, Madhya Pradesh, India 3. Acropolis Technical Campus, Indore, Madhya Pradesh, India International Journal of Emerging Research in Management &Technology Research Article August 2017 Power Efficient Implementation of Low Noise CMOS LC VCO using 32nm Technology for RF Applications 1 Shitesh

More information

ISSCC 2004 / SESSION 21/ 21.1

ISSCC 2004 / SESSION 21/ 21.1 ISSCC 2004 / SESSION 21/ 21.1 21.1 Circular-Geometry Oscillators R. Aparicio, A. Hajimiri California Institute of Technology, Pasadena, CA Demand for faster data rates in wireline and wireless markets

More information

A 484µm 2, 21GHz LC-VCO Beneath a Stacked-Spiral Inductor

A 484µm 2, 21GHz LC-VCO Beneath a Stacked-Spiral Inductor A 484µm, GHz LC-VCO Beneath a Stacked-Spiral Inductor Rui Murakami, Kenichi Okada, and Akira Tokyo Institute of Technology, Japan 00/09/8 Contents Background Downsizing of LC-VCO Circuit Stacking Beneath

More information

Electromagnetic Interference Shielding Effects in Wireless Power Transfer using Magnetic Resonance Coupling for Board-to-Board Level Interconnection

Electromagnetic Interference Shielding Effects in Wireless Power Transfer using Magnetic Resonance Coupling for Board-to-Board Level Interconnection Electromagnetic Interference Shielding Effects in Wireless Power Transfer using Magnetic Resonance Coupling for Board-to-Board Level Interconnection Sukjin Kim 1, Hongseok Kim, Jonghoon J. Kim, Bumhee

More information

A 10-GHz CMOS LC VCO with Wide Tuning Range Using Capacitive Degeneration

A 10-GHz CMOS LC VCO with Wide Tuning Range Using Capacitive Degeneration JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.6, NO.4, DECEMBER, 2006 281 A 10-GHz CMOS LC VCO with Wide Tuning Range Using Capacitive Degeneration Tae-Geun Yu, Seong-Ik Cho, and Hang-Geun Jeong

More information

INF 5490 RF MEMS. LN12: RF MEMS inductors. Spring 2011, Oddvar Søråsen Department of informatics, UoO

INF 5490 RF MEMS. LN12: RF MEMS inductors. Spring 2011, Oddvar Søråsen Department of informatics, UoO INF 5490 RF MEMS LN12: RF MEMS inductors Spring 2011, Oddvar Søråsen Department of informatics, UoO 1 Today s lecture What is an inductor? MEMS -implemented inductors Modeling Different types of RF MEMS

More information

A Design of 8.5 GHz META-VCO based-on Meta-material using 65 nm CMOS Process

A Design of 8.5 GHz META-VCO based-on Meta-material using 65 nm CMOS Process JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.5, OCTOBER, 2016 ISSN(Print) 1598-1657 http://dx.doi.org/10.5573/jsts.2016.16.5.535 ISSN(Online) 2233-4866 A Design of 8.5 GHz META-VCO based-on

More information

ISSN:

ISSN: High Frequency Power Optimized Ring Voltage Controlled Oscillator for 65nm CMOS Technology NEHA K.MENDHE 1, M. N. THAKARE 2, G. D. KORDE 3 Department of EXTC, B.D.C.O.E, Sevagram, India, nehakmendhe02@gmail.com

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 20.2 A Digitally Calibrated 5.15-5.825GHz Transceiver for 802.11a Wireless LANs in 0.18µm CMOS I. Bouras 1, S. Bouras 1, T. Georgantas

More information

EDA Toolsets for RF Design & Modeling

EDA Toolsets for RF Design & Modeling Yiannis Moisiadis, Errikos Lourandakis, Sotiris Bantas Helic, Inc. 101 Montgomery str., suite 1950 San Fransisco, CA 94104, USA Email: {moisiad, lourandakis, s.bantas}@helic.com Abstract This paper presents

More information

Design of Low Noise 16-bit CMOS Digitally Controlled Oscillator

Design of Low Noise 16-bit CMOS Digitally Controlled Oscillator Design of Low Noise 16-bit CMOS Digitally Controlled Oscillator Nitin Kumar #1, Manoj Kumar *2 # Ganga Institute of Technology & Management 1 nitinkumarvlsi@gmail.com * Guru Jambheshwar University of Science

More information

Keywords Divide by-4, Direct injection, Injection locked frequency divider (ILFD), Low voltage, Locking range.

Keywords Divide by-4, Direct injection, Injection locked frequency divider (ILFD), Low voltage, Locking range. Volume 6, Issue 4, April 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Design of CMOS

More information

1-13GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS

1-13GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS -3GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS Hyohyun Nam and Jung-Dong Park a Division of Electronics and Electrical Engineering, Dongguk University, Seoul E-mail

More information

Linearization Method Using Variable Capacitance in Inter-Stage Matching Networks for CMOS Power Amplifier

Linearization Method Using Variable Capacitance in Inter-Stage Matching Networks for CMOS Power Amplifier Linearization Method Using Variable Capacitance in Inter-Stage Matching Networks for CMOS Power Amplifier Jaehyuk Yoon* (corresponding author) School of Electronic Engineering, College of Information Technology,

More information

3 GHz Wide Frequency Model of Surface Mount Technology (SMT) Ferrite Bead for Power/Ground and I/O Line Noise Simulation of High-speed PCB

3 GHz Wide Frequency Model of Surface Mount Technology (SMT) Ferrite Bead for Power/Ground and I/O Line Noise Simulation of High-speed PCB 3 GHz Wide Frequency Model of Surface Mount Technology (SMT) Ferrite Bead for Power/Ground and I/O Line Noise Simulation of High-speed PCB Tae Hong Kim, Hyungsoo Kim, Jun So Pak, and Joungho Kim Terahertz

More information

DEEP-SUBMICROMETER CMOS processes are attractive

DEEP-SUBMICROMETER CMOS processes are attractive IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 59, NO. 7, JULY 2011 1811 Gm-Boosted Differential Drain-to-Source Feedback Colpitts CMOS VCO Jong-Phil Hong and Sang-Gug Lee, Member, IEEE Abstract

More information

Outline. Motivation. Design Challenges. Design of Mode-Switching VCO. Measurement Results. Conclusion 7/8/14

Outline. Motivation. Design Challenges. Design of Mode-Switching VCO. Measurement Results. Conclusion 7/8/14 Mazhareddin Taghivand, Kamal Aggarwal and Ada Poon Dept. of Electrical Engineering Stanford University Outline Motivation Design Challenges Design of Mode-Switching VCO Measurement Results Conclusion 2

More information

A Millimeter-Wave LC Cross-Coupled VCO for 60 GHz WPAN Application in a 0.13-μm Si RF CMOS Technology

A Millimeter-Wave LC Cross-Coupled VCO for 60 GHz WPAN Application in a 0.13-μm Si RF CMOS Technology JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.8, NO.4, DECEMBER, 2008 295 A Millimeter-Wave LC Cross-Coupled VCO for 60 GHz WPAN Application in a 0.13-μm Si RF CMOS Technology Namhyung Kim*, Seungyong

More information

ISSCC 2006 / SESSION 17 / RFID AND RF DIRECTIONS / 17.4

ISSCC 2006 / SESSION 17 / RFID AND RF DIRECTIONS / 17.4 17.4 A 6GHz CMOS VCO Using On-Chip Resonator with Embedded Artificial Dielectric for Size, Loss and Noise Reduction Daquan Huang, William Hant, Ning-Yi Wang, Tai W. Ku, Qun Gu, Raymond Wong, Mau-Chung

More information

Review of ASITIC (Analysis and Simulation of Inductors and Transformers for Integrated Circuits) Tool to Design Inductor on Chip

Review of ASITIC (Analysis and Simulation of Inductors and Transformers for Integrated Circuits) Tool to Design Inductor on Chip www.ijcsi.org 196 Review of ASITIC (Analysis and Simulation of Inductors and Transformers for Integrated Circuits) Tool to Design Inductor on Chip M. Zamin Ali Khan 1, Hussain Saleem 2 and Shiraz Afzal

More information

CMOS 120 GHz Phase-Locked Loops Based on Two Different VCO Topologies

CMOS 120 GHz Phase-Locked Loops Based on Two Different VCO Topologies JOURNAL OF ELECTROMAGNETIC ENGINEERING AND SCIENCE, VOL. 17, NO. 2, 98~104, APR. 2017 http://dx.doi.org/10.5515/jkiees.2017.17.2.98 ISSN 2234-8395 (Online) ISSN 2234-8409 (Print) CMOS 120 GHz Phase-Locked

More information

NEW WIRELESS applications are emerging where

NEW WIRELESS applications are emerging where IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 4, APRIL 2004 709 A Multiply-by-3 Coupled-Ring Oscillator for Low-Power Frequency Synthesis Shwetabh Verma, Member, IEEE, Junfeng Xu, and Thomas H. Lee,

More information

A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power and Low Phase Noise Current Starved VCO Gaurav Sharma 1

A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power and Low Phase Noise Current Starved VCO Gaurav Sharma 1 IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 01, 2014 ISSN (online): 2321-0613 A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power

More information

Extraction of Transmission Line Parameters and Effect of Conductive Substrates on their Characteristics

Extraction of Transmission Line Parameters and Effect of Conductive Substrates on their Characteristics ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 19, Number 3, 2016, 199 212 Extraction of Transmission Line Parameters and Effect of Conductive Substrates on their Characteristics Saurabh

More information

Design of 2.4 GHz Oscillators In CMOS Technology

Design of 2.4 GHz Oscillators In CMOS Technology Design of 2.4 GHz Oscillators In CMOS Technology Mr. Pravin Bodade Department of electronics engineering Priyadarshini College of engineering Nagpur, India prbodade@gmail.com Ms. Divya Meshram Department

More information

Low Phase Noise Series-coupled VCO using Current-reuse and Armstrong Topologies

Low Phase Noise Series-coupled VCO using Current-reuse and Armstrong Topologies JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.1, FEBRUARY, 2017 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2017.17.1.042 ISSN(Online) 2233-4866 Low Phase Noise Series-coupled VCO

More information

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4 33.4 A Dual-Channel Direct-Conversion CMOS Receiver for Mobile Multimedia Broadcasting Vincenzo Peluso, Yang Xu, Peter Gazzerro, Yiwu Tang, Li Liu, Zhenbiao Li, Wei Xiong, Charles Persico Qualcomm, San

More information

Signal Integrity Design of TSV-Based 3D IC

Signal Integrity Design of TSV-Based 3D IC Signal Integrity Design of TSV-Based 3D IC October 24, 21 Joungho Kim at KAIST joungho@ee.kaist.ac.kr http://tera.kaist.ac.kr 1 Contents 1) Driving Forces of TSV based 3D IC 2) Signal Integrity Issues

More information

Fully Integrated Low Phase Noise LC VCO. Desired Characteristics of VCOs

Fully Integrated Low Phase Noise LC VCO. Desired Characteristics of VCOs Fully Integrated ow Phase Noise C VCO AGENDA Comparison with other types of VCOs. Analysis of two common C VCO topologies. Design procedure for the cross-coupled C VCO. Phase noise reduction techniques.

More information

Design of VCOs in Global Foundries 28 nm HPP CMOS

Design of VCOs in Global Foundries 28 nm HPP CMOS Design of VCOs in Global Foundries 28 nm HPP CMOS Evan Jorgensen 33 rd Annual Microelectronics Conference Rochester Institute of Technology Department of Electrical and Microelectronic Engineering May

More information

Optimization of Symmetric Spiral Inductors On Silicon Substrate

Optimization of Symmetric Spiral Inductors On Silicon Substrate Optimization of Symmetric Spiral Inductors On Silicon Substrate Hyunjin Lee, Joonho Gil, and Hyungcheol Shin Department of Electrical Engineering and Computer Science, KAIST -1, Guseong-dong, Yuseong-gu,

More information

A passive circuit based RF optimization methodology for wireless sensor network nodes. Article (peer-reviewed)

A passive circuit based RF optimization methodology for wireless sensor network nodes. Article (peer-reviewed) Title Author(s) Editor(s) A passive circuit based RF optimization methodology for wireless sensor network nodes Zheng, Liqiang; Mathewson, Alan; O'Flynn, Brendan; Hayes, Michael; Ó Mathúna, S. Cian Wu,

More information

Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy

Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy RFIC2014, Tampa Bay June 1-3, 2014 Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy High data rate wireless networks MAN / LAN PAN ~7GHz of unlicensed

More information

Wafer-scale 3D integration of silicon-on-insulator RF amplifiers

Wafer-scale 3D integration of silicon-on-insulator RF amplifiers Wafer-scale integration of silicon-on-insulator RF amplifiers The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

Design and Analysis of Novel Compact Inductor Resonator Filter

Design and Analysis of Novel Compact Inductor Resonator Filter Design and Analysis of Novel Compact Inductor Resonator Filter Gye-An Lee 1, Mohamed Megahed 2, and Franco De Flaviis 1. 1 Department of Electrical and Computer Engineering University of California, Irvine

More information

EVALUATION KIT AVAILABLE 10MHz to 1050MHz Integrated RF Oscillator with Buffered Outputs. Typical Operating Circuit. 10nH 1000pF MAX2620 BIAS SUPPLY

EVALUATION KIT AVAILABLE 10MHz to 1050MHz Integrated RF Oscillator with Buffered Outputs. Typical Operating Circuit. 10nH 1000pF MAX2620 BIAS SUPPLY 19-1248; Rev 1; 5/98 EVALUATION KIT AVAILABLE 10MHz to 1050MHz Integrated General Description The combines a low-noise oscillator with two output buffers in a low-cost, plastic surface-mount, ultra-small

More information

A Low Phase Noise 24/77 GHz Dual-Band Sub-Sampling PLL for Automotive Radar Applications in 65 nm CMOS Technology

A Low Phase Noise 24/77 GHz Dual-Band Sub-Sampling PLL for Automotive Radar Applications in 65 nm CMOS Technology A Low Phase Noise 24/77 GHz Dual-Band Sub-Sampling PLL for Automotive Radar Applications in 65 nm CMOS Technology Xiang Yi, Chirn Chye Boon, Junyi Sun, Nan Huang and Wei Meng Lim VIRTUS, Nanyang Technological

More information

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong Research and Development Activities in RF and Analog IC Design Howard Luong Analog Research Laboratory Department of Electrical and Electronic Engineering Hong Kong University of Science and Technology

More information

Broadband analog phase shifter based on multi-stage all-pass networks

Broadband analog phase shifter based on multi-stage all-pass networks This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. IEICE Electronics Express, Vol.* No.*,*-* Broadband analog phase shifter based on multi-stage

More information

A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram

A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram LETTER IEICE Electronics Express, Vol.10, No.4, 1 8 A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram Wang-Soo Kim and Woo-Young Choi a) Department

More information

PUSH-PUSH DIELECTRIC RESONATOR OSCILLATOR USING SUBSTRATE INTEGRATED WAVEGUIDE POW- ER COMBINER

PUSH-PUSH DIELECTRIC RESONATOR OSCILLATOR USING SUBSTRATE INTEGRATED WAVEGUIDE POW- ER COMBINER Progress In Electromagnetics Research Letters, Vol. 30, 105 113, 2012 PUSH-PUSH DIELECTRIC RESONATOR OSCILLATOR USING SUBSTRATE INTEGRATED WAVEGUIDE POW- ER COMBINER P. Su *, Z. X. Tang, and B. Zhang School

More information

Streamlined Design of SiGe Based Power Amplifiers

Streamlined Design of SiGe Based Power Amplifiers ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 13, Number 1, 2010, 22 32 Streamlined Design of SiGe Based Power Amplifiers Mladen BOŽANIĆ1, Saurabh SINHA 1, Alexandru MÜLLER2 1 Department

More information

Synthesis of Optimal On-Chip Baluns

Synthesis of Optimal On-Chip Baluns Synthesis of Optimal On-Chip Baluns Sharad Kapur, David E. Long and Robert C. Frye Integrand Software, Inc. Berkeley Heights, New Jersey Yu-Chia Chen, Ming-Hsiang Cho, Huai-Wen Chang, Jun-Hong Ou and Bigchoug

More information

Dr.-Ing. Ulrich L. Rohde

Dr.-Ing. Ulrich L. Rohde Dr.-Ing. Ulrich L. Rohde Noise in Oscillators with Active Inductors Presented to the Faculty 3 : Mechanical engineering, Electrical engineering and industrial engineering, Brandenburg University of Technology

More information

SiNANO-NEREID Workshop:

SiNANO-NEREID Workshop: SiNANO-NEREID Workshop: Towards a new NanoElectronics Roadmap for Europe Leuven, September 11 th, 2017 WP3/Task 3.2 Connectivity RF and mmw Design Outline Connectivity, what connectivity? High data rates

More information

Design Strategy of On-Chip Inductors for Highly Integrated RF Systems

Design Strategy of On-Chip Inductors for Highly Integrated RF Systems Design Strategy of On-Chip Inductors for Highly Integrated RF Systems C. Patrick Yue T-Span Systems Corporation 44 Encina Drive Palo Alto, CA 94301 (50) 470-51 patrick@tspan.com (Invited Paper) S. Simon

More information

Fully integrated UHF RFID mobile reader with power amplifiers using System-in-Package (SiP)

Fully integrated UHF RFID mobile reader with power amplifiers using System-in-Package (SiP) Fully integrated UHF RFID mobile reader with power amplifiers using System-in-Package (SiP) Hyemin Yang 1, Jongmoon Kim 2, Franklin Bien 3, and Jongsoo Lee 1a) 1 School of Information and Communications,

More information

Dual-Frequency GNSS Front-End ASIC Design

Dual-Frequency GNSS Front-End ASIC Design Dual-Frequency GNSS Front-End ASIC Design Ed. 01 15/06/11 In the last years Acorde has been involved in the design of ASIC prototypes for several EU-funded projects in the fields of FM-UWB communications

More information

A 7-GHz 1.8-dB NF CMOS Low-Noise Amplifier

A 7-GHz 1.8-dB NF CMOS Low-Noise Amplifier 852 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 7, JULY 2002 A 7-GHz 1.8-dB NF CMOS Low-Noise Amplifier Ryuichi Fujimoto, Member, IEEE, Kenji Kojima, and Shoji Otaka Abstract A 7-GHz low-noise amplifier

More information

Design Technique of Phase-Locked Loop Frequency Synthesizer in CMOS Technology: A Review

Design Technique of Phase-Locked Loop Frequency Synthesizer in CMOS Technology: A Review Design Technique of Phase-Locked Loop Frequency Synthesizer in CMOS Technology: A Review Purushottamkumar T. Singh, Devendra S. Chaudhari Department of Electronics and Telecommunication Engineering Government

More information

Designing a fully integrated low noise Tunable-Q Active Inductor for RF applications

Designing a fully integrated low noise Tunable-Q Active Inductor for RF applications Designing a fully integrated low noise Tunable-Q Active Inductor for RF applications M. Ikram Malek, Suman Saini National Institute of technology, Kurukshetra Kurukshetra, India Abstract Many architectures

More information

Equivalent Circuit Model Overview of Chip Spiral Inductors

Equivalent Circuit Model Overview of Chip Spiral Inductors Equivalent Circuit Model Overview of Chip Spiral Inductors The applications of the chip Spiral Inductors have been widely used in telecommunication products as wireless LAN cards, Mobile Phone and so on.

More information

K-BAND HARMONIC DIELECTRIC RESONATOR OS- CILLATOR USING PARALLEL FEEDBACK STRUC- TURE

K-BAND HARMONIC DIELECTRIC RESONATOR OS- CILLATOR USING PARALLEL FEEDBACK STRUC- TURE Progress In Electromagnetics Research Letters, Vol. 34, 83 90, 2012 K-BAND HARMONIC DIELECTRIC RESONATOR OS- CILLATOR USING PARALLEL FEEDBACK STRUC- TURE Y. C. Du *, Z. X. Tang, B. Zhang, and P. Su School

More information

25 GHz and 28 GHz wide tuning range130 nm CMOS VCOs with ferroelectric varactors

25 GHz and 28 GHz wide tuning range130 nm CMOS VCOs with ferroelectric varactors 25 GHz and 28 GHz wide tuning range130 nm CMOS VCOs with ferroelectric varactors Aspemyr, Lars; Kuylenstierna, Dan; Sjöland, Henrik; Vorobiev, Andrej; Gevorgian, Spartak Published in: [Host publication

More information

Metamaterial Inspired CPW Fed Compact Low-Pass Filter

Metamaterial Inspired CPW Fed Compact Low-Pass Filter Progress In Electromagnetics Research C, Vol. 57, 173 180, 2015 Metamaterial Inspired CPW Fed Compact Low-Pass Filter BasilJ.Paul 1, *, Shanta Mridula 1,BinuPaul 1, and Pezholil Mohanan 2 Abstract A metamaterial

More information

A COMPACT DUAL-BAND POWER DIVIDER USING PLANAR ARTIFICIAL TRANSMISSION LINES FOR GSM/DCS APPLICATIONS

A COMPACT DUAL-BAND POWER DIVIDER USING PLANAR ARTIFICIAL TRANSMISSION LINES FOR GSM/DCS APPLICATIONS Progress In Electromagnetics Research Letters, Vol. 1, 185 191, 29 A COMPACT DUAL-BAND POWER DIVIDER USING PLANAR ARTIFICIAL TRANSMISSION LINES FOR GSM/DCS APPLICATIONS T. Yang, C. Liu, L. Yan, and K.

More information

DESIGN OF COMPACT MICROSTRIP LOW-PASS FIL- TER WITH ULTRA-WIDE STOPBAND USING SIRS

DESIGN OF COMPACT MICROSTRIP LOW-PASS FIL- TER WITH ULTRA-WIDE STOPBAND USING SIRS Progress In Electromagnetics Research Letters, Vol. 18, 179 186, 21 DESIGN OF COMPACT MICROSTRIP LOW-PASS FIL- TER WITH ULTRA-WIDE STOPBAND USING SIRS L. Wang, H. C. Yang, and Y. Li School of Physical

More information

Research Article A Tunable Wideband Frequency Synthesizer Using LC-VCO and Mixer for Reconfigurable Radio Transceivers

Research Article A Tunable Wideband Frequency Synthesizer Using LC-VCO and Mixer for Reconfigurable Radio Transceivers Electrical and Computer Engineering Volume 2011, Article ID 361910, 7 pages doi:10.1155/2011/361910 Research Article A Tunable Wideband Frequency Synthesizer Using LC-VCO and Mixer for Reconfigurable Radio

More information

Design of a Temperature-Compensated Crystal Oscillator Using the New Digital Trimming Method

Design of a Temperature-Compensated Crystal Oscillator Using the New Digital Trimming Method Journal of the Korean Physical Society, Vol. 37, No. 6, December 2000, pp. 822 827 Design of a Temperature-Compensated Crystal Oscillator Using the New Digital Trimming Method Minkyu Je, Kyungmi Lee, Joonho

More information

A Pulse-Based CMOS Ultra-Wideband Transmitter for WPANs

A Pulse-Based CMOS Ultra-Wideband Transmitter for WPANs A Pulse-Based CMOS Ultra-Wideband Transmitter for WPANs Murat Demirkan* Solid-State Circuits Research Laboratory University of California, Davis *Now with Agilent Technologies, Santa Clara, CA 03/20/2008

More information

DESIGN ANALYSIS AND COMPARATIVE STUDY OF RF RECEIVER FRONT-ENDS IN 0.18-µM CMOS

DESIGN ANALYSIS AND COMPARATIVE STUDY OF RF RECEIVER FRONT-ENDS IN 0.18-µM CMOS International Journal of Electrical and Electronics Engineering Research Vol.1, Issue 1 (2011) 41-56 TJPRC Pvt. Ltd., DESIGN ANALYSIS AND COMPARATIVE STUDY OF RF RECEIVER FRONT-ENDS IN 0.18-µM CMOS M.

More information

Design and Implementation of High-Speed CMOS Clock and Data Recovery Circuit for Optical Interconnection Applications. Seong-Jun Song. Dec.

Design and Implementation of High-Speed CMOS Clock and Data Recovery Circuit for Optical Interconnection Applications. Seong-Jun Song. Dec. MS Thesis esign and Implementation of High-Speed CMOS Clock and ata Recovery Circuit for Optical Interconnection Applications Seong-Jun Song ec. 20, 2002 oratory, epartment of Electrical Engineering and

More information

20 MHz-3 GHz Programmable Chirp Spread Spectrum Generator for a Wideband Radio Jamming Application

20 MHz-3 GHz Programmable Chirp Spread Spectrum Generator for a Wideband Radio Jamming Application J Electr Eng Technol Vol. 9, No.?: 742-?, 2014 http://dx.doi.org/10.5370/jeet.2014.9.?.742 ISSN(Print) 1975-0102 ISSN(Online) 2093-7423 20 MHz-3 GHz Programmable Chirp Spread Spectrum Generator for a Wideband

More information

Design and power optimization of CMOS RF blocks operating in the moderate inversion region

Design and power optimization of CMOS RF blocks operating in the moderate inversion region Design and power optimization of CMOS RF blocks operating in the moderate inversion region Leonardo Barboni, Rafaella Fiorelli, Fernando Silveira Instituto de Ingeniería Eléctrica Facultad de Ingeniería

More information

A RF Low Power 0.18-µm based CMOS Differential Ring Oscillator

A RF Low Power 0.18-µm based CMOS Differential Ring Oscillator , July 4-6, 2012, London, U.K. A RF Low Power 0.18-µm based CMOS Differential Ring Oscillator Ashish Raman 1,Jaya Nidhi Vashishtha 1 and R K sarin 2 Abstract A voltage controlled ring oscillator is implemented

More information

I. INTRODUCTION. Architecture of PLL-based integer-n frequency synthesizer. TABLE I DIVISION RATIO AND FREQUENCY OF ALL CHANNELS, N =16, P =16

I. INTRODUCTION. Architecture of PLL-based integer-n frequency synthesizer. TABLE I DIVISION RATIO AND FREQUENCY OF ALL CHANNELS, N =16, P =16 320 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 56, NO. 2, FEBRUARY 2009 A 5-GHz CMOS Frequency Synthesizer With an Injection-Locked Frequency Divider and Differential Switched Capacitors

More information

PART MAX2605EUT-T MAX2606EUT-T MAX2607EUT-T MAX2608EUT-T MAX2609EUT-T TOP VIEW IND GND. Maxim Integrated Products 1

PART MAX2605EUT-T MAX2606EUT-T MAX2607EUT-T MAX2608EUT-T MAX2609EUT-T TOP VIEW IND GND. Maxim Integrated Products 1 19-1673; Rev 0a; 4/02 EVALUATION KIT MANUAL AVAILABLE 45MHz to 650MHz, Integrated IF General Description The are compact, high-performance intermediate-frequency (IF) voltage-controlled oscillators (VCOs)

More information

A 5.5 GHz Voltage Control Oscillator (VCO) with a Differential Tunable Active and Passive Inductor

A 5.5 GHz Voltage Control Oscillator (VCO) with a Differential Tunable Active and Passive Inductor A. GHz Voltage Control Oscillator (VCO) with a Differential Tunable Active and Passive Inductor Najmeh Cheraghi Shirazi, Ebrahim Abiri, and Roozbeh Hamzehyan, ember, IACSIT Abstract By using a differential

More information

65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers

65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers 65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers Michael Gordon, Terry Yao, Sorin P. Voinigescu University of Toronto March 10 2006, UBC, Vancouver Outline Motivation mm-wave

More information