Lab 4 - Operational Amplifiers 1 Gain ReadMeFirst

Size: px
Start display at page:

Download "Lab 4 - Operational Amplifiers 1 Gain ReadMeFirst"

Transcription

1 Lab 4 - Operational Amplifiers 1 Gain ReadMeFirst Lab Summary There are three basic configurations for operational amplifiers. If the amplifier is multiplying the amplitude of the signal, the multiplication factor is called gain. If the amplitude of a signal is reduced at any time it is referred to as attenuation. The two gain configurations you will build are the inverting and non-inverting stages. A third configuration, the unity gain stage, or buffer, is often used to isolate signals and provide additional current capability. There is a limit to the maximum frequency that any op amp can pass without distortion. Moreover, as the gain of an op amp is increased, the maximum frequency that can be amplified without distortion is reduced. This characteristic is the called the Gain Bandwidth Product and is due to the limitation of the Slew Rate of the op amp. The slew rate, usually in Volts / microseconds, is how fast the signal can change and is limited by the internal capacitance of the device. Lab Preparation Please review the following material from previous and current labs before attempting this lab: 1. Review the Introduction to Lab Equipment for operational instructions of the Rigol Triple Output Power Supply. 2. Review Active_Filter_I_Notes.pdf for more background on analog filters. 3. Familiarize yourself with the LME49710NA OP Amp datasheet as it will be referred to throughout the lab. Videos: Operational Amplifiers 1.mp4 Lab Supplies You will need the following supplies for the lab. 1. Bread board and jumper wire kit 2. The following components

2 Component Name Quantity Markings Op-Amp LME49710NA 1 LME49710NA Resistor 150 Ohm 1 Brn-Grn-Blk-Blk-Brn Resistor 1.00 KOhm 1 Brn-Blk-Blk-Brn-Brn Resistor 10.0 KOhm 1 Brn-Blk-Blk-Red-Brn Resistor 100 KOhm 1 Brn-Blk-Blk-Org-Brn Capacitors 0.01 uf Ceramic Capacitors 1.0 uf Tantalum 2 105, + 3. (1) BNC to BNC Cable 4. (2) BNC to Dual Minigrabber Cables 5. (3) Banana to Minigrabber Cables (1) Red for +VCC (1) Green for -VCC (1) Black for Ground (In electronics, Black is ALWAYS ground) The breadboard used in this lab is shown here: Figure 1 Breadboard

3 The pin numbers and functions for the LME49710NA operational amplifier are shown below. The pin below the notch is pin 1 when the IC is oriented with the notch to the left. There is often a small dot in the plastic indicating pin 1. Figure 2 LME49710NA Operational Amplifier

4 Part 1 1. Use the longer jumper wires from your kit to connect the +VCC, -VCC and GND rails to the DC Power Supply. Figure 3 Recommended Grabber Connections Fig. 4 shows the bus strips recommended for +VCC, -VCC and GND (ground) rails. Figure 4 Recommended bus strips rail layout Longer jumper wires can be used to connect the clip of the Banana to Minigrabber cables from the power supply to the correct power bus.

5 2. Wire the operational amplifier in the following Inverting Stage configuration: Figure 5 Inverting Stage Operational Amplifier Schematic (Inverting #1) Figure 6 Inverting Stage Operational Amplifier (Inverting #1)

6 Figure 7 Inverting Stage Operational Amplifier (Inverting #1) 3. Use a 1000 Hz Sine wave at an amplitude of 100 mvp-p as an input signal and measure the gain. 4. Calculate the theoretical gain from the component values. 5. Increase the frequency until the frequency of the function generator until the op amp output is attenuated by 3 decibels and record the frequency. 6. Now calculate the gain bandwidth product. 7. For each of the three following circuits, modify your circuit using the instructions from the video and repeat your measurements and calculations.

7 Figure 8 Inverting Stage Operational Amplifier Schematic (Inverting #2) Figure 9 Non-Inverting Stage Operational Amplifier Schematic (Non-Inverting #1)

8 Figure 10 Non-Inverting Stage Operational Amplifier (Non-Inverting #1) Figure 11 Non-Inverting Stage Operational Amplifier (Non-Inverting #1)

9 Figure 12 Non-Inverting Stage Operational Amplifier (Non-Inverting #1) Figure 13 Non-Inverting Stage Operational Amplifier Schematic (Non-Inverting #2) 8. Record all of your calculations and measurements in your RESULTS Sheet.

10 Part 2 1. Set the function generator to a 5Vp-p 1000 Hz sine wave and connect it to the 150 Ohm resistor in shunt, shown below. Figure Ohm Shunt Resistor Placed Between Output and Ground 2. Measure and record the peak to peak voltage. Why isn't it 5 Volts? 3. Using the voltage divider formula, calculate the series output resistance of the function generator. 4. Isolate the 150 shunt resistor from the function generator using the following circuit. Measure the peak to peak voltage and calculate the gain. Figure 15 Buffer Stage Operational Amplifier Schematic

11 Figure 16 Buffer Stage Operational Amplifier Figure 17 Buffer Stage Operational Amplifier *** END of LAB ***

Operational Amplifiers 2 Active Filters ReadMeFirst

Operational Amplifiers 2 Active Filters ReadMeFirst Operational Amplifiers 2 Active Filters ReadMeFirst Lab Summary In this lab you will build two active filters on a breadboard, using an op-amp, resistors, and capacitors, and take data for the magnitude

More information

ECE Electronics Circuits and Electronics Devices Laboratory. Gregg Chapman

ECE Electronics Circuits and Electronics Devices Laboratory. Gregg Chapman ECE 2300 Electronics Circuits and Electronics Devices Laboratory Gregg Chapman Laboratory 6 Diodes Background Diodes Small Signal Rectifiers Half wave Full Wave Zener Diodes Light Emitting Diodes (LED)

More information

Laboratory 6. Lab 6. Operational Amplifier Circuits. Required Components: op amp 2 1k resistor 4 10k resistors 1 100k resistor 1 0.

Laboratory 6. Lab 6. Operational Amplifier Circuits. Required Components: op amp 2 1k resistor 4 10k resistors 1 100k resistor 1 0. Laboratory 6 Operational Amplifier Circuits Required Components: 1 741 op amp 2 1k resistor 4 10k resistors 1 100k resistor 1 0.1 F capacitor 6.1 Objectives The operational amplifier is one of the most

More information

Lab: Operational Amplifiers

Lab: Operational Amplifiers Page 1 of 6 Laboratory Goals Familiarize students with Integrated Circuit (IC) construction on a breadboard Introduce the LM 741 Op-amp and its applications Design and construct an inverting amplifier

More information

Sensor Interfacing and Operational Amplifiers Lab 3

Sensor Interfacing and Operational Amplifiers Lab 3 Name Lab Day Lab Time Sensor Interfacing and Operational Amplifiers Lab 3 Introduction: In this lab you will design and build a circuit that will convert the temperature indicated by a thermistor s resistance

More information

Experiments #7. Operational Amplifier part 1

Experiments #7. Operational Amplifier part 1 Experiments #7 Operational Amplifier part 1 1) Objectives: The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op-amp

More information

When you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp

When you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp Op Amp Fundamentals When you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp In general, the parameters are interactive. However, in this unit, circuit input

More information

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS EXPERIMENT : 3 TITLE : Operational Amplifier (Op-Amp) OUTCOME : Upon completion of this unit, the student should be able to: 1. Gain

More information

Laboratory 9. Required Components: Objectives. Optional Components: Operational Amplifier Circuits (modified from lab text by Alciatore)

Laboratory 9. Required Components: Objectives. Optional Components: Operational Amplifier Circuits (modified from lab text by Alciatore) Laboratory 9 Operational Amplifier Circuits (modified from lab text by Alciatore) Required Components: 1x 741 op-amp 2x 1k resistors 4x 10k resistors 1x l00k resistor 1x 0.1F capacitor Optional Components:

More information

10: AMPLIFIERS. Circuit Connections in the Laboratory. Op-Amp. I. Introduction

10: AMPLIFIERS. Circuit Connections in the Laboratory. Op-Amp. I. Introduction 10: AMPLIFIERS Circuit Connections in the Laboratory From now on you will construct electrical circuits and test them. The usual way of constructing circuits would be to solder each electrical connection

More information

Laboratory 8 Operational Amplifiers and Analog Computers

Laboratory 8 Operational Amplifiers and Analog Computers Laboratory 8 Operational Amplifiers and Analog Computers Introduction Laboratory 8 page 1 of 6 Parts List LM324 dual op amp Various resistors and caps Pushbutton switch (SPST, NO) In this lab, you will

More information

OPERATIONAL AMPLIFIERS LAB

OPERATIONAL AMPLIFIERS LAB 1 of 6 BEFORE YOU BEGIN PREREQUISITE LABS OPERATIONAL AMPLIFIERS LAB Introduction to Matlab Introduction to Arbitrary/Function Generator Resistive Circuits EXPECTED KNOWLEDGE Students should be familiar

More information

Amplification. Objective. Equipment List. Introduction. The objective of this lab is to demonstrate the basic characteristics an Op amplifier.

Amplification. Objective. Equipment List. Introduction. The objective of this lab is to demonstrate the basic characteristics an Op amplifier. Amplification Objective The objective of this lab is to demonstrate the basic characteristics an Op amplifier. Equipment List Introduction Computer running Windows (NI ELVIS installed) National Instruments

More information

CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - II

CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - II CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - II OBJECTIVE The purpose of the experiment is to examine non-ideal characteristics of an operational amplifier. The characteristics that are investigated include

More information

EE431 Lab 1 Operational Amplifiers

EE431 Lab 1 Operational Amplifiers Feb. 10, 2015 Report all measured data and show all calculations Introduction The purpose of this laboratory exercise is for the student to gain experience with measuring and observing the effects of common

More information

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook.

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook. EE4902 Lab 9 CMOS OP-AMP PURPOSE: The purpose of this lab is to measure the closed-loop performance of an op-amp designed from individual MOSFETs. This op-amp, shown in Fig. 9-1, combines all of the major

More information

Sallen-Key_High_Pass_Filter -- Overview

Sallen-Key_High_Pass_Filter -- Overview Sallen-Key_High_Pass_Filter -- Overview Sallen-Key High Pass Filter Objectives: After performing this lab exercise, learner will be able to: Understand & analyze working of Sallen-Key topology of active

More information

EE 3305 Lab I Revised July 18, 2003

EE 3305 Lab I Revised July 18, 2003 Operational Amplifiers Operational amplifiers are high-gain amplifiers with a similar general description typified by the most famous example, the LM741. The LM741 is used for many amplifier varieties

More information

Lab #6: Op Amps, Part 1

Lab #6: Op Amps, Part 1 Fall 2013 EELE 250 Circuits, Devices, and Motors Lab #6: Op Amps, Part 1 Scope: Study basic Op-Amp circuits: voltage follower/buffer and the inverting configuration. Home preparation: Review Hambley chapter

More information

Laboratory #4: Solid-State Switches, Operational Amplifiers Electrical and Computer Engineering EE University of Saskatchewan

Laboratory #4: Solid-State Switches, Operational Amplifiers Electrical and Computer Engineering EE University of Saskatchewan Authors: Denard Lynch Date: Oct 24, 2012 Revised: Oct 21, 2013, D. Lynch Description: This laboratory explores the characteristics of operational amplifiers in a simple voltage gain configuration as well

More information

ECEN Network Analysis Section 3. Laboratory Manual

ECEN Network Analysis Section 3. Laboratory Manual ECEN 3714----Network Analysis Section 3 Laboratory Manual LAB 07: Active Low Pass Filter Oklahoma State University School of Electrical and Computer Engineering. Section 3 Laboratory manual - 1 - Spring

More information

EE 210 Lab Exercise #5: OP-AMPS I

EE 210 Lab Exercise #5: OP-AMPS I EE 210 Lab Exercise #5: OP-AMPS I ITEMS REQUIRED EE210 crate, DMM, EE210 parts kit, T-connector, 50Ω terminator, Breadboard Lab report due at the ASSIGNMENT beginning of the next lab period Data and results

More information

MAX9633 Evaluation Kit Evaluates: MAX9633

MAX9633 Evaluation Kit Evaluates: MAX9633 General Description The MAX9633 evaluation kit (EV kit) provides a proven design to evaluate the MAX9633 dual, low-noise, lowdistortion op amp that is optimized to drive ADCs for use in applications from

More information

Experiment A8 Electronics III Procedure

Experiment A8 Electronics III Procedure Experiment A8 Electronics III Procedure Deliverables: checked lab notebook, plots Overview Electronics have come a long way in the last century. Using modern fabrication techniques, engineers can now print

More information

Exercise 2: Temperature Measurement

Exercise 2: Temperature Measurement Exercise 2: Temperature Measurement EXERCISE OBJECTIVE When you have completed this exercise, you will be able to explain and demonstrate the use of an RTD in a temperature measurement application by using

More information

Low_Pass_Filter_1st_Order -- Overview

Low_Pass_Filter_1st_Order -- Overview Low_Pass_Filter_1st_Order -- Overview 1 st Order Low Pass Filter Objectives: After performing this lab exercise, learner will be able to: Understand and comprehend working of opamp Comprehend basics of

More information

A Simple Notch Type Harmonic Distortion Analyzer

A Simple Notch Type Harmonic Distortion Analyzer by Kenneth A. Kuhn Nov. 28, 2009, rev. Nov. 29, 2009 Introduction This note describes a simple notch type harmonic distortion analyzer that can be constructed with basic parts. It is intended for use in

More information

Experiment A8 Electronics III Procedure

Experiment A8 Electronics III Procedure Experiment A8 Electronics III Procedure Deliverables: checked lab notebook, plots Overview Electronics have come a long way in the last century. Using modern fabrication techniques, engineers can now print

More information

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering EE320L Electronics I Laboratory Laboratory Exercise #2 Basic Op-Amp Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective: The purpose of

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 5 GAIN-BANDWIDTH PRODUCT AND SLEW RATE OBJECTIVES In this experiment the student will explore two

More information

Data Conversion and Lab Lab 3 Spring Analog to Digital Converter

Data Conversion and Lab Lab 3 Spring Analog to Digital Converter Analog to Digital Converter Lab Report Objectives See separate report form located on the course webpage. This form should be completed during the performance of this lab. 1) To construct and operate an

More information

Non_Inverting_Voltage_Follower -- Overview

Non_Inverting_Voltage_Follower -- Overview Non_Inverting_Voltage_Follower -- Overview Non-Inverting, Unity-Gain Amplifier Objectives: After performing this lab exercise, learner will be able to: Understand and comprehend working of opamp Design

More information

S Flexible Input and Output Configurations S Single 2.7V to 5.5V Power Supply S Fully Assembled and Tested

S Flexible Input and Output Configurations S Single 2.7V to 5.5V Power Supply S Fully Assembled and Tested 19-5087; Rev 0; 12/09 MAX4231 Evaluation Kit General Description The MAX4231 evaluation kit (EV kit) is a fully assembled and tested PCB that evaluates the MAX4231 single, high-output-drive CMOS operational

More information

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2) EE 368 Electronics Lab Experiment 10 Operational Amplifier Applications (2) 1 Experiment 10 Operational Amplifier Applications (2) Objectives To gain experience with Operational Amplifier (Op-Amp). To

More information

LINEAR APPLICATIONS OF OPERATIONAL AMPLIFIERS

LINEAR APPLICATIONS OF OPERATIONAL AMPLIFIERS LINEAR APPLICATIONS OF OPERATIONAL AMPLIFIERS OBJECTIVE The purpose of the experiment is to examine the linear applications of an operational amplifier. The applications that are designed and analyzed

More information

Dual Audio Analog Switches SSM2402/SSM2412

Dual Audio Analog Switches SSM2402/SSM2412 a FEATURES Clickless Bilateral Audio Switching Guaranteed Break-Before-Make Switching Low Distortion: 0.003% typ Low Noise: 1 nv/ Hz Superb OFF-Isolation: 120 db typ Low ON-Resistance: 60 typ Wide Signal

More information

Group: Names: voltage calculated measured V out (w/o R 3 ) V out (w/ R 3 )

Group: Names: voltage calculated measured V out (w/o R 3 ) V out (w/ R 3 ) 6.2 Laboratory Procedure / Summary Sheet Group: Names: An op amp requires connection to two different voltage levels from an external power supply, usually 15V and -15V, both of which can be provided by

More information

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Op Amps

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Op Amps University of Portland EE 271 Electrical Circuits Laboratory Experiment: Op Amps I. Objective The objective of this experiment is to learn how to use an op amp circuit to prevent loading and to amplify

More information

Data Conversion and Lab Lab 1 Fall Operational Amplifiers

Data Conversion and Lab Lab 1 Fall Operational Amplifiers Operational Amplifiers Lab Report Objectives Materials See separate report form located on the course webpage. This form should be completed during the performance of this lab. 1) To construct and operate

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Reading Horowitz & Hill handout Notes, Chapter 9 Introduction and Objective In this lab we will examine op-amps. We will look at a few of their vast number of uses and also investigate

More information

Chapter 9: Operational Amplifiers

Chapter 9: Operational Amplifiers Chapter 9: Operational Amplifiers The Operational Amplifier (or op-amp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,

More information

OPERATIONAL AMPLIFIERS (OP-AMPS) II

OPERATIONAL AMPLIFIERS (OP-AMPS) II OPERATIONAL AMPLIFIERS (OP-AMPS) II LAB 5 INTRO: INTRODUCTION TO INVERTING AMPLIFIERS AND OTHER OP-AMP CIRCUITS GOALS In this lab, you will characterize the gain and frequency dependence of inverting op-amp

More information

ECE Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback

ECE Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback ECE 214 Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback 20 February 2018 Introduction: The TL082 Operational Amplifier (OpAmp) and the Texas Instruments Analog System Lab Kit Pro evaluation

More information

User s Manual ISL71218MEVAL1Z. User s Manual: Evaluation Board. High Reliability Space

User s Manual ISL71218MEVAL1Z. User s Manual: Evaluation Board. High Reliability Space User s Manual ISL71218MEVAL1Z User s Manual: Evaluation Board High Reliability Space Rev. Aug 217 USER S MANUAL ISL71218MEVAL1Z Evaluation Board UG139 Rev.. 1. Overview The ISL71218MEVAL1Z evaluation platform

More information

Experiment 5.A. Basic Wireless Control. ECEN 2270 Electronics Design Laboratory 1

Experiment 5.A. Basic Wireless Control. ECEN 2270 Electronics Design Laboratory 1 .A Basic Wireless Control ECEN 2270 Electronics Design Laboratory 1 Procedures 5.A.0 5.A.1 5.A.2 5.A.3 5.A.4 5.A.5 5.A.6 Turn in your pre lab before doing anything else. Receiver design band pass filter

More information

Lab 10: Oscillators (version 1.1)

Lab 10: Oscillators (version 1.1) Lab 10: Oscillators (version 1.1) WARNING: Use electrical test equipment with care! Always double-check connections before applying power. Look for short circuits, which can quickly destroy expensive equipment.

More information

How to Wire an Inverting Amplifier Circuit

How to Wire an Inverting Amplifier Circuit How to Wire an Inverting Amplifier Circuit Figure 1: Inverting Amplifier Schematic Introduction The purpose of this instruction set is to provide you with the ability to wire a simple inverting amplifier

More information

tyuiopasdfghjklzxcvbnmqwertyuiopas dfghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq

tyuiopasdfghjklzxcvbnmqwertyuiopas dfghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq qwertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfgh jklzxcvbnmqwertyuiopasdfghjklzxcvb nmqwertyuiopasdfghjklzxcvbnmqwer Instrumentation Device Components Semester 2 nd tyuiopasdfghjklzxcvbnmqwertyuiopas

More information

Practical 2P12 Semiconductor Devices

Practical 2P12 Semiconductor Devices Practical 2P12 Semiconductor Devices What you should learn from this practical Science This practical illustrates some points from the lecture courses on Semiconductor Materials and Semiconductor Devices

More information

Function Generator MODEL FG-500 Instruction Manual ELENCO

Function Generator MODEL FG-500 Instruction Manual ELENCO Function Generator MODEL FG-500 Instruction Manual ELENCO Copyright 2012, 2003 Elenco Electronics, Inc. REV-D 753068 SPECIFICATIONS OUTPUT: Waveforms: Sine, triangle, square Impedance: 600Ω ±10% Frequency:

More information

CHARACTERIZATION OF OP-AMP

CHARACTERIZATION OF OP-AMP EXPERIMENT 4 CHARACTERIZATION OF OP-AMP OBJECTIVES 1. To sketch and briefly explain an operational amplifier circuit symbol and identify all terminals. 2. To list the amplifier stages in a typical op-amp

More information

ECE 2274 Lab 2. Your calculator will have a setting that will automatically generate the correct format.

ECE 2274 Lab 2. Your calculator will have a setting that will automatically generate the correct format. ECE 2274 Lab 2 Forward (DO NOT TURN IN) You are expected to use engineering exponents for all answers (p,n,µ,m, N/A, k, M, G) and to give each with a precision between one and three leading digits and

More information

BMC029. Single Multiplier/Divider Last updated

BMC029. Single Multiplier/Divider Last updated BMC029. Single Multiplier/Divider Last updated 1-4-2015 I Features -What it does/controls -Demos II Schematics -Pinout -Controls -Inputs -Output III Construction -Parts List -PCB information -How to Install

More information

MAX44248 Evaluation Kit. Evaluates: MAX General Description. Features. Component List. Component Supplier

MAX44248 Evaluation Kit. Evaluates: MAX General Description. Features. Component List. Component Supplier General Description The MAX44248 evaluation kit (EV kit) provides a proven design to evaluate the MAX44248 low-power, dual op amps in an 8-pin FMAX M package. The EV kit circuit is preconfigured as noninverting

More information

ECE 2274 Lab 2 (Network Theorems)

ECE 2274 Lab 2 (Network Theorems) ECE 2274 Lab 2 (Network Theorems) Forward (DO NOT TURN IN) You are expected to use engineering exponents for all answers (p,n,µ,m, N/A, k, M, G) and to give each with a precision between one and three

More information

Oct 10 & 17 EGR 220: Engineering Circuit Theory Due Oct 17 & 24 Lab 4: Op Amp Circuits

Oct 10 & 17 EGR 220: Engineering Circuit Theory Due Oct 17 & 24 Lab 4: Op Amp Circuits Oct 10 & 17 EGR 220: Engineering Circuit Theory Due Oct 17 & 24 Lab 4: Op Amp Circuits Objective The objective of this lab is to build simple op amp circuits and compare observed behavior with theoretical

More information

DIY Function Generator XR2206

DIY Function Generator XR2206 DIY Function Generator XR2206 20Hz 100KHz http://radiohobbystore.com Components List: Resistors: R1, R2 1% Metal Film 5K1 R4 1% Metal Film 10K R5 1% Metal Film 3K R10 5% Carbon Film 10R R3, R9 Potentiometer

More information

VCC_BAR. Grounds. Power, either postive or negative REVIEW OF SYMBOLS

VCC_BAR. Grounds. Power, either postive or negative REVIEW OF SYMBOLS LECTUE 4. OPEATIONAL AMPLIFIES EIEW OF SYMBOLS CC_BA Power, either postive or negative Grounds. Operational amplifiers (op-amps) are active devices. This means you must connect them to a power supply in

More information

Basic operational amplifier circuits In this lab exercise, we look at a variety of op-amp circuits. Note that this is a two-period lab.

Basic operational amplifier circuits In this lab exercise, we look at a variety of op-amp circuits. Note that this is a two-period lab. Basic operational amplifier circuits In this lab exercise, we look at a variety of op-amp circuits. Note that this is a two-period lab. Prior to Lab 1. If it has been awhile since you last used the lab

More information

TRANSDUCER INTERFACE APPLICATIONS

TRANSDUCER INTERFACE APPLICATIONS TRANSDUCER INTERFACE APPLICATIONS Instrumentation amplifiers have long been used as preamplifiers in transducer applications. High quality transducers typically provide a highly linear output, but at a

More information

RC Filters and Basic Timer Functionality

RC Filters and Basic Timer Functionality RC-1 Learning Objectives: RC Filters and Basic Timer Functionality The student who successfully completes this lab will be able to: Build circuits using passive components (resistors and capacitors) from

More information

PHYSICS 330 LAB Operational Amplifier Frequency Response

PHYSICS 330 LAB Operational Amplifier Frequency Response PHYSICS 330 LAB Operational Amplifier Frequency Response Objectives: To measure and plot the frequency response of an operational amplifier circuit. History: Operational amplifiers are among the most widely

More information

Experiment 3 Ohm s Law

Experiment 3 Ohm s Law Experiment 3 Ohm s Law The goals of Experiment 3 are: To identify resistors based upon their color code. To construct a two-resistor circuit using proper wiring techniques. To measure the DC voltages and

More information

EE 233 Circuit Theory Lab 3: First-Order Filters

EE 233 Circuit Theory Lab 3: First-Order Filters EE 233 Circuit Theory Lab 3: First-Order Filters Table of Contents 1 Introduction... 1 2 Precautions... 1 3 Prelab Exercises... 2 3.1 Inverting Amplifier... 3 3.2 Non-Inverting Amplifier... 4 3.3 Integrating

More information

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope.

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. 3.5 Laboratory Procedure / Summary Sheet Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. Set the function generator to produce a 5 V pp 1kHz sinusoidal output.

More information

The object of this experiment is to become familiar with the instruments used in the low noise laboratory.

The object of this experiment is to become familiar with the instruments used in the low noise laboratory. 0. ORIENTATION 0.1 Object The object of this experiment is to become familiar with the instruments used in the low noise laboratory. 0.2 Parts The following parts are required for this experiment: 1. A

More information

Mechatronics. Analog and Digital Electronics: Studio Exercises 1 & 2

Mechatronics. Analog and Digital Electronics: Studio Exercises 1 & 2 Mechatronics Analog and Digital Electronics: Studio Exercises 1 & 2 There is an electronics revolution taking place in the industrialized world. Electronics pervades all activities. Perhaps the most important

More information

Home Page Power Supply Local Oscillator Dividers Op Amps BPF(s) Mixer Comments

Home Page Power Supply Local Oscillator Dividers Op Amps BPF(s) Mixer Comments Page 1 of 6 IV - Op Amps Stage Schematic Home Page Power Supply Local Oscillator Dividers Op Amps BPF(s) Mixer Comments Theory of Operation This stage amplifies the quadrature audio frequency difference

More information

ECE 454 Homework #1 Due 11/28/2018 This Wednesday In Lab

ECE 454 Homework #1 Due 11/28/2018 This Wednesday In Lab ECE 454 Homework #1 Due 11/28/2018 This Wednesday In Lab Design the Darlington push-pull amplifier specified in Lab 1: You will build this amplifier for Lab 1 so use parts that are available in the lab.

More information

Differential Amplifiers

Differential Amplifiers Differential Amplifiers Benefits of Differential Signal Processing The Benefits Become Apparent when Trying to get the Most Speed and/or Resolution out of a Design Avoid Grounding/Return Noise Problems

More information

Maxim Integrated Products 1

Maxim Integrated Products 1 19-6285; Rev 0; 4/12 MAX44251 Evaluation Kit General Description The MAX44251 evaluation kit (EV kit) provides a proven design to evaluate the MAX44251 dual low-power, lowdrift operational amplifier (op

More information

ENGR 40M Project 4: Electrocardiogram. Prelab due 24 hours before your section, August Lab due 11:59pm, Saturday, August 19

ENGR 40M Project 4: Electrocardiogram. Prelab due 24 hours before your section, August Lab due 11:59pm, Saturday, August 19 ENGR 40M Project 4: Electrocardiogram Prelab due 24 hours before your section, August 14 15 Lab due 11:59pm, Saturday, August 19 1 Introduction In this project, we will build an electrocardiogram (ECG

More information

AN-1106 Custom Instrumentation Amplifier Design Author: Craig Cary Date: January 16, 2017

AN-1106 Custom Instrumentation Amplifier Design Author: Craig Cary Date: January 16, 2017 AN-1106 Custom Instrumentation Author: Craig Cary Date: January 16, 2017 Abstract This application note describes some of the fine points of designing an instrumentation amplifier with op-amps. We will

More information

Lab 4: Analysis of the Stereo Amplifier

Lab 4: Analysis of the Stereo Amplifier ECE 212 Spring 2010 Circuit Analysis II Names: Lab 4: Analysis of the Stereo Amplifier Objectives In this lab exercise you will use the power supply to power the stereo amplifier built in the previous

More information

LT Spice Getting Started Very Quickly. First Get the Latest Software!

LT Spice Getting Started Very Quickly. First Get the Latest Software! LT Spice Getting Started Very Quickly First Get the Latest Software! 1. After installing LT Spice, run it and check to make sure you have the latest version with respect to the latest version available

More information

INDIANA UNIVERSITY, DEPT. OF PHYSICS, P400/540 LABORATORY FALL Laboratory #6: Operational Amplifiers

INDIANA UNIVERSITY, DEPT. OF PHYSICS, P400/540 LABORATORY FALL Laboratory #6: Operational Amplifiers INDIANA UNIVERSITY, DEPT. OF PHYSICS, P400/540 LABORATORY FALL 008 Laboratory #: Operational Amplifiers Goal: Study the use of the operational amplifier in a number of different configurations: inverting

More information

EK307 Active Filters and Steady State Frequency Response

EK307 Active Filters and Steady State Frequency Response EK307 Active Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of active signal-processing filters Learning Objectives: Active Filters, Op-Amp Filters, Bode plots Suggested

More information

Physics 310 Lab 6 Op Amps

Physics 310 Lab 6 Op Amps Physics 310 Lab 6 Op Amps Equipment: Op-Amp, IC test clip, IC extractor, breadboard, silver mini-power supply, two function generators, oscilloscope, two 5.1 k s, 2.7 k, three 10 k s, 1 k, 100 k, LED,

More information

ELEG 205 Analog Circuits Laboratory Manual Fall 2017

ELEG 205 Analog Circuits Laboratory Manual Fall 2017 ELEG 205 Analog Circuits Laboratory Manual Fall 2017 University of Delaware Dr. Mark Mirotznik Kaleb Burd Aric Lu Patrick Nicholson Colby Banbury Table of Contents Policies Policy Page 3 Labs Lab 1: Intro

More information

High Speed BUFFER AMPLIFIER

High Speed BUFFER AMPLIFIER High Speed BUFFER AMPLIFIER FEATURES WIDE BANDWIDTH: MHz HIGH SLEW RATE: V/µs HIGH OUTPUT CURRENT: 1mA LOW OFFSET VOLTAGE: 1.mV REPLACES HA-33 IMPROVED PERFORMANCE/PRICE: LH33, LTC11, HS APPLICATIONS OP

More information

BME/ISE 3512 Bioelectronics. Laboratory Five - Operational Amplifiers

BME/ISE 3512 Bioelectronics. Laboratory Five - Operational Amplifiers BME/ISE 3512 Bioelectronics Laboratory Five - Operational Amplifiers Learning Objectives: Be familiar with the operation of a basic op-amp circuit. Be familiar with the characteristics of both ideal and

More information

Third Year (Electrical & Telecommunication Engineering)

Third Year (Electrical & Telecommunication Engineering) Z PRACTICAL WORK BOOK For The Course EE-315 Electric Filter For Third Year (Electrical & Telecommunication Engineering) Name of Student: Class: Batch : Discipline: Class Roll No.: Examination Seat No.

More information

EXPERIMENT 3 Circuit Construction and Operational Amplifier Circuits

EXPERIMENT 3 Circuit Construction and Operational Amplifier Circuits ELEC 2010 Lab Manual Experiment 3 PRE-LAB Page 1 of 8 EXPERIMENT 3 Circuit Construction and Operational Amplifier Circuits Introduction In this experiment you will learn how to build your own circuits

More information

Concepts to be Reviewed

Concepts to be Reviewed Introductory Medical Device Prototyping Analog Circuits Part 3 Operational Amplifiers, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Reviewed Operational

More information

Low Distortion Design 4

Low Distortion Design 4 Low Distortion Design 4 TIPL 1324 TI Precision Labs Op Amps Presented by Collin Wells Prepared by John Caldwell Prerequisites: Noise 1 3 (TIPL1311 TIPL1313) Distortion from Power Supplies Power supplies

More information

EGR Laboratory 9 - Operational Amplifiers (Op Amps) Team Names

EGR Laboratory 9 - Operational Amplifiers (Op Amps) Team Names EG 1301 - Laboratory 9 - Operational Amplifiers (Op Amps) Team Names Objectives At the end of this lab, you will be able to: Construct and test inverting and non-inverting op amp circuits Compute calculated

More information

DiMarzio Section Only: Prelab: 3 items in yellow. Reflection: Summary of what you learned, and answers to two questions in green.

DiMarzio Section Only: Prelab: 3 items in yellow. Reflection: Summary of what you learned, and answers to two questions in green. EECE 2150 - Circuits and Signals: Biomedical Applications Lab 6 Sec 2 Getting started with Operational Amplifier Circuits DiMarzio Section Only: Prelab: 3 items in yellow. Reflection: Summary of what you

More information

Operational Amplifiers

Operational Amplifiers 1. Introduction Operational Amplifiers The student will be introduced to the application and analysis of operational amplifiers in this laboratory experiment. The student will apply circuit analysis techniques

More information

Electronics I. laboratory measurement guide

Electronics I. laboratory measurement guide Electronics I. laboratory measurement guide Andras Meszaros, Mark Horvath 2015.02.01. 5. Measurement Basic circuits with operational amplifiers 2015.02.01. In this measurement you will need both controllable

More information

Operation and Maintenance Manual

Operation and Maintenance Manual WeiKedz 0-30V 2mA-3A Adjustable DC Regulated Power Supply DIY Kit Operation and Maintenance Manual The WeiKedz Adjustable DC Regulated Power Supply provides continuously variable output voltage between

More information

Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET

Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET LABORATORY MANUAL EXPERIMENT NO. ISSUE NO. : ISSUE DATE: REV. NO. : REV. DATE : PAGE:

More information

EE43 43/100 Fall Final Project: 1: Audio Amplifier, Part Part II II. Part 2: Audio Amplifier. Lab Guide

EE43 43/100 Fall Final Project: 1: Audio Amplifier, Part Part II II. Part 2: Audio Amplifier. Lab Guide EE 3/00 EE FINAL PROJECT PROJECT:AN : AUDIO AUDIO AMPLIFIER AMPLIFIER Part : Audio Amplifier Lab Guide In this lab we re going to extend what you did last time. We re going to use your AC to DC converter

More information

EXAMPLE. Use this jack for the red test lead when measuring. current from 0 to 200mA. Figure P-1

EXAMPLE. Use this jack for the red test lead when measuring. current from 0 to 200mA. Figure P-1 Digital Multimeters ON / OFF power switch Continuity / Diode Test Function Resistance Function Ranges from 200Ω to 200MΩ Transistor Test Function DC Current Function Ranges from 2mA to 20A. AC Current

More information

Lab 2 Electrical Safety, Breadboards, Using a DMM

Lab 2 Electrical Safety, Breadboards, Using a DMM Lab 2 Electrical Safety, Breadboards, Using a DMM Objectives concepts 1. Safety hazards related to household electricity and electronics equipment 2. Differences between schematic and breadboard representations

More information

BME 3512 Bioelectronics Laboratory Five - Operational Amplifiers

BME 3512 Bioelectronics Laboratory Five - Operational Amplifiers BME 351 Bioelectronics Laboratory Five - Operational Amplifiers Learning Objectives: Be familiar with the operation of a basic op-amp circuit. Be familiar with the characteristics of both ideal and real

More information

User s Manual ISL15102IRZ-EVALZ. User s Manual: Evaluation Board. Industrial Analog and Power

User s Manual ISL15102IRZ-EVALZ. User s Manual: Evaluation Board. Industrial Analog and Power User s Manual ISL1512IRZ-EVALZ User s Manual: Evaluation Board Industrial Analog and Power Rev. Nov 217 USER S MANUAL ISL1512IRZ-EVALZ Evaluation Board UG151 Rev.. 1. Overview The ISL1512IRZ-EVAL board

More information

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) 4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) The Metal Oxide Semitonductor Field Effect Transistor (MOSFET) has two modes of operation, the depletion mode, and the enhancement mode.

More information

CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - I

CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - I CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - I OBJECTIVE The purpose of the experiment is to examine non-ideal characteristics of an operational amplifier. The characteristics that are investigated include

More information

Integrators, differentiators, and simple filters

Integrators, differentiators, and simple filters BEE 233 Laboratory-4 Integrators, differentiators, and simple filters 1. Objectives Analyze and measure characteristics of circuits built with opamps. Design and test circuits with opamps. Plot gain vs.

More information

Assignment 11. 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz

Assignment 11. 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz Assignment 11 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz Vo = 1 x R1Cf 0 Vin t dt, voltage output for the op amp integrator 0.1 m 1

More information