Analogue to Digital Conversion on an ATmega168

Size: px
Start display at page:

Download "Analogue to Digital Conversion on an ATmega168"

Transcription

1 Shopping Cart: Empty Login or Create Account About Blog Tutorials Library Contact Search... Go Home» Blog» Tutorials» Analogue to Digital Conversion on an ATmega168 Categories Boards Connectors Hardware Microcontrollers Integrated Circuits Passive Components Semiconductors LED/LCD Buttons and Switches Cables Sensors Accessories Kits & Modules Tools Other Featured... Analogue to Digital Conversion on an ATmega168 Read comments Leave a comment 13-Feb :44am Many AVR microcontrollers are capable of doing Analogue to Digital Conversion. The ATmega168 has 6 ports (8 ports on the SMD packages) that can be used for analogue input. This tutorial shows you how. The circuit We ll be building the following circuit on a breadboard. LED matrix 8x8 Red/Green 37.8 x 37.8mm 1 of 9 2/8/15, 1:44 PM

2 $4.80 Information About Us Online Reviews Shipping & Returns Contact Us The Breadboard layout is based on the Atmega8 breadboard circuit which is described in Atmega8 breadboard circuit Part 1 and Atmega8 breadboard circuit Part 2. AVCC The Atmega168 has 2 digital supply voltage pins, VCC and AVCC. AVCC supplies power to PC0-PC5. When these pins are used as analogue inputs, the AVCC power needs to be very stable. This is achieved by using a low pass filter comprising of an inductor and capacitor. 2 of 9 2/8/15, 1:44 PM

3 AREF The AREF pin is used to set the voltage that corresponds to a 100% value (1024) in the AD converter. In this example we tie it to AVCC. Analogue Input The Atmega168 has has 6 pins (8 for the SMD packages) that can be used for analogue input. These are PC0 to PC5. These are normally used for digital I/O but can be used for analogue input as well. In our example we are using a trimpot as the analog input device and connecting it to PC0. 3 of 9 2/8/15, 1:44 PM

4 LCD display We ve connected an LCD display to pins PD0 to PD5 and is used to display analogue readings. For more information on using LCD displays, please read Character LCD Displays Part 2. Registers The Atmega168 uses 6 different registers when performing analogue to digital conversion. These are: Register ADMUX ADCSRA ADCSRB Description ADC Multiplexer Selection Register ADC Control and Status Register A ADC Control and Status Register B DIDR0 Digital Input Disable Register 0 ADCL ADCH ADC Data Register Low ADC Data Register High The ADMUX register allows you to control: The Reference Voltage Left adjustment of results (used for 8 bit results) Selection of input channel ADMUX REFS1 REFS0 ADLAR - MUX3 MUX2 MUX1 MUX0 Read/Write R/W R/W R/W R R/W R/W R/W R/W The reference voltage is controlled by REFS1 and REFS0. The default is to use AREF, but other options are available. ADLAR is used for left shifting the converted data. This is useful when reading 8 bit values due to the fact that reading a 16 bit value is not an atomic operation. MUX0 to MUX3 are used to select which input channel you wish to read. The values 0000 to 0101 allow you to select ports PC0 to PC5, while the reserved values of 1110 and 1111 allow you to select 1.1V and 0V. ADCSRA and ADCSRB are used to control the AD conversion process. ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W 4 of 9 2/8/15, 1:44 PM

5 ADCSRB - ACME ADTS2 ADTS1 ADTS0 Read/Write R R/W R R R R/W R/W R/W These 2 registers provide for many different options and we will look at a subset in this tutorial. ADEN enables the AD converter subsystem. This bit needs to be set before any conversion takes place. ADSC is set when you want to start an AD conversion process. When the conversion is finished, the value reverts back to 0. ADIF is set when the conversion is complete and the data is written to the result registers (ADCL/ADCH). To clear it back to 0 you need to write a 1 to it. When an analog sample is read, a timeslice is used. The width of that timeslice is determined by the input clock. ADPS0 to ADPS2 sets the division factor between the system clock and the input clock. DIDR0 is used to disable the digital input buffers on PC0 to PC5. When set, the corresponding PINC value will be set to 0. DIDR0 - - ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D Read/Write R R R/W R/W R/W R/W R/W R/W Lastly we have the ADC Data Registers, ADCL and ADCH. The AD converter returns a 10 bit value which is stored in these 2 registers. The structure of these registers depends on the ADLAR value. ADLAR=0 ADCH ADC9 ADC8 Read/Write R R R R R R R R ADCL ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 Read/Write R R R R R R R R ADLAR=1 5 of 9 2/8/15, 1:44 PM

6 ADCH ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 Read/Write R R R R R R R R ADCL ADC1 ADC Read/Write R R R R R R R R To make things easier, the AVR libc library returns the values of these registers as a single 16 bit value, ADC. Putting it all together The following code example shows how to read an analogue value and output it to the LCD panel #include <avr/io.h> #include "hd44780.h" uint16_t ReadADC(uint8_t channel) { ADMUX = (ADMUX & 0xf0) channel; // Channel selection ADCSRA = _BV(ADSC); // Start conversion while(!bit_is_set(adcsra,adif)); // Loop until conversion is complete ADCSRA = _BV(ADIF); // Clear ADIF by writing a 1 (this sets the value to 0) return(adc); } void adc_init() { ADCSRA = _BV(ADEN) _BV(ADPS2) _BV(ADPS1) _BV(ADPS0); //Enable ADC and set 128 prescale } int main (void) { 6 of 9 2/8/15, 1:44 PM

7 } lcd_init(); adc_init(); while (1) { char buffer[16]; sprintf(buffer,"%d lcd_goto(0); lcd_puts(buffer); } return(0); ", ReadADC(0)); Sharing is Caring If you like this post, please post it on twitter, Facebook or your blog. Your support is very much appreciated. Code Download Source code example More Information ATmega48/88/168/328 datasheet Related posts: 1. Reading and writing Atmega168 EEPROM 2. ATmega8 breadboard circuit Part 2 of 3 The Microcontroller 3. Atmega168 Experimenter s Kit 4. External Interrupts on an ATmega Atmega168 Development kit now with 10 extra components ATmega168, ATMEL, AVR, Breadboard 7 of 9 2/8/15, 1:44 PM

8 18 Comments Protostack! Login Sort by Best Share Favorite Join the discussion Kunal Pathak 5 months ago Erkko what you suggest for a better filter. Also input pins require filter else they go mad(i mean literally), any suggestions for designing filter when using pins as input of the microcontroller. Reply Share Erkko > Kunal Pathak 4 months ago The calculator tool I linked below can be used to design a better filter of the same type. Aiming for a Q value of 1/2 or below produces a filter which will not resonate around any frequency. Just plug in a cut-off frequency as low as possible, and see what kind of components it suggests, and make a resonable compromize for what kind of components you have available. For example: 1 Ohm, 22 uf, 10 uh will produce a filter with a 10 khz cutoff frequency and minimal overshoot or ringing. 10 khz may be too high if you intend to record clean audio, but low enough to filter out most switching noise caused by the CPU itself. Large capacitance values need to be made out of electrolytic capacitors which don't have good high frequency response, so adding a small value ceramic or polymer capacitor in parallel is a good idea. Also remember that the filter coil has some amount of resistance as well. For input debouncing for buttons, a simple RC filter kOhm and 100nF or so is usually enough. There are plenty of online calculators for that as well, and it's the same idea. Button debouncing can however be done in software as well, so you don't necessarily need to add filters - just add a short delay on the first readout and then read the pin again after it's settled down. Reply Share Erkko 5 months ago It seems that the filter you're proposing has a resonance at 159 khz and has a very low damping factor, and with realistic component 8 of 9 2/8/15, 1:44 PM

9 Information Blog Categories Tags Follow Us Shipping & Returns Privacy Policy Contact Us Unsubscribe Press Centre Tutorials New Products Announcements Miscellaneous ATMega8, AVR Facebook ATMega168, LCD Twitter ATMega328, HD44780 Google+ Breadboard All prices displayed in US Dollars (USD) Copyright 2013 Protostack Pty Ltd Website Handcrafted by Zero Point Labs 9 of 9 2/8/15, 1:44 PM

Module 13: Interfacing ADC. Introduction ADC Programming DAC Programming Sensor Interfacing

Module 13: Interfacing ADC. Introduction ADC Programming DAC Programming Sensor Interfacing Module 13: Interfacing ADC Introduction ADC Programming DAC Programming Sensor Interfacing Introduction ADC Devices o Analog-to-digital converters (ADC) are among the most widely used devices for data

More information

Microcontroller Systems. ELET 3232 Topic 21: ADC Basics

Microcontroller Systems. ELET 3232 Topic 21: ADC Basics Microcontroller Systems ELET 3232 Topic 21: ADC Basics Objectives To understand the modes and features of the Analog-to-Digital Converter on the ATmega 128 To understand how to perform an Analog-to-Digital

More information

Embedded Systems and Software. Analog to Digital Conversion

Embedded Systems and Software. Analog to Digital Conversion Embedded Systems and Software Analog to Digital Conversion Slide 1 Analog to Digital Conversion Analog or continuous signal Discrete-time or digital signal Other terms ADC, A/D Many different techniques

More information

EE 308: Microcontrollers

EE 308: Microcontrollers EE 308: Microcontrollers Timers Aly El-Osery Electrical Engineering Department New Mexico Institute of Mining and Technology Socorro, New Mexico, USA April 2, 2018 Aly El-Osery (NMT) EE 308: Microcontrollers

More information

Design with Microprocessors

Design with Microprocessors Design with Microprocessors Lecture 9 Year 3 CS Academic year 2017/2018 1 st Semester Lecturer: Radu Dănescu Analog Comparator AIN+ AIN- Compares the analog values from AIN+ (positive) & AIN- (negative)

More information

Embedded Hardware Design Lab4

Embedded Hardware Design Lab4 Embedded Hardware Design Lab4 Objective: Controlling the speed of dc motor using light sensor (LDR). In this lab, we would want to control the speed of a DC motor with the help of light sensor. This would

More information

Hardware and software resources on the AVR family for the microcontroller project

Hardware and software resources on the AVR family for the microcontroller project Hardware and software resources on the AVR family for the microcontroller project 1 1. Code Vision The C Compiler you use: CodeVisionAVR (CVAVR) Where can you find it? a (limited) version is available

More information

EE 109 Midterm Review

EE 109 Midterm Review EE 109 Midterm Review 1 2 Number Systems Computer use base 2 (binary) 0 and 1 Humans use base 10 (decimal) 0 to 9 Humans using computers: Base 16 (hexadecimal) 0 to 15 (0 to 9,A,B,C,D,E,F) Base 8 (octal)

More information

uc Crash Course Whats is covered in this lecture Joshua Childs Joshua Hartman A. A. Arroyo 9/7/10

uc Crash Course Whats is covered in this lecture Joshua Childs Joshua Hartman A. A. Arroyo 9/7/10 uc Crash Course Joshua Childs Joshua Hartman A. A. Arroyo Whats is covered in this lecture ESD Choosing A Processor GPIO USARTS o RS232 o SPI Timers o Prescalers o OCR o ICR o PWM ADC Interupts 1 ESD KILLS!

More information

Application Note: Using the Motor Driver on the 3pi Robot and Orangutan Robot Controllers

Application Note: Using the Motor Driver on the 3pi Robot and Orangutan Robot Controllers Application Note: Using the Motor Driver on the 3pi Robot and Orangutan Robot 1. Introduction..................................................... 2 2. Motor Driver Truth Tables.............................................

More information

A Beginners Guide to AVR

A Beginners Guide to AVR See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/263084656 A Beginners Guide to AVR TECHNICAL REPORT JUNE 2014 DOWNLOADS 154 VIEWS 50 1 AUTHOR:

More information

Inductor saturation tester

Inductor saturation tester Before building this project, I always tested my inductors with quick and dirty method. a LF generators a lab power supply a MOSFET a shunt resistor The setup changed every time I decided to check an inductor,

More information

Inductor saturation tester

Inductor saturation tester Before building this project, I always tested my inductors with quick and dirty method. a LF generators a lab power supply a MOSFET a shunt resistor The setup changed every time I decided to check an inductor,

More information

EARTH PEOPLE TECHNOLOGY, Inc. FAST ARDUINO OSCILLOSCOPE PROJECT User Manual

EARTH PEOPLE TECHNOLOGY, Inc. FAST ARDUINO OSCILLOSCOPE PROJECT User Manual EARTH PEOPLE TECHNOLOGY, Inc FAST ARDUINO OSCILLOSCOPE PROJECT User Manual The Fast Oscilloscope is designed for EPT USB CPLD Development System. It converts an analog signal to digital and displays the

More information

Arduino STEAM Academy Arduino STEM Academy Art without Engineering is dreaming. Engineering without Art is calculating. - Steven K.

Arduino STEAM Academy Arduino STEM Academy Art without Engineering is dreaming. Engineering without Art is calculating. - Steven K. Arduino STEAM Academy Arduino STEM Academy Art without Engineering is dreaming. Engineering without Art is calculating. - Steven K. Roberts Page 1 See Appendix A, for Licensing Attribution information

More information

Lecture #4 Outline. Announcements Project Proposal. AVR Processor Resources

Lecture #4 Outline. Announcements Project Proposal. AVR Processor Resources October 11, 2002 Stanford University - EE281 Lecture #4 #1 Announcements Project Proposal Lecture #4 Outline AVR Processor Resources A/D Converter (Analog to Digital) Analog Comparator Real-Time clock

More information

FABO ACADEMY X ELECTRONIC DESIGN

FABO ACADEMY X ELECTRONIC DESIGN ELECTRONIC DESIGN MAKE A DEVICE WITH INPUT & OUTPUT The Shanghaino can be programmed to use many input and output devices (a motor, a light sensor, etc) uploading an instruction code (a program) to it

More information

About LC Meter This is one of the most accurate and simplest LC inductance / capacitance Meters that one can find, yet one that you can easily build y

About LC Meter This is one of the most accurate and simplest LC inductance / capacitance Meters that one can find, yet one that you can easily build y Home Electronic Store Electronic Blog Electronic Schematics Tutorials Downloads Lin Very Accurate LC Meter based on PIC16F84A IC. LC Meter Part's List: 2x 1K 2x 6.8K 1x 47K 3x 100K 1x 10K POT 2x 10pF 1x

More information

8-bit Microcontroller with 1K Bytes Flash. ATtiny15. Advance Information. Features. Description. Pin Configurations

8-bit Microcontroller with 1K Bytes Flash. ATtiny15. Advance Information. Features. Description. Pin Configurations Features High-performance, Low-power AVR 8-bit Microcontroller RISC Architecture 90 Powerful Instructions - Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static Operation

More information

DDS VFO 2 CONSTRUCTION MANUAL. DDS VFO 2 Construction Manual Issue 1 Page 1

DDS VFO 2 CONSTRUCTION MANUAL. DDS VFO 2 Construction Manual Issue 1 Page 1 DDS VFO 2 CONSTRUCTION MANUAL DDS VFO 2 Construction Manual Issue 1 Page 1 Important Please read before starting assembly STATIC PRECAUTION The DDS VFO kit contains the following components which can be

More information

Breadboard Arduino Compatible Assembly Guide

Breadboard Arduino Compatible Assembly Guide (BBAC) breadboard arduino compatible Breadboard Arduino Compatible Assembly Guide (BBAC) A Few Words ABOUT THIS KIT The overall goal of this kit is fun. Beyond this, the aim is to get you comfortable using

More information

Arbeitskreis Hardware. Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz MHCI Lab, LMU München

Arbeitskreis Hardware. Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz MHCI Lab, LMU München Arbeitskreis Hardware Prof. Dr. Michael Rohs, Dipl.Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Arbeitskreis Hardware 2 Schedule (preliminary) Date Topic (preliminary) 2.5. Introduction

More information

AVR126: ADC of megaavr in Single-Ended Mode

AVR126: ADC of megaavr in Single-Ended Mode AVR126: ADC of megaavr in Single-Ended Mode Introduction Microchip megaavr devices have a successive approximation Analog-to-Digital Converter (ADC) capable of conversion rates up to 15 ksps with a resolution

More information

RC Filters and Basic Timer Functionality

RC Filters and Basic Timer Functionality RC-1 Learning Objectives: RC Filters and Basic Timer Functionality The student who successfully completes this lab will be able to: Build circuits using passive components (resistors and capacitors) from

More information

DASL 120 Introduction to Microcontrollers

DASL 120 Introduction to Microcontrollers DASL 120 Introduction to Microcontrollers Lecture 2 Introduction to 8-bit Microcontrollers Introduction to 8-bit Microcontrollers Introduction to 8-bit Microcontrollers Introduction to Atmel Atmega328

More information

ATmega 16. Dariusz Chaberski

ATmega 16. Dariusz Chaberski ATmega 16 Dariusz Chaberski Obudowy 2 Schemat blokowy 3 4 5 Pamięć EEPROM The EEPROM Address Register The EEPROM Data Register 6 The EEPROM Control Register EERIE: EEPROM Ready Interrupt Enable EEMWE:

More information

The Solarbotics SUMOVORE

The Solarbotics SUMOVORE The Solarbotics SUMOVORE Atmel ATmega8 Version 1 Brainboard Add-on This brainboard uses the popular and powerful Atmel ATmega8 microcontroller (included!) to take over the functions of the Discrete Brain

More information

EE-318 Electronic Design Lab (EDL) Project Report Remote Controlled Smart Mote

EE-318 Electronic Design Lab (EDL) Project Report Remote Controlled Smart Mote EE-318 Electronic Design Lab (EDL) Project Report Remote Controlled Smart Mote Group no. 2 Group Members: Neel Mehta - 07d07001 neelmehta89@gmail.com Prateek Karkare - 07d07002 prateek.karkare@gmail.com

More information

HAW-Arduino. Sensors and Arduino F. Schubert HAW - Arduino 1

HAW-Arduino. Sensors and Arduino F. Schubert HAW - Arduino 1 HAW-Arduino Sensors and Arduino 14.10.2010 F. Schubert HAW - Arduino 1 Content of the USB-Stick PDF-File of this script Arduino-software Source-codes Helpful links 14.10.2010 HAW - Arduino 2 Report for

More information

DEVELOPMENT OF REAL TIME DIGITAL CONTROLLER FOR A LIQUID LEVEL SYSTEM USING ATMEGA32 MICROCONTROLLER

DEVELOPMENT OF REAL TIME DIGITAL CONTROLLER FOR A LIQUID LEVEL SYSTEM USING ATMEGA32 MICROCONTROLLER DEVELOPMENT OF REAL TIME DIGITAL CONTROLLER FOR A LIQUID LEVEL SYSTEM USING ATMEGA32 MICROCONTROLLER A REPORT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF TECHNOLOGY

More information

USER MANUAL SERIAL IR SENSOR ARRAY5

USER MANUAL SERIAL IR SENSOR ARRAY5 USER MANUAL SERIAL IR SENSOR ARRAY5 25mm (Serial Communication Based Automatic Line Position Detection Sensor using 5 TCRT5000 IR sensors) Description: You can now build a line follower robot without writing

More information

Frequency Synthesizer Project ECE145B Winter 2011

Frequency Synthesizer Project ECE145B Winter 2011 Frequency Synthesizer Project ECE145B Winter 2011 The goal of this last project is to develop a frequency synthesized local oscillator using your VCO from Lab 2. The VCO will be locked to a stable crystal

More information

University of Nairobi. Project Title A F OUR CHANNEL-D MICROCONTROLLER BASED DATA ACQUISITION SYSTEM WITH A SERIAL INTERFACE TO THE PC

University of Nairobi. Project Title A F OUR CHANNEL-D MICROCONTROLLER BASED DATA ACQUISITION SYSTEM WITH A SERIAL INTERFACE TO THE PC University of Nairobi Project Title A F OUR CHANNEL-D MICROCONTROLLER BASED DATA ACQUISITION SYSTEM WITH A SERIAL INTERFACE TO THE PC Project Index (Number): PRJ061 By Candidate Name LENNOX ABONG O OGOLA

More information

Stensat Transmitter Module

Stensat Transmitter Module Stensat Transmitter Module Stensat Group LLC Introduction The Stensat Transmitter Module is an RF subsystem designed for applications where a low-cost low-power radio link is required. The Transmitter

More information

A digital DC powersupply

A digital DC powersupply LinuxFocus article number 379 http://linuxfocus.org A digital DC powersupply Abstract: by Guido Socher (homepage) About the author: Guido likes Linux because it is a really good system to develop your

More information

DEMO CIRCUIT 1057 LT6411 AND LTC2249 ADC QUICK START GUIDE LT6411 High-Speed ADC Driver Combo Board DESCRIPTION QUICK START PROCEDURE

DEMO CIRCUIT 1057 LT6411 AND LTC2249 ADC QUICK START GUIDE LT6411 High-Speed ADC Driver Combo Board DESCRIPTION QUICK START PROCEDURE DESCRIPTION Demonstration circuit 1057 is a reference design featuring Linear Technology Corporation s LT6411 High Speed Amplifier/ADC Driver with an on-board LTC2249 14-bit, 80MSPS ADC. DC1057 demonstrates

More information

QLG1 GPS Receiver kit

QLG1 GPS Receiver kit QLG1 GPS Receiver kit 1. Introduction Thank you for purchasing the QRP Labs QLG1 GPS Receiver kit. This kit will provide a highly sensitive, highly accurate GPS receiver module, using the popular MediaTek

More information

MICROPROCESSORS A (17.383) Fall Lecture Outline

MICROPROCESSORS A (17.383) Fall Lecture Outline MICROPROCESSORS A (17.383) Fall 2010 Lecture Outline Class # 07 October 26, 2010 Dohn Bowden 1 Today s Lecture Syllabus review Microcontroller Hardware and/or Interface Finish Analog to Digital Conversion

More information

A Digital DC Power Supply (programmable bench power supply unit)

A Digital DC Power Supply (programmable bench power supply unit) Home Electronics Utilities Gini and Karl s world E-cards Photos Online-Shop Content: Introduction The basic electrical design idea The R-2R ladder A more detailed design Adding an amplifer stage to the

More information

Serial Servo Controller

Serial Servo Controller Document : Datasheet Model # : ROB - 1185 Date : 16-Mar -07 Serial Servo Controller - USART/I 2 C with ADC Rhydo Technologies (P) Ltd. (An ISO 9001:2008 Certified R&D Company) Golden Plaza, Chitoor Road,

More information

VCO Design Project ECE218B Winter 2011

VCO Design Project ECE218B Winter 2011 VCO Design Project ECE218B Winter 2011 Report due 2/18/2011 VCO DESIGN GOALS. Design, build, and test a voltage-controlled oscillator (VCO). 1. Design VCO for highest center frequency (< 400 MHz). 2. At

More information

EMG Sensor Shirt. Senior Project Written Hardware Description April 28, 2015 ETEC 474. By: Dylan Kleist Joshua Goertz

EMG Sensor Shirt. Senior Project Written Hardware Description April 28, 2015 ETEC 474. By: Dylan Kleist Joshua Goertz EMG Sensor Shirt Senior Project Written Hardware Description April 28, 2015 ETEC 474 By: Dylan Kleist Joshua Goertz Table of Contents Introduction... 3 User Interface Board... 3 Bluetooth... 3 Keypad...

More information

THE PERFORMANCE TEST OF THE AD CONVERTERS EMBEDDED ON SOME MICROCONTROLLERS

THE PERFORMANCE TEST OF THE AD CONVERTERS EMBEDDED ON SOME MICROCONTROLLERS THE PERFORMANCE TEST OF THE AD CONVERTERS EMBEDDED ON SOME MICROCONTROLLERS R. Holcer Department of Electronics and Telecommunications, Technical University of Košice, Park Komenského 13, SK-04120 Košice,

More information

DEMO CIRCUIT 1004 ADC DRIVER AND 7X7MM HIGH-PERFORMANCE ADC QUICK START GUIDE ADC Driver and 7x7mm High-Performance ADC DESCRIPTION

DEMO CIRCUIT 1004 ADC DRIVER AND 7X7MM HIGH-PERFORMANCE ADC QUICK START GUIDE ADC Driver and 7x7mm High-Performance ADC DESCRIPTION DEMO CIRCUIT 1004 QUICK START GUIDE ADC Driver and 7x7mm High-Performance ADC DESCRIPTION Demonstration circuit 1004 is a reference design featuring Linear Technology Corporation s Analog- Digital Converter

More information

The Robot Builder's Shield for Arduino

The Robot Builder's Shield for Arduino The Robot Builder's Shield for Arduino by Ro-Bot-X Designs Introduction. The Robot Builder's Shield for Arduino was especially designed to make building robots with Arduino easy. The built in dual motors

More information

3.3V regulator. JA H-bridge. Doc: page 1 of 7

3.3V regulator. JA H-bridge. Doc: page 1 of 7 Cerebot Reference Manual Revision: February 9, 2009 Note: This document applies to REV B-E of the board. www.digilentinc.com 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The

More information

S.Sirish Kumar CIRCUIT DIAGRAM

S.Sirish Kumar CIRCUIT DIAGRAM ABSTRACT The energy meter is an electrical measuring device, which is used to record Electrical Energy.Consumed over a specified period of time in terms of units. Every house, small factory, business establishment,

More information

Roland Kammerer. 13. October 2010

Roland Kammerer. 13. October 2010 Peripherals Roland Institute of Computer Engineering Vienna University of Technology 13. October 2010 Overview 1. Analog/Digital Converter (ADC) 2. Pulse Width Modulation (PWM) 3. Serial Peripheral Interface

More information

EE 308 Lab Spring 2009

EE 308 Lab Spring 2009 9S12 Subsystems: Pulse Width Modulation, A/D Converter, and Synchronous Serial Interface In this sequence of three labs you will learn to use three of the MC9S12's hardware subsystems. WEEK 1 Pulse Width

More information

Operational Amplifiers 2 Active Filters ReadMeFirst

Operational Amplifiers 2 Active Filters ReadMeFirst Operational Amplifiers 2 Active Filters ReadMeFirst Lab Summary In this lab you will build two active filters on a breadboard, using an op-amp, resistors, and capacitors, and take data for the magnitude

More information

Arduino Uno Pinout Book

Arduino Uno Pinout Book Arduino Uno Pinout Book 1 / 6 2 / 6 3 / 6 Arduino Uno Pinout Book Arduino Uno pinout - Power Supply. There are 3 ways to power the Arduino Uno: Barrel Jack - The Barrel jack, or DC Power Jack can be used

More information

Lab 4 - Operational Amplifiers 1 Gain ReadMeFirst

Lab 4 - Operational Amplifiers 1 Gain ReadMeFirst Lab 4 - Operational Amplifiers 1 Gain ReadMeFirst Lab Summary There are three basic configurations for operational amplifiers. If the amplifier is multiplying the amplitude of the signal, the multiplication

More information

CHAPTER 5 HARDWARE IMPLEMENTATION AND PERFORMANCE ANALYSIS OF CUK CONVERTER-BASED MPPT SYSTEM

CHAPTER 5 HARDWARE IMPLEMENTATION AND PERFORMANCE ANALYSIS OF CUK CONVERTER-BASED MPPT SYSTEM 94 CHAPTER 5 HARDWARE IMPLEMENTATION AND PERFORMANCE ANALYSIS OF CUK CONVERTER-BASED MPPT SYSTEM 5.1 INTRODUCTION In coming up with a direct control adaptive perturb and observer MPPT method with Cuk converter,

More information

Design with Microprocessors Year III Computer Science 1-st Semester

Design with Microprocessors Year III Computer Science 1-st Semester Design with Microprocessors Year III Computer Science 1-st Semester Lecture 9: Microcontroller based applications: usage of sensors and actuators (motors) DC motor control Diligent MT motor/gearbox 1/19

More information

Technical Brief FAQ (FREQUENCLY ASKED QUESTIONS) For further information, please contact Crystal Semiconductor at (512) or 1 (800)

Technical Brief FAQ (FREQUENCLY ASKED QUESTIONS) For further information, please contact Crystal Semiconductor at (512) or 1 (800) Technical Brief FAQ (FREQUENCLY ASKED QUESTIONS) 1) Do you have a four channel part? Not at this time, but we have plans to do a multichannel product Q4 97. We also have 4 digital output lines which can

More information

Crayfish Stretch Receptor Stimulator

Crayfish Stretch Receptor Stimulator Crayfish Stretch Receptor Stimulator Report for Cornell University ECE MEng design project By Zequn Huang Ningning Ding Jiachen Hu Project Advisor: Bruce Land Bruce Johnson 1 ABSTRACT This project aims

More information

8-bit Microcontroller with 512/1024 Bytes In-System Programmable Flash. ATtiny4/5/9/10

8-bit Microcontroller with 512/1024 Bytes In-System Programmable Flash. ATtiny4/5/9/10 Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 54 Powerful Instructions Most Single Clock Cycle Execution 16 x 8 General Purpose Working Registers Fully Static

More information

APDS-9960 RGB and Gesture Sensor Hookup Guide

APDS-9960 RGB and Gesture Sensor Hookup Guide Page 1 of 12 APDS-9960 RGB and Gesture Sensor Hookup Guide Introduction Touchless gestures are the new frontier in the world of human-machine interfaces. By swiping your hand over a sensor, you can control

More information

Intelligent Systems Design in a Non Engineering Curriculum. Embedded Systems Without Major Hardware Engineering

Intelligent Systems Design in a Non Engineering Curriculum. Embedded Systems Without Major Hardware Engineering Intelligent Systems Design in a Non Engineering Curriculum Embedded Systems Without Major Hardware Engineering Emily A. Brand Dept. of Computer Science Loyola University Chicago eabrand@gmail.com William

More information

ESE141 Circuit Board Instructions

ESE141 Circuit Board Instructions ESE141 Circuit Board Instructions Board Version 2.1 Fall 2006 Washington University Electrical Engineering Basics Because this class assumes no prior knowledge or skills in electrical engineering, electronics

More information

Programming the Dallas/Maxim DS MHz I2C Oscillator. Jeremy Clark

Programming the Dallas/Maxim DS MHz I2C Oscillator. Jeremy Clark Programming the Dallas/Maxim DS1077 133MHz I2C Oscillator Jeremy Clark Copyright Information ISBN 978-0-9880490-1-7 Clark Telecommunications/Jeremy Clark June 2013 All rights reserved. No part of this

More information

EE 308 Spring S12 SUBSYSTEMS: PULSE WIDTH MODULATION, A/D CONVERTER, AND SYNCHRONOUS SERIAN INTERFACE

EE 308 Spring S12 SUBSYSTEMS: PULSE WIDTH MODULATION, A/D CONVERTER, AND SYNCHRONOUS SERIAN INTERFACE 9S12 SUBSYSTEMS: PULSE WIDTH MODULATION, A/D CONVERTER, AND SYNCHRONOUS SERIAN INTERFACE In this sequence of three labs you will learn to use the 9S12 S hardware sybsystem. WEEK 1 PULSE WIDTH MODULATION

More information

Written by Hans Summers Monday, 22 September :14 - Last Updated Friday, 16 January :43

Written by Hans Summers Monday, 22 September :14 - Last Updated Friday, 16 January :43 This modification turns the Ultimate3 kit into an accurate GPS-disciplined frequency reference (approx 0.03Hz accuracy). The firmware has NOT yet been updated to operate with the Si5351A synthesiser module

More information

Part (A) Using the Potentiometer and the ADC* Part (B) LEDs and Stepper Motors with Interrupts* Part (D) Breadboard PIC Running a Stepper Motor

Part (A) Using the Potentiometer and the ADC* Part (B) LEDs and Stepper Motors with Interrupts* Part (D) Breadboard PIC Running a Stepper Motor Name Name (Most parts are team so maintain only 1 sheet per team) ME430 Mechatronic Systems: Lab 5: ADC, Interrupts, Steppers, and Servos The lab team has demonstrated the following tasks: Part (A) Using

More information

Touch Potentiometer Hookup Guide

Touch Potentiometer Hookup Guide Page 1 of 14 Touch Potentiometer Hookup Guide Introduction The Touch Potentiometer, or Touch Pot for short, is an intelligent, linear capacitive touch sensor that implements potentiometer functionality

More information

Supported Servos Any servo motors with "1500 us neutral" specifications. The common brands available for this spec are: Hitec, Futaba.

Supported Servos Any servo motors with 1500 us neutral specifications. The common brands available for this spec are: Hitec, Futaba. NXT Sensors & Interfaces NXT Accessories RCX Sensors & Interfaces I2C Sensors & Interfaces VEX Sensors & Interfaces Other Robotics accessories Coming Soon for NXT Coming Soon for VEX Download Sample Programs

More information

SPECIFICATIONS: Subcarrier Frequency 5.5MHz adjustable, FM Modulated +/- 50KHz. 2nd 11MHz >40dB down from 5.5MHz

SPECIFICATIONS: Subcarrier Frequency 5.5MHz adjustable, FM Modulated +/- 50KHz. 2nd 11MHz >40dB down from 5.5MHz Mini-kits AUDIO / SUBCARRIER KIT EME75 Version4 SPECIFICATIONS: Subcarrier Frequency 5.5MHz adjustable, FM Modulated +/- 50KHz Subcarrier Output 1.5v p-p Output @ 5.5MHz DESCRIPTION & FEATURES: The Notes

More information

Build this Direct Digital Synthesizer "Development Kit" By: Diz Gentzow, W8DIZ

Build this Direct Digital Synthesizer Development Kit By: Diz Gentzow, W8DIZ Build this Direct Digital Synthesizer "Development Kit" By: Diz Gentzow, W8DIZ A great tutorial for adding a keypad to the DDS Kit by Bruce, W8BH This manual has been prepared to be read directly on screen.

More information

In this lab, you ll build and program a meter that measures voltage, current, power, and energy at DC and AC.

In this lab, you ll build and program a meter that measures voltage, current, power, and energy at DC and AC. EE 155/255 Lab #2 Revision 1, October 5, 2017 Lab2: Energy Meter In this lab, you ll build and program a meter that measures voltage, current, power, and energy at DC and AC. Assigned: October 2, 2017

More information

L13: (25%), (20%), (5%) ECTE333

L13: (25%), (20%), (5%) ECTE333 ECTE333 s schedule ECTE333 Lecture 1 - Pulse Width Modulator School of Electrical, Computer and Telecommunications Engineering University of Wollongong Australia Week Lecture (2h) Tutorial (1h) Lab (2h)

More information

LCD MULTIMETER FOR YOUR SHACK. MEASUREMENT U, I, P, Ah FOR GREEN ENERGY - WIND TURBINE, SOLAR PANELS. MEASUREMENT U, I, P, Ah, kwh

LCD MULTIMETER FOR YOUR SHACK. MEASUREMENT U, I, P, Ah FOR GREEN ENERGY - WIND TURBINE, SOLAR PANELS. MEASUREMENT U, I, P, Ah, kwh LCD MULTIMETER FOR YOUR SHACK MEASUREMENT U, I, P, Ah FOR GREEN ENERGY - WIND TURBINE, SOLAR PANELS MEASUREMENT U, I, P, Ah, kwh www.sp2dmb.cba.pl sp2dmb@gmail.com MULTIMETER - ATMEGA8 Piotr Bryl SP2DMB

More information

Getting started Guide

Getting started Guide Getting started Guide SnapJam is a Social Networking Site wrapped around Music. We help you Connect, Collaborate and Compose High Quality Music with your Friends. First Step: Register for an account. Once

More information

Project Proposal. Underwater Fish 02/16/2007 Nathan Smith,

Project Proposal. Underwater Fish 02/16/2007 Nathan Smith, Project Proposal Underwater Fish 02/16/2007 Nathan Smith, rahteski@gwu.edu Abstract The purpose of this project is to build a mechanical, underwater fish that can be controlled by a joystick. The fish

More information

8-bit with 8K Bytes In-System Programmable Flash. ATmega8 ATmega8L. Preliminary

8-bit with 8K Bytes In-System Programmable Flash. ATmega8 ATmega8L. Preliminary Features High-performance, Low-power AVR 8-bit Microcontroller Advanced RISC Architecture 130 Powerful Instructions Most Single-clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

High Speed Clock Distribution Design Techniques for CDC 509/516/2509/2510/2516

High Speed Clock Distribution Design Techniques for CDC 509/516/2509/2510/2516 High Speed Clock Distribution Design Techniques for CDC 509/516/2509/2510/2516 APPLICATION REPORT: SLMA003A Boyd Barrie Bus Solutions Mixed Signals DSP Solutions September 1998 IMPORTANT NOTICE Texas Instruments

More information

EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Labs Introduction to Arduino

EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Labs Introduction to Arduino EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Labs 10-11 Introduction to Arduino In this lab we will introduce the idea of using a microcontroller as a tool for controlling

More information

Improving the ADF5355 synthesizer board (Version with Touch-Display)

Improving the ADF5355 synthesizer board (Version with Touch-Display) Improving the ADF5355 synthesizer board (Version with Touch-Display) Hello, Matthias, DD1US, March 24 th 2018, rev 1.1 Searching for a way to extend the frequency range of my test equipment I decided to

More information

Hardware Platforms and Sensors

Hardware Platforms and Sensors Hardware Platforms and Sensors Tom Spink Including material adapted from Bjoern Franke and Michael O Boyle Hardware Platform A hardware platform describes the physical components that go to make up a particular

More information

The University of Texas at Arlington Lecture 10 ADC and DAC

The University of Texas at Arlington Lecture 10 ADC and DAC The University of Texas at Arlington Lecture 10 ADC and DAC CSE 3442/5442 Measuring Physical Quantities (Digital) computers use discrete values, and use these to emulate continuous values if needed. In

More information

Junior Digital circuit experiment board. Use for the experimentation of digital circuits both TTL IC and CMOS DC supply :

Junior Digital circuit experiment board. Use for the experimentation of digital circuits both TTL IC and CMOS DC supply : NX-100plus Junior Digital circuit experiment board Feature Use for the experimentation of digital circuits both TTL IC and CMOS DC supply : +5V and +V (+12V approx. depend on DC adaptor) 800mA buit-in

More information

Introduction 1. Download socket (the cable plugs in here so that the GENIE microcontroller can talk to the computer)

Introduction 1. Download socket (the cable plugs in here so that the GENIE microcontroller can talk to the computer) Introduction 1 Welcome to the magical world of GENIE! The project board is ideal when you want to add intelligence to other design or electronics projects. Simply wire up your inputs and outputs and away

More information

NF1011 Frequency Translator and Jitter Attenuator

NF1011 Frequency Translator and Jitter Attenuator NF1011 Frequency Translator and Jitter Attenuator 2111 Comprehensive Drive Aurora, Illinois 60505 Phone: 630-851- 4722 Fax: 630-851- 5040 www.conwin.com P R O D U C T General Description The NF1011 is

More information

MEASUREMENT OF RELATIVE HUMIDITY USING A SIMPLE ARRANGEMENT & BY ANALOG TO DIGITAL DATA CONVERSION METHOD

MEASUREMENT OF RELATIVE HUMIDITY USING A SIMPLE ARRANGEMENT & BY ANALOG TO DIGITAL DATA CONVERSION METHOD Proceedings of the International Conference on Mechanical Engineering 2011 (ICME2011) 18-20 December 2011, Dhaka, Bangladesh MEASUREMENT OF RELATIVE HUMIDITY USING A SIMPLE ARRANGEMENT & BY ANALOG TO DIGITAL

More information

Robotic Development Kit. Powered using ATMEL technology

Robotic Development Kit. Powered using ATMEL technology Robotic Development Kit Powered using ATMEL technology Index 1. System overview 2. Technology overview 3. Individual dev-kit components I. Robot II. Remote III. IR-Pod IV. Base-Station V. RFID 4. Robonii

More information

EMC Design Guide. F²MC-16LX Family

EMC Design Guide. F²MC-16LX Family Application Note EM Design Guide F²M-16LX Family Fujitsu Mikroelektronik GmbH, Microcontroller Application Group History 10 th Oct. 00 NFl V1.0 Initial draft 26 th Apr. 01 NFl V1.1 Oscillator circuit added

More information

Laboration: Frequency measurements and PWM DC motor. Embedded Electronics IE1206

Laboration: Frequency measurements and PWM DC motor. Embedded Electronics IE1206 Laboration: Frequency measurements and PWM DC motor. Embedded Electronics IE1206 Attention! To access the laboratory experiment you must have: booked a lab time in the reservation system (Daisy). completed

More information

Faculty for Information Technology, Mathematics and Electrical Engineering Institute for Electric Power Engineering.

Faculty for Information Technology, Mathematics and Electrical Engineering Institute for Electric Power Engineering. Faculty for Information Technology, Mathematics and Electrical Engineering Institute for Electric Power Engineering Project Report Project 19 DC Collecting System in offshore Wind Turbines TET4190 Power

More information

AN Low Frequency RFID Card Reader. Application Note Abstract. Introduction. Working Principle of LF RFID Reader

AN Low Frequency RFID Card Reader. Application Note Abstract. Introduction. Working Principle of LF RFID Reader Low Frequency RFID Card Reader Application Note Abstract AN52164 Authors: Richard Xu Jemmey Huang Associated Project: None Associated Part Family: CY8C24x23 Software Version: PSoC Designer 5.0 Associated

More information

ESE 350 Microcontroller Laboratory Lab 5: Sensor-Actuator Lab

ESE 350 Microcontroller Laboratory Lab 5: Sensor-Actuator Lab ESE 350 Microcontroller Laboratory Lab 5: Sensor-Actuator Lab The purpose of this lab is to learn about sensors and use the ADC module to digitize the sensor signals. You will use the digitized signals

More information

ME 333 Assignment 7 and 8 PI Control of LED/Phototransistor Pair. Overview

ME 333 Assignment 7 and 8 PI Control of LED/Phototransistor Pair. Overview ME 333 Assignment 7 and 8 PI Control of LED/Phototransistor Pair Overview For this assignment, you will be controlling the light emitted from and received by an LED/phototransistor pair. There are many

More information

For this exercise, you will need a partner, an Arduino kit (in the plastic tub), and a laptop with the Arduino programming environment.

For this exercise, you will need a partner, an Arduino kit (in the plastic tub), and a laptop with the Arduino programming environment. Physics 222 Name: Exercise 6: Mr. Blinky This exercise is designed to help you wire a simple circuit based on the Arduino microprocessor, which is a particular brand of microprocessor that also includes

More information

Microcontroller Based Inductance Meter. David Nguyen

Microcontroller Based Inductance Meter. David Nguyen Microcontroller Based Inductance Meter By David Nguyen Advisor: William Ahlgren Senior Project ELECTRICAL ENGINEERING DEPARTMENT California Polytechnic State University San Luis Obispo Spring 2011 Fall

More information

8-bit Microcontroller with 8K Bytes In-System Programmable Flash. ATmega8535 ATmega8535L

8-bit Microcontroller with 8K Bytes In-System Programmable Flash. ATmega8535 ATmega8535L Features High-performance, Low-power AVR 8-bit Microcontroller Advanced RISC Architecture 130 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

E3A EVAL BOARD USER'S GUIDE for use with QT300 and QT301 QProx sensor ICs

E3A EVAL BOARD USER'S GUIDE for use with QT300 and QT301 QProx sensor ICs Overview E3A EVAL BOARD USER'S GUIDE for use with QT300 and QT301 QProx sensor ICs The E3A board works with Quantum's QT300 and QT301 16-Bit Capacitance to Digital Converter (CDC) sensor ICs. Either device

More information

EMBEDDED SYSTEM DESIGN FOR A DIGITAL MULTIMETER USING MOTOROLA HCS12 MICROCONTROLLER

EMBEDDED SYSTEM DESIGN FOR A DIGITAL MULTIMETER USING MOTOROLA HCS12 MICROCONTROLLER EMBEDDED SYSTEM DESIGN FOR A DIGITAL MULTIMETER USING MOTOROLA HCS12 MICROCONTROLLER A Thesis Submitted in partial Fulfillment Of the Requirements of the Degree of Bachelor of Technology In Electronics

More information

Lab 2: Blinkie Lab. Objectives. Materials. Theory

Lab 2: Blinkie Lab. Objectives. Materials. Theory Lab 2: Blinkie Lab Objectives This lab introduces the Arduino Uno as students will need to use the Arduino to control their final robot. Students will build a basic circuit on their prototyping board and

More information

EE445L Fall 2014 Quiz 2A Page 1 of 5

EE445L Fall 2014 Quiz 2A Page 1 of 5 EE445L Fall 2014 Quiz 2A Page 1 of 5 Jonathan W. Valvano First: Last: November 21, 2014, 10:00-10:50am. Open book, open notes, calculator (no laptops, phones, devices with screens larger than a TI-89 calculator,

More information

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT BIT DIFFERENTIAL INPUT DELTA SIGMA ADC LTC DESCRIPTION

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT BIT DIFFERENTIAL INPUT DELTA SIGMA ADC LTC DESCRIPTION LTC2433-1 DESCRIPTION Demonstration circuit 745 features the LTC2433-1, a 16-bit high performance Σ analog-to-digital converter (ADC). The LTC2433-1 features 0.12 LSB linearity, 0.16 LSB full-scale accuracy,

More information

AN ABSTRACT OF THE THESIS OF

AN ABSTRACT OF THE THESIS OF AN ABSTRACT OF THE THESIS OF Alana Sweat for the degrees of Honors Baccalaureate of Science in Electrical and Computer Engineering and Honors Baccalaureate of Science in Mathematics presented on May 27,

More information

Lesson 3: Arduino. Goals

Lesson 3: Arduino. Goals Introduction: This project introduces you to the wonderful world of Arduino and how to program physical devices. In this lesson you will learn how to write code and make an LED flash. Goals 1 - Get to

More information