EMG Sensor Shirt. Senior Project Written Hardware Description April 28, 2015 ETEC 474. By: Dylan Kleist Joshua Goertz

Size: px
Start display at page:

Download "EMG Sensor Shirt. Senior Project Written Hardware Description April 28, 2015 ETEC 474. By: Dylan Kleist Joshua Goertz"

Transcription

1 EMG Sensor Shirt Senior Project Written Hardware Description April 28, 2015 ETEC 474 By: Dylan Kleist Joshua Goertz

2 Table of Contents Introduction... 3 User Interface Board... 3 Bluetooth... 3 Keypad... 4 LCD... 4 Pre-Amp Boards... 5 Electrode Inputs and Fixed Front end Gain Stage... 5 Primary Band-pass Filter... 6 Secondary Bandpass Filter... 6 Power Components... 7 MCU/Board Inputs... 7 MCU... 8 Signal Inputs... 8 UI Board Connector... 8 Power Connections... 8 EMG Main Board... 9 Programmable Gain/Multiplexing Stage... 9 Mode selector Stage Signal Rectification Multiplexing Switching for Output... 11

3 Introduction This project is an EMG Sensor Shirt. This shirt contains several components, which allow it to sense the contraction of multiple sets of the wearer s muscles. Signals received from the muscles are sent through a preliminary amplification and filter stage close the specified muscle. Followed by a signal rectification and multiplexing to capture every signal in the ADC from the microcontroller to determine the magnitude of muscle contraction. The magnitude value of each measured muscle contraction can then be sent to an external device via Bluetooth link. The Bluetooth connection, calibration and real-time results are all set up using a user interface board. This shirt will effectively be an intermediary device for applications which require access to a user s muscle contractions, such as neuro-muscular health assessments, Exo-skeletal control devices, and physical therapy resistance devices. User Interface Board Bluetooth The data communication that is necessary between the EMG Sensor Shirt and the user s external device, will be done via RN-42 Bluetooth communication link over UART or SPI depending on the necessary speed of transmission between modules. Using the GPIO connected in with the Bluetooth will be what I use to make sure the Baud Rate is set correctly. As the shirt will be the controller for the any system that it is a part of, making the Bluetooth module attached to the User Interface Board the Master in all cases.

4 Keypad Within the User Interface the keypad is made up of eight tactile switches, put into four column by 2 row matrix. Each row and column is using a singular GPIO from the MCU rows as outputs and inputs tied with internal pull-up resistors (10k) for columns. This way the keypad will be scanned one row at a time sending a 0 down that specified row. Knowing a switch is pressed because the column will be brought low making that switch a logic 00. The keypad will be used for the User to navigate through the Bluetooth settings, calibration and real-time results menus. Along with added in silk screening on the top of the board to help the user understand what each button press will do in that present state of the menu. LCD The visual aspect for the user is going to be crucial because without it the Menus, and keypad presses will be useless. For that reason we will be using this character LCD module seen below. I will be using in its four bit mode, using a fewer number of GPIO pins for necessary data transfer than that of the eight bit mode. That being said for this application we are using 6 different GPIO for this display. It is a 4 row by 20 column display giving us a wider range of characters we can display at one time. Since this device will always be written too and not ever read we have grounded the R/W pin. In order to give optimal contrast voltage, at pin 3, between the characters and the LED backlight we used a voltage divider to give Vo = 33 mv.

5 Pre-Amp Boards Electrode Inputs and Fixed Front end Gain Stage The electrodes for the EMG shirt are composed of silver weave flexible conductive fabric, which is attached to a wire through a brass button. There are three electrodes for one EMG signal, at signal input where the wire connects 100k Ohm resistors are placed in series in order to keep maximum electrical discharge in case that full board voltage of 4.8V is shorted to the electrodes down to 48uA. A number of skin effects require that a 10Mohm resistor connect the two electrode inputs together before they are fed to an AD8293G160 fixed gain instrumentation amplifier. This amplifier has a built in filter cutoff of 500 Hz with the application of a 1.2nF capacitor on pin 5 and 6. The amplifier is working with a single supply so a reference voltage is applied at 1.65V to bias the signal at the mid-voltage point to accommodate maximum signal swing. From here the signal is AC coupled and fed to an inverting operational amplifier with a gain of ten. This allows a high front end gain before

6 sending the signal to a band pass filter. The signal must be AC coupled in order to remove a substantial amount of low frequency DC noise at the skin. Primary Band-pass Filter The primary band-pass filter for the pre-amp is constructed so that is will cause a -24dB/octave (4 th Order Band-pass). The cutoffs for the band-pass filter must be set at 100Hz and 250Hz. The 100Hz cutoff must be set to reduce 60Hz frequency noise from electrical power grid and the 250Hz cutoff must be set to reduce movement noise from the fabric electrodes sliding over the skin. This filter stage should have no gain, as gain in the four-pole setup will cause instability. The primary band-pass filter for the pre-amp board is composed of two amplifiers of a quad opamp IC chip. The MCP6044T is used for this application because it has a low bandwidth gain product of 14kHz which further reduces any high frequency noise. These operational amplifiers use a single supply so the non-inverting input must be biased with 1.65V DC in order to accommodate the AC signal. Secondary Bandpass Filter This filter is composed of the final remaining opamp of the MCP6044 IC. It is used to continue filtering the signal but also add gain back into the system before the signal is sent to the main EMG board. Prior to arriving at the secondary band-pass filter the signal underwent attenuation through the 4 pole band-pass filter and this filter will increase the remaining signal amplitude at a gain of 1.2V/V. This small gain will make up for loss from the previous stage but also ensure the signal does not get too large before going the main EMG adjustable gain stage.

7 Power Components Power is regulated on the Pre-Amp board. Due to the fact that the pre-amp board is fed a voltage supply from a battery attached to the main EMG board, the possibility exists that there could be a voltage drop between the two points. In order to get around this, the power is regulated down to 3.3V on the board. The regulated power is then used to power components on the board. In addition to the voltage regulator, a virtual ground reference voltage is created by using a TLE2426 rail-splitter IC. This IC contains precision resistors with a buffer amplifier and is used to form a reference voltage at 1.65V which will be used to bias the EMG signal. MCU/Board Inputs Board inputs are a combination of inputs from the Pre-Amp boards, I/O going back and forth from the UI board. As well as some power components, including the battery, linear regulator and the bypass capacitors necessary for powering the MCU.

8 MCU Our project is going to need a substantial amount of processing power and speed, making us choose the 256 pin K70 Freescale MCU. It is a familiar 3.3V powered board that had the peripherals and processing capabilities that are necessary for our project. Peripherals available to us include Ports A-F with a total of 130 usable pins for GPIO, ADC, UART, SPI and many other alternates available to us. With the combination of all the different aspects of our project this MCU is a great fit for the size of our project. Signal Inputs These two sixteen pin headers are set up to receive the analog muscle signals delivered after they have been amplified and filtered on the Pre-Amp boards. Once the signals reach this point they are able to be fed through the main EMG hardware. UI Board Connector On the main board this 17x2 pin header allows us to connect the ports necessary to run all of the User Interface board devices, such as the Bluetooth, LCD and keypad. Doing this through a simple wire connections from EMG Main board to the User Interface board, permitting us to only connect to the K70 board through one PCI-e connector. This has allowed us to utilize the primary side of the board that contains the all of the necessary ports. Power Connections To start we have the hook up for our 4.8V rechargeable battery that is hooked up to our linear voltage regulator, to bring us down to the necessary 3.3V for our project. But between the powering of the MCU and other portions of the project we have injected the necessary bypass capacitors for power stability. Followed by being fed into our virtual ground/reference voltage IC.

9 EMG Main Board Programmable Gain/Multiplexing Stage The first stage that signals encounter when they enter the EMG main board is the Programmable gain/multiplexing stage. This stage serves two purposes. First it allows the board to accommodate multiple channels of EMG signals with less hardware, second it allows the board to accommodate signal levels of differing levels which may not be high enough to produce good results at later stages within the EMG board. Currently this stage is served by a single MCP6S26 IC OP-Amp. This chip is a non-inverting operational amplifier which has an analog mux that it can use to input different EMG channels. It also has a programmable gain from 1 32 which allows it to increase the signals which will undergo substantial attenuation after the narrow band-pass filtering. The MCP6S26 is programmed via a four wire serial peripheral interface, and can run at a max clock speed of 10MHz. These

10 chips are the only SPI devices on this SPI circuit which means it can be run at full clock speed. Switching which is done for the multiplexed analog signals is done here. This Op- Amp must switch input channels in synchronization with later stages of analog multiplexers. Fifty Ohm resistors are added on the output of each Op-Amp at this stage to accommodate any capacitive loading of the output. Mode selector Stage In order to allow the device to calibrate the signals for maximum amplitude, and two allow two different modes of operation, an intermediate analog mux is needed to allow the device to switch between modes. This stage is filled by a single ADG734BRUZ single pole double throw analog switch. Each switch is tied to a GPIO input, since there is only two modes, this means each input can be tied to a single GPIO bit from the microcontroller. Signals enter from four different EMG channels and are sent to the next stage from here depending on the mode of operation. If the input for each switch is turned high, the signal will be sent to the signal rectifier, then low pass filter. If the input is low, the signal will be sent straight to an analog to digital converter. Signal Rectification If the device is in the low-pass filter mode, the signal will next be passed through an op amp signal rectifier. This utilizes three channels of a quad-operational amplifier. First the signal is AC coupled through a 1uF capacitor and 1.6k Ohm resistor to form a high pass stage of 100Hz, which further attenuates any noise below 100Hz. Once the signal passes the 100Hz filter it loses its DC bias around

11 1.65V and is then applied to an inverting operation amplifier with a gain of 2 and a noninverting amplifier with a gain of 2. The gain must not exceed 2 otherwise the max signal amplitude could exceed the power rails. Once the positive and negative portion of the signal are removed, the resultant signals are pushed into a non-inverting summer amplifier circuit. It is important to understand that the signal which is seen at the input of the summer amplifier in this setup is only half of the signal amplitude. Since a resistor divider is formed at the input. Multiplexing Switching for Output If the mode of operation is set to low-pass filter each analog signal, each channel needs to be passed into its own low pass filter. In order to do this four sets of quad single pole double throw analog switches are used to feed different low-pass filters. This circuit uses one ADG734BRUZ analog switch IC to feed four low-pass filters. The analog signal is first fed to pole A of the switch, one switch at a time is activated on a periodic basis, at the same time the corresponding input for the selected filter is selected at the PROGRAMMABLE GAIN/MULTIPLEXING stage so that the same signal is fed to the same low-pass filter every time. The switches are controlled by four GPIO pins and only one GPIO pins is active at one time. The low pass filter cutoff frequency is set to 4 Hz, it is formed by a resistor and capacitor combination. The output for this filter is fed to an ADC channel on the microcontroller. The low pass filter is connected to the common pin of each single pole double throw switch, when a switch is deactivated, the common pin is then connected to pole B of the switch. This pole is connected to ground through a drain resistor. The time constant of the filter resistor plus the drain resistor with the low pass filter capacitor must be three times longer than the low pass filter time constant. This will ensure the filter capacitor can slew up and down at the same rate over the switching period.

Adjustable Parametric Equalizer Hardware Description

Adjustable Parametric Equalizer Hardware Description Adjustable Parametric Equalizer Hardware Description Adam Grunke April 27, 2004 ETEC 474 Professor Morton Introduction The Adjustable Parametric Equalizer (APE) allows the professional audio engineer to

More information

Sensor Interfacing and Operational Amplifiers Lab 3

Sensor Interfacing and Operational Amplifiers Lab 3 Name Lab Day Lab Time Sensor Interfacing and Operational Amplifiers Lab 3 Introduction: In this lab you will design and build a circuit that will convert the temperature indicated by a thermistor s resistance

More information

Weekly Update Michael Jorgensen Week of 2/25/11 3/3/11

Weekly Update Michael Jorgensen Week of 2/25/11 3/3/11 Weekly Update Michael Jorgensen Week of 2/25/11 3/3/11 I tested the circuit with my left masseter and temporalis muscles. I obtained a clean signal as shown in FIG. 1 (L masseter). It is evident that the

More information

PCB Scope / Logic Analyzer Hardware Design Description

PCB Scope / Logic Analyzer Hardware Design Description PCB Scope / Logic Analyzer Hardware Design Description Introduction The PCB scope is the result of a challenge I set for myself to build a practically usable oscilloscope with a minimum amount of components

More information

AN-1106 Custom Instrumentation Amplifier Design Author: Craig Cary Date: January 16, 2017

AN-1106 Custom Instrumentation Amplifier Design Author: Craig Cary Date: January 16, 2017 AN-1106 Custom Instrumentation Author: Craig Cary Date: January 16, 2017 Abstract This application note describes some of the fine points of designing an instrumentation amplifier with op-amps. We will

More information

AN4995 Application note

AN4995 Application note Application note Using an electromyogram technique to detect muscle activity Sylvain Colliard-Piraud Introduction Electromyography (EMG) is a medical technique to evaluate and record the electrical activity

More information

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 019.101 Introductory Analog Electronics Laboratory Laboratory No. READING ASSIGNMENT

More information

Capacitive Touch Sensing Tone Generator. Corey Cleveland and Eric Ponce

Capacitive Touch Sensing Tone Generator. Corey Cleveland and Eric Ponce Capacitive Touch Sensing Tone Generator Corey Cleveland and Eric Ponce Table of Contents Introduction Capacitive Sensing Overview Reference Oscillator Capacitive Grid Phase Detector Signal Transformer

More information

UNIVERSITY OF UTAH ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT ELECTROMYOGRAM (EMG) DETECTOR WITH AUDIOVISUAL OUTPUT

UNIVERSITY OF UTAH ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT ELECTROMYOGRAM (EMG) DETECTOR WITH AUDIOVISUAL OUTPUT UNIVESITY OF UTAH ELECTICAL AND COMPUTE ENGINEEING DEPATMENT ECE 3110 LABOATOY EXPEIMENT NO. 5 ELECTOMYOGAM (EMG) DETECTO WITH AUDIOVISUAL OUTPUT Pre-Lab Assignment: ead and review Sections 2.4, 2.8.2,

More information

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 019 Spring Term 00.101 Introductory Analog Electronics Laboratory Laboratory No.

More information

The Skiidometer. Hardware Description By: Adam Lee ; Etec474; Prof. Morton; WWU

The Skiidometer. Hardware Description By: Adam Lee ; Etec474; Prof. Morton; WWU The Skiidometer Hardware Description By: Adam Lee 04.26.2003; Etec474; Prof. Morton; WWU General Description The Skiidometer is a portable meter which serves as a digital companion on the ski slopes. By

More information

MAINTENANCE MANUAL AUDIO AMPLIFIER BOARD 19D904025G1 (MDR) AUDIO AMPLIFIER BOARD 19D904025G2 (MDX)

MAINTENANCE MANUAL AUDIO AMPLIFIER BOARD 19D904025G1 (MDR) AUDIO AMPLIFIER BOARD 19D904025G2 (MDX) A MAINTENANCE MANUAL AUDIO AMPLIFIER BOARD 19D904025G1 (MDR) AUDIO AMPLIFIER BOARD 19D904025G2 (MDX) TABLE OF CONTENTS DESCRIPTION............................................... Page Front Cover CIRCUIT

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Table of contents 1. Design 1.1. The Differential Amplifier 1.2. Level Shifter 1.3. Power Amplifier 2. Characteristics 3. The Opamp without NFB 4. Linear Amplifiers 4.1. The Non-Inverting

More information

Bridge Measurement Systems

Bridge Measurement Systems Section 5 Outline Introduction to Bridge Sensors Circuits for Bridge Sensors A real design: the ADS1232REF The ADS1232REF Firmware This presentation gives an overview of data acquisition for bridge sensors.

More information

XR FSK Modem Filter FUNCTIONAL BLOCK DIAGRAM GENERAL DESCRIPTION FEATURES ORDERING INFORMATION APPLICATIONS SYSTEM DESCRIPTION

XR FSK Modem Filter FUNCTIONAL BLOCK DIAGRAM GENERAL DESCRIPTION FEATURES ORDERING INFORMATION APPLICATIONS SYSTEM DESCRIPTION FSK Modem Filter GENERAL DESCRIPTION FUNCTIONAL BLOCK DIAGRAM The XR-2103 is a Monolithic Switched-Capacitor Filter designed to perform the complete filtering function necessary for a Bell 103 Compatible

More information

EE445L Fall 2014 Quiz 2A Page 1 of 5

EE445L Fall 2014 Quiz 2A Page 1 of 5 EE445L Fall 2014 Quiz 2A Page 1 of 5 Jonathan W. Valvano First: Last: November 21, 2014, 10:00-10:50am. Open book, open notes, calculator (no laptops, phones, devices with screens larger than a TI-89 calculator,

More information

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET) Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

More information

Operational Amplifiers

Operational Amplifiers Questions Easy Operational Amplifiers 1. Which of the following statements are true? a. An op-amp has two inputs and three outputs b. An op-amp has one input and two outputs c. An op-amp has two inputs

More information

Experiment 1: Amplifier Characterization Spring 2019

Experiment 1: Amplifier Characterization Spring 2019 Experiment 1: Amplifier Characterization Spring 2019 Objective: The objective of this experiment is to develop methods for characterizing key properties of operational amplifiers Note: We will be using

More information

An 8-Channel General-Purpose Analog Front- End for Biopotential Signal Measurement

An 8-Channel General-Purpose Analog Front- End for Biopotential Signal Measurement An 8-Channel General-Purpose Analog Front- End for Biopotential Signal Measurement Group 4: Jinming Hu, Xue Yang, Zengweijie Chen, Hang Yang (auditing) 1. System Specifications & Structure 2. Chopper Low-Noise

More information

SPG Monolithic Event Detector Interface SP42400P

SPG Monolithic Event Detector Interface SP42400P SPG Monolithic Event Detector Interface SP42400P General description: The SP42400P is a monolithic device fabricated in CMOS technology. Its generic function is to detect low to medium frequency, low voltage

More information

6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS

6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS 6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS Laboratory based hardware prototype is developed for the z-source inverter based conversion set up in line with control system designed, simulated and discussed

More information

Midway Design Review. Sync-In December 4, 2015

Midway Design Review. Sync-In December 4, 2015 Midway Design Review Sync-In December 4, 2015 Advisor: Professor Gao 1 Sync-In Ajwad Alam, EE Amplifier Joseph Bellve, EE User Interface Levis Agaba, CSE Tx/Rx Carl Senecal, CSE Network Formation Advisor:

More information

An Analog Phase-Locked Loop

An Analog Phase-Locked Loop 1 An Analog Phase-Locked Loop Greg Flewelling ABSTRACT This report discusses the design, simulation, and layout of an Analog Phase-Locked Loop (APLL). The circuit consists of five major parts: A differential

More information

MAXREFDES73#: WEARABLE, GALVANIC SKIN RESPONSE SYSTEM

MAXREFDES73#: WEARABLE, GALVANIC SKIN RESPONSE SYSTEM MAXREFDES73#: WEARABLE, GALVANIC SKIN RESPONSE SYSTEM MAXREFDES39# System Board Introduction GSR measurement detects human skin impedance under different situations. A variety of events affect the skin

More information

Summer 2015 Examination

Summer 2015 Examination Summer 2015 Examination Subject Code: 17445 Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

More information

GATE: Electronics MCQs (Practice Test 1 of 13)

GATE: Electronics MCQs (Practice Test 1 of 13) GATE: Electronics MCQs (Practice Test 1 of 13) 1. Removing bypass capacitor across the emitter leg resistor in a CE amplifier causes a. increase in current gain b. decrease in current gain c. increase

More information

Testing and Stabilizing Feedback Loops in Today s Power Supplies

Testing and Stabilizing Feedback Loops in Today s Power Supplies Keywords Venable, frequency response analyzer, impedance, injection transformer, oscillator, feedback loop, Bode Plot, power supply design, open loop transfer function, voltage loop gain, error amplifier,

More information

Group #17 Arian Garcia Javier Morales Tatsiana Smahliuk Christopher Vendette

Group #17 Arian Garcia Javier Morales Tatsiana Smahliuk Christopher Vendette Group #17 Arian Garcia Javier Morales Tatsiana Smahliuk Christopher Vendette Electrical Engineering Electrical Engineering Electrical Engineering Electrical Engineering Contents 1 2 3 4 5 6 7 8 9 Motivation

More information

PC-OSCILLOSCOPE PCS500. Analog and digital circuit sections. Description of the operation

PC-OSCILLOSCOPE PCS500. Analog and digital circuit sections. Description of the operation PC-OSCILLOSCOPE PCS500 Analog and digital circuit sections Description of the operation Operation of the analog section This description concerns only channel 1 (CH1) input stages. The operation of CH2

More information

Design Implementation Description for the Digital Frequency Oscillator

Design Implementation Description for the Digital Frequency Oscillator Appendix A Design Implementation Description for the Frequency Oscillator A.1 Input Front End The input data front end accepts either analog single ended or differential inputs (figure A-1). The input

More information

Keywords: volume control, digital potentiometer, docking station, mute, stereo separation, MAX5486

Keywords: volume control, digital potentiometer, docking station, mute, stereo separation, MAX5486 Maxim > Design Support > Technical Documents > Tutorials > Audio Circuits > APP 4262 Keywords: volume control, digital potentiometer, docking station, mute, stereo separation, MAX5486 TUTORIAL 4262 Improve

More information

CHAPTER 3. Instrumentation Amplifier (IA) Background. 3.1 Introduction. 3.2 Instrumentation Amplifier Architecture and Configurations

CHAPTER 3. Instrumentation Amplifier (IA) Background. 3.1 Introduction. 3.2 Instrumentation Amplifier Architecture and Configurations CHAPTER 3 Instrumentation Amplifier (IA) Background 3.1 Introduction The IAs are key circuits in many sensor readout systems where, there is a need to amplify small differential signals in the presence

More information

ELG3336 Design of Mechatronics System

ELG3336 Design of Mechatronics System ELG3336 Design of Mechatronics System Elements of a Data Acquisition System 2 Analog Signal Data Acquisition Hardware Your Signal Data Acquisition DAQ Device System Computer Cable Terminal Block Data Acquisition

More information

AD8232 EVALUATION BOARD DOCUMENTATION

AD8232 EVALUATION BOARD DOCUMENTATION One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 Tel: 781.329.4700 Fax: 781.461.3113 www.analog.com AD8232 EVALUATION BOARD DOCUMENTATION FEATURES Ready to use Heart Rate Monitor (HRM) Front end

More information

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec INTEGRATED CIRCUITS 1988 Dec DAC products are designed to convert a digital code to an analog signal. Since a common source of digital signals is the data bus of a microprocessor, DAC circuits that are

More information

Low Cost Screening Audiometer

Low Cost Screening Audiometer Abstract EE 389 EDL Report, EE Dept. IIT Bombay, submitted on Nov.2004 Low Cost Screening Audiometer Group No.: D3 Chirag Jain 01d07018 Prashant Yadav 01d07024 Puneet Parakh 01d07007 Supervisor: Prof.

More information

Linear IC s and applications

Linear IC s and applications Questions and Solutions PART-A Unit-1 INTRODUCTION TO OP-AMPS 1. Explain data acquisition system Jan13 DATA ACQUISITION SYSYTEM BLOCK DIAGRAM: Input stage Intermediate stage Level shifting stage Output

More information

MAINTENANCE MANUAL AUDIO BOARDS 19D902188G1, G2 & G3

MAINTENANCE MANUAL AUDIO BOARDS 19D902188G1, G2 & G3 B MAINTENANCE MANUAL AUDIO BOARDS 19D902188G1, G2 & G3 TABLE OF CONTENTS Page Front Cover DESCRIPTION............................................... CIRCUIT ANALYSIS............................................

More information

CHAPTER 6 IMPLEMENTATION OF FPGA BASED CASCADED MULTILEVEL INVERTER

CHAPTER 6 IMPLEMENTATION OF FPGA BASED CASCADED MULTILEVEL INVERTER 8 CHAPTER 6 IMPLEMENTATION OF FPGA BASED CASCADED MULTILEVEL INVERTER 6.1 INTRODUCTION In this part of research, a proto type model of FPGA based nine level cascaded inverter has been fabricated to improve

More information

PHYS 536 The Golden Rules of Op Amps. Characteristics of an Ideal Op Amp

PHYS 536 The Golden Rules of Op Amps. Characteristics of an Ideal Op Amp PHYS 536 The Golden Rules of Op Amps Introduction The purpose of this experiment is to illustrate the golden rules of negative feedback for a variety of circuits. These concepts permit you to create and

More information

Design and Implementation of Digital Stethoscope using TFT Module and Matlab Visualisation Tool

Design and Implementation of Digital Stethoscope using TFT Module and Matlab Visualisation Tool World Journal of Technology, Engineering and Research, Volume 3, Issue 1 (2018) 297-304 Contents available at WJTER World Journal of Technology, Engineering and Research Journal Homepage: www.wjter.com

More information

Concepts to be Reviewed

Concepts to be Reviewed Introductory Medical Device Prototyping Analog Circuits Part 3 Operational Amplifiers, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Reviewed Operational

More information

Application Note 160 Using the DS1808 in Audio Applications

Application Note 160 Using the DS1808 in Audio Applications www.maxim-ic.com Application Note 160 Using the DS1808 in Audio Applications Introduction The DS1808 Dual Log Audio Potentiometer was designed to provide superior audio performance in applications that

More information

AC Current click PID: MIKROE Weight: 27 g

AC Current click PID: MIKROE Weight: 27 g AC Current click PID: MIKROE-2523 Weight: 27 g AC Current click can measure alternating currents up to 30A and it features the MCP3201 ADC (analog to digital) converter and the MCP607 CMOS Op Amp, both

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com 8.1 Operational Amplifier (Op-Amp) UNIT 8: Operational Amplifier An operational amplifier ("op-amp") is a DC-coupled high-gain electronic voltage amplifier with a differential input and, usually, a single-ended

More information

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION

ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION 98 Chapter-5 ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION 99 CHAPTER-5 Chapter 5: ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION S.No Name of the Sub-Title Page

More information

ML4818 Phase Modulation/Soft Switching Controller

ML4818 Phase Modulation/Soft Switching Controller Phase Modulation/Soft Switching Controller www.fairchildsemi.com Features Full bridge phase modulation zero voltage switching circuit with programmable ZV transition times Constant frequency operation

More information

Select the Right Operational Amplifier for your Filtering Circuits

Select the Right Operational Amplifier for your Filtering Circuits Select the Right Operational Amplifier for your Filtering Circuits 2003 Microchip Technology Incorporated. All Rights Reserved. for Low Pass Filters 1 Hello, my name is Bonnie Baker, and I am with Microchip.

More information

Wireless Music Dock - WMD Portable Music System with Audio Effect Applications

Wireless Music Dock - WMD Portable Music System with Audio Effect Applications Wireless Music Dock - WMD Portable Music System with Audio Effect Applications Preliminary Design Report EEL 4924 Electrical Engineering Design (Senior Design) 26 January 2011 Members: Jeffrey Post and

More information

ELECTRICAL CIRCUITS 4. OPERATIONAL AMPLIFIERS INPUT/OUTPUT CHARACTERISTICS

ELECTRICAL CIRCUITS 4. OPERATIONAL AMPLIFIERS INPUT/OUTPUT CHARACTERISTICS 43 ELECTICAL CICUITS 4. OPEATIONAL AMPLIIES PUT/OUTPUT CHAACTEISTICS Introduction The purpose of this development is not to examine the detailed design of the internals of the chip for the operational

More information

Function Generator Using Op Amp Ic 741 Theory

Function Generator Using Op Amp Ic 741 Theory Function Generator Using Op Amp Ic 741 Theory Note: Op-Amps ua741, LM 301, LM311, LM 324 & AD 633 may be used To design an Inverting Amplifier for the given specifications using Op-Amp IC 741. THEORY:

More information

Laboratory 8 Operational Amplifiers and Analog Computers

Laboratory 8 Operational Amplifiers and Analog Computers Laboratory 8 Operational Amplifiers and Analog Computers Introduction Laboratory 8 page 1 of 6 Parts List LM324 dual op amp Various resistors and caps Pushbutton switch (SPST, NO) In this lab, you will

More information

Single Supply, Low Power Triple Video Amplifier AD813

Single Supply, Low Power Triple Video Amplifier AD813 a FEATURES Low Cost Three Video Amplifiers in One Package Optimized for Driving Cables in Video Systems Excellent Video Specifications (R L = 15 ) Gain Flatness.1 db to 5 MHz.3% Differential Gain Error.6

More information

Chapter 10: Operational Amplifiers

Chapter 10: Operational Amplifiers Chapter 10: Operational Amplifiers Differential Amplifier Differential amplifier has two identical transistors with two inputs and two outputs. 2 Differential Amplifier Differential amplifier has two identical

More information

When input, output and feedback voltages are all symmetric bipolar signals with respect to ground, no biasing is required.

When input, output and feedback voltages are all symmetric bipolar signals with respect to ground, no biasing is required. 1 When input, output and feedback voltages are all symmetric bipolar signals with respect to ground, no biasing is required. More frequently, one of the items in this slide will be the case and biasing

More information

Bioelectric Signal Analog Front-End Module Electrocardiograph

Bioelectric Signal Analog Front-End Module Electrocardiograph ***LOGO*** Bioelectric Signal Analog Front-End Module Electrocardiograph Features Single or Dual Supply Operation Quiescent Current: 220µA at 3.3v Internal Reference Generator with External Override Option

More information

Download: assembler source mhm031002a.asm

Download: assembler source mhm031002a.asm Dick Cappels' project pages http://www.projects.cappels.org return to HOME A Microcontroller Based Digital Lock-In Milliohmmeter Described are the waveform capture method, example firmware and hardware

More information

Infrared Communications Lab

Infrared Communications Lab Infrared Communications Lab This lab assignment assumes that the student knows about: Ohm s Law oltage, Current and Resistance Operational Amplifiers (See Appendix I) The first part of the lab is to develop

More information

MAXREFDES39#: POWER AMPLIFIER BIASING THROUGH MAX11300 PIXI

MAXREFDES39#: POWER AMPLIFIER BIASING THROUGH MAX11300 PIXI System Board 5896 MAXREFDES39#: POWER AMPLIFIER BIASING THROUGH MAX11300 PIXI OVERVIEW MAXREFDES39# System Board ENLARGE+ Introduction The MAXREFDES39# power amplifier (PA) bias reference design uses the

More information

Low Cost, General Purpose High Speed JFET Amplifier AD825

Low Cost, General Purpose High Speed JFET Amplifier AD825 a FEATURES High Speed 41 MHz, 3 db Bandwidth 125 V/ s Slew Rate 8 ns Settling Time Input Bias Current of 2 pa and Noise Current of 1 fa/ Hz Input Voltage Noise of 12 nv/ Hz Fully Specified Power Supplies:

More information

ULTRASONIC TRANSMITTER & RECEIVER

ULTRASONIC TRANSMITTER & RECEIVER ELECTRONIC WORKSHOP II Mini-Project Report on ULTRASONIC TRANSMITTER & RECEIVER Submitted by Basil George 200831005 Nikhil Soni 200830014 AIM: To build an ultrasonic transceiver to send and receive data

More information

Chapter 9: Operational Amplifiers

Chapter 9: Operational Amplifiers Chapter 9: Operational Amplifiers The Operational Amplifier (or op-amp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,

More information

Micro Power PIR signal Op Amp. China: ZL

Micro Power PIR signal Op Amp. China: ZL Patent Number Micro Power PIR signal Op Amp Taiwan: M455864 China: ZL 2013 2 0099927.6 General Description is a micro power CMOS chip IC design to detect PIR signal control IC. PIR sensor detect infrared

More information

High Current MOSFET Toggle Switch with Debounced Push Button

High Current MOSFET Toggle Switch with Debounced Push Button Set/Reset Flip Flop This is an example of a set/reset flip flop using discrete components. When power is applied, only one of the transistors will conduct causing the other to remain off. The conducting

More information

Appendix B. Design Implementation Description For The Digital Frequency Demodulator

Appendix B. Design Implementation Description For The Digital Frequency Demodulator Appendix B Design Implementation Description For The Digital Frequency Demodulator The DFD design implementation is divided into four sections: 1. Analog front end to signal condition and digitize the

More information

EMG click PID: MIKROE-2621

EMG click PID: MIKROE-2621 EMG click PID: MIKROE-2621 EMG click measures the electrical activity produced by the skeletal muscles. It carries MCP609 operational amplifier and MAX6106 micropower voltage reference. EMG click is designed

More information

AVL-10000T AUDIO VIDEO LINK TRANSMITTER TECHNICAL MANUAL

AVL-10000T AUDIO VIDEO LINK TRANSMITTER TECHNICAL MANUAL AVL-10000T AUDIO VIDEO LINK TRANSMITTER TECHNICAL MANUAL Document : AVL-10000T Version: 1.00 Author: Henry S Date: 25 July 2008 This module contains protection circuitry to guard against damage due to

More information

LT Spice Getting Started Very Quickly. First Get the Latest Software!

LT Spice Getting Started Very Quickly. First Get the Latest Software! LT Spice Getting Started Very Quickly First Get the Latest Software! 1. After installing LT Spice, run it and check to make sure you have the latest version with respect to the latest version available

More information

The Breakdown. Figure 1: Block Diagram (above: Transmitter; below: Receiver)

The Breakdown. Figure 1: Block Diagram (above: Transmitter; below: Receiver) Introduction This project is designed to establish one-way data communication from a transmitter to a receiver over the infrared optical medium. More specifically, the project will communicate a modulated

More information

LINEAR IC APPLICATIONS

LINEAR IC APPLICATIONS 1 B.Tech III Year I Semester (R09) Regular & Supplementary Examinations December/January 2013/14 1 (a) Why is R e in an emitter-coupled differential amplifier replaced by a constant current source? (b)

More information

(THEORY) (ANALOG) (DIGITAL) (SOFTWARE) (HOME) Matjaz Vidmar, S53MV (ex YU3UMV, YT3MV)

(THEORY) (ANALOG) (DIGITAL) (SOFTWARE) (HOME) Matjaz Vidmar, S53MV (ex YU3UMV, YT3MV) 1 of 25 3.12.2010 10:07 (THEORY) (ANALOG) (DIGITAL) (SOFTWARE) (HOME) Matjaz Vidmar, S53MV (ex YU3UMV, YT3MV) 4. Homemade receiver modules for GPS & GLONASS 4.10. GPS/GLONASS DSP hardware The theory of

More information

TRANSDUCER INTERFACE APPLICATIONS

TRANSDUCER INTERFACE APPLICATIONS TRANSDUCER INTERFACE APPLICATIONS Instrumentation amplifiers have long been used as preamplifiers in transducer applications. High quality transducers typically provide a highly linear output, but at a

More information

Lecture 4 Biopotential Amplifiers

Lecture 4 Biopotential Amplifiers Bioinstrument Sahand University of Technology Lecture 4 Biopotential Amplifiers Dr. Shamekhi Summer 2016 OpAmp and Rules 1- A = (gain is infinity) 2- Vo = 0, when v1 = v2 (no offset voltage) 3- Rd = (input

More information

STM32 microcontroller core ECG acquisition Conditioning System. LIU Jia-ming, LI Zhi

STM32 microcontroller core ECG acquisition Conditioning System. LIU Jia-ming, LI Zhi International Conference on Computer and Information Technology Application (ICCITA 2016) STM32 microcontroller core ECG acquisition Conditioning System LIU Jia-ming, LI Zhi College of electronic information,

More information

Computer Controlled Curve Tracer

Computer Controlled Curve Tracer Computer Controlled Curve Tracer Christopher Curro The Cooper Union New York, NY Email: chris@curro.cc David Katz The Cooper Union New York, NY Email: katz3@cooper.edu Abstract A computer controlled curve

More information

CD V Low Power Subscriber DTMF Receiver. Description. Features. Ordering Information. Pinouts CD22204 (PDIP) TOP VIEW. Functional Diagram

CD V Low Power Subscriber DTMF Receiver. Description. Features. Ordering Information. Pinouts CD22204 (PDIP) TOP VIEW. Functional Diagram Semiconductor January Features No Front End Band Splitting Filters Required Single Low Tolerance V Supply Three-State Outputs for Microprocessor Based Systems Detects all Standard DTMF Digits Uses Inexpensive.4MHz

More information

Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP282/OP482

Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP282/OP482 Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP22/OP42 FEATURES High slew rate: 9 V/µs Wide bandwidth: 4 MHz Low supply current: 2 µa/amplifier max Low offset voltage: 3 mv max Low bias

More information

Model 25D Manual. Introduction: Technical Overview:

Model 25D Manual. Introduction: Technical Overview: Model 25D Manual Introduction: The Model 25D drive electronics is a high voltage push-pull power amplifier capable of output voltage swings in the order of 175v P-P, push-pull. The Model 25D provides output

More information

What? nanowatt? Acquiring sensor data in wireless products with nanowatts of power consumption

What? nanowatt? Acquiring sensor data in wireless products with nanowatts of power consumption 11001101011010 10101010101010 10101010111010 01010011101101 010101 What? nanowatt? Acquiring sensor data in wireless products with nanowatts of power consumption Peggy Liska Texas Instruments Product Marketing

More information

The Transistor Tester user manual

The Transistor Tester user manual The Transistor Tester user manual Power: The Transistor Tester can be powered from 6.8V-12V DC. This can be achieved by a 9V layerbuilt battery or two 3.7V Lithium-ion battery in series, or with a 9V DC

More information

When you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp

When you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp Op Amp Fundamentals When you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp In general, the parameters are interactive. However, in this unit, circuit input

More information

2015 International Future Energy Challenge Topic B: Battery Energy Storage with an Inverter That Mimics Synchronous Generators. Qualification Report

2015 International Future Energy Challenge Topic B: Battery Energy Storage with an Inverter That Mimics Synchronous Generators. Qualification Report 2015 International Future Energy Challenge Topic B: Battery Energy Storage with an Inverter That Mimics Synchronous Generators Qualification Report Team members: Sabahudin Lalic, David Hooper, Nerian Kulla,

More information

MEMS Signal Conditioning Circuits Dr. Lynn Fuller Electrical and Microelectronic Engineering

MEMS Signal Conditioning Circuits Dr. Lynn Fuller Electrical and Microelectronic Engineering ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING MEMS Signal Conditioning Circuits Dr. Lynn Fuller Electrical and 82 Lomb Memorial Drive Rochester, NY 146235604 Email: Lynn.Fuller@rit.edu

More information

JUMA-TRX2 DDS / Control Board description OH2NLT

JUMA-TRX2 DDS / Control Board description OH2NLT JUMA-TRX2 DDS / Control Board description OH2NLT 22.08.2007 General Key functions of the JUMA-TRX2 DDS / Control board are: - provide user interface functions with LCD display, buttons, potentiometers

More information

Technical Brief FAQ (FREQUENCLY ASKED QUESTIONS) For further information, please contact Crystal Semiconductor at (512) or 1 (800)

Technical Brief FAQ (FREQUENCLY ASKED QUESTIONS) For further information, please contact Crystal Semiconductor at (512) or 1 (800) Technical Brief FAQ (FREQUENCLY ASKED QUESTIONS) 1) Do you have a four channel part? Not at this time, but we have plans to do a multichannel product Q4 97. We also have 4 digital output lines which can

More information

DDS VFO 2 CONSTRUCTION MANUAL. DDS VFO 2 Construction Manual Issue 1 Page 1

DDS VFO 2 CONSTRUCTION MANUAL. DDS VFO 2 Construction Manual Issue 1 Page 1 DDS VFO 2 CONSTRUCTION MANUAL DDS VFO 2 Construction Manual Issue 1 Page 1 Important Please read before starting assembly STATIC PRECAUTION The DDS VFO kit contains the following components which can be

More information

802.11g Wireless Sensor Network Modules

802.11g Wireless Sensor Network Modules RFMProducts are now Murata Products Small Size, Integral Antenna, Light Weight, Low Cost 7.5 µa Sleep Current Supports Battery Operation Timer and Event Triggered Auto-reporting Capability Analog, Digital,

More information

Demo Circuit DC550A Quick Start Guide.

Demo Circuit DC550A Quick Start Guide. May 12, 2004 Demo Circuit DC550A. Introduction Demo circuit DC550A demonstrates operation of the LT5514 IC, a DC-850MHz bandwidth open loop transconductance amplifier with high impedance open collector

More information

Dimensions in inches (mm) .268 (6.81).255 (6.48) .390 (9.91).379 (9.63) .045 (1.14).030 (.76) 4 Typ. Figure 1. Typical application circuit.

Dimensions in inches (mm) .268 (6.81).255 (6.48) .390 (9.91).379 (9.63) .045 (1.14).030 (.76) 4 Typ. Figure 1. Typical application circuit. LINEAR OPTOCOUPLER FEATURES Couples AC and DC signals.% Servo Linearity Wide Bandwidth, > KHz High Gain Stability, ±.%/C Low Input-Output Capacitance Low Power Consumption, < mw Isolation Test Voltage,

More information

Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem

Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem A report Submitted to Canopus Systems Inc. Zuhail Sainudeen and Navid Yazdi Arizona State University July 2001 1. Overview

More information

ZKit-51-RD2, 8051 Development Kit

ZKit-51-RD2, 8051 Development Kit ZKit-51-RD2, 8051 Development Kit User Manual 1.1, June 2011 This work is licensed under the Creative Commons Attribution-Share Alike 2.5 India License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/2.5/in/

More information

4 x 10 bit Free Run A/D 4 x Hi Comparator 4 x Low Comparator IRQ on Compare MX839. C-BUS Interface & Control Logic

4 x 10 bit Free Run A/D 4 x Hi Comparator 4 x Low Comparator IRQ on Compare MX839. C-BUS Interface & Control Logic DATA BULLETIN MX839 Digitally Controlled Analog I/O Processor PRELIMINARY INFORMATION Features x 4 input intelligent 10 bit A/D monitoring subsystem 4 High and 4 Low Comparators External IRQ Generator

More information

I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab

I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab Lab 3: 74 Op amp Purpose: The purpose of this laboratory is to become familiar with a two stage operational amplifier (op amp). Students will analyze the circuit manually and compare the results with SPICE.

More information

A Simple Microcontroller-Based 4-20 ma Current Loop Receiver for Sensors with Current Transmitters

A Simple Microcontroller-Based 4-20 ma Current Loop Receiver for Sensors with Current Transmitters A Simple Microcontroller-Based 4-20 ma Current Loop Receiver for Sensors with Current Transmitters A. Surachman, A. Suhendi, M. Budiman, M. Abdullah, and Khairurrijal *) Physics of Electronic Materials

More information

Single Supply Op Amp Circuits Dr. Lynn Fuller Webpage:

Single Supply Op Amp Circuits Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Single Supply Op Amp Circuits Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585)

More information

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 3157 Electrical Engineering Design II Fall 2013

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 3157 Electrical Engineering Design II Fall 2013 Exercise 1: PWM Modulator University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 3157 Electrical Engineering Design II Fall 2013 Lab 3: Power-System Components and

More information

Ultrasonic Multiplexer OPMUX v12.0

Ultrasonic Multiplexer OPMUX v12.0 Przedsiębiorstwo Badawczo-Produkcyjne OPTEL Sp. z o.o. ul. Morelowskiego 30 PL-52-429 Wrocław tel.: +48 (071) 329 68 54 fax.: +48 (071) 329 68 52 e-mail: optel@optel.pl www.optel.eu Ultrasonic Multiplexer

More information

Lab 4 - Operational Amplifiers 1 Gain ReadMeFirst

Lab 4 - Operational Amplifiers 1 Gain ReadMeFirst Lab 4 - Operational Amplifiers 1 Gain ReadMeFirst Lab Summary There are three basic configurations for operational amplifiers. If the amplifier is multiplying the amplitude of the signal, the multiplication

More information