Main Sources of Electronic Noise

Size: px
Start display at page:

Download "Main Sources of Electronic Noise"

Transcription

1 Main Sources of Electronic Noise Thermal Noise - It is always associated to dissipation phenomena produced by currents and voltages. It is represented by a voltage or current sources randomly variable in time. - It is analytically described by a stationary process - Amplitude distribution: GAUSSIAN with zero mean value - Power Spectral Density: constant (white noise) G(f) η η = Power spectral density =K. T f

2 Main Sources of Electronic Noise Shot noise It arises typically in PN junctions forwardly biased; it is due to the discrete nature of current through the junction, which results randomly variant around the imposed bias value Amplitude distribution: GAUSSIAN with zero mean value Constant spectrum (white noise) G(f) η η = Power spectral density (=q. I) f

3 Main Sources of Electronic Noise Flicker noise (1/f) 1. It arises in semiconductor devices, due to impurities and defects in the crystal structure).. Its spectrum is not constant (energy is concentrated at low frequency). Power Spectrum: a I G ( f ) = K W / Hz b f K: depends on the fabrication process I: DC current through the device a: typically 0.5 b: 1 Nota: The amplitude distribution is not always GAUSSIAN

4 Noise Characterization in microwave devices P Nin -port G a P Nin N DB = Added Power (from the -port) P Nout = G a P Nin +N DB =Total noise Power N DB The noise figure NF: define the attitude of the -port of adding noise at the output: NF PNout = G P a Nin P Nout is the actual noise power at output while G a. P Nin is the noise power at output if the -port would not add noise power (G a is the available power) Actually NF is a function of frquency, so the above powers must be assumed per unit band (i.e. they represent actually power densities) Moreover NF depends also on the source impedance (Γ S )

5 NF dependance on Γ S NF = ( NF ) + 4r min n Γ Γ s min ( ) s 1+Γ 1 Γ min (NF) min = Minimum value of NF Γ min value of Γ S which determines NF=NF min r n = Normalized noise resistance All these parameters are frequency dependent. Typically, they are made available by the manufacturers of commercial devices (directly into.sp data files).

6 Constant Noise Figure Circles If we plot the equation expressing NF as function of Γ S on the Smith Chart (representing Γ S ), we obtain a circle with the following center and radius: C F = Γ min 1+ N i, r F = 1 1+ N i N i + N i ( ) 1 Γ m N i is given by: N i = NF ( NF) 4r n min ( ) 1+ Γ min

7 Noise Figure for cascaded stages G a1, N F1 G a, N F G a3, N F3 NF 1 NF 1 = G G G 3 ( NF ) NF TOT a1 a1 a The noise figure is mainly determined by the first stage NOTE: In general the value of Γ S that determines the minimum value of NF is different by the one that maximizes G T ; the choice of Γ S for the first stage is then the result of a compromise between the noise figure and gain

8 Design of a low noise amplifier The choice of Γ s is a compromise between G T and NF. Some circles with NF=cost and G a =cost are first plotted on the Smith chart (Γ s ). The value of Γ s is selected within the common area of two circles. Considering that NF increases with the radius while Ga decreases with it, we have (with reference to the zones 1 and ): Cerchi a NF=cost NF NF1 G a1 G a Cerchio di Instabilità del gen. In zone 1: NF NF 1 and G a G a NF is previliged NF min 1 In zone : NF NF and G a G a1 G a is previliged Cerchi a Ga=cost Once assigned Γ s,opt, Γ L,opt is computed by imposing the matching at output (then G T =G a )

9 Example of design Amplifier Requirements Frequency Band: GHz Minimum Transducer Gain: 10.5 db Maximum Noise Figure: 1.5 db Substate: Duroid ε r =.54 H= mm t = 35 µ Active Device MGF193 Mitsubishi (GaAs Mesfet) MSG (6.8 GHz): db (with NF=3.1 db) Minimum NF (6.8 GHz): 1.13 db (with Gt=8.06 db) Topology: SUBCKT TLOC m TLIN NET= "transistor" 1 TLIN

10 Biasing network of the active device V GS Bias V DS Bias RF Short Circuit RF Open Circuit NOTE: The S parameters delivered by the manufacturer refers to the red sections. After the biasing network has been assigned, the S parameters changes to the ones referred to the black sections Input reference section Block Capacitors (DC) Output reference section

11 Evaluation of the S parameters of the biased active device MLEF ID= TL14 W= mm L= mm MLIN ID= TL15 W= 0. mm L= 0.5 mm MSUB Er=.54 H= mm Rho= T= mm 1 Tand= 0 ErNom=. Name= SUB1 MLEF ID= TL16 W= mm L= mm MLIN ID= TL17 W= 0. mm L= 0.5 mm MRSTUB ID= TL3 Ri= mm Ro= mm Theta= 60 Deg 3 1 MTEE$ ID= TL MTEE$ ID= TL MRSTUB ID= TL4 Ri= mm Ro= mm Theta= 60 Deg MLIN ID= TL10 W= 1.44 mm L= 0.99 mm CAP ID= C1 C= 15 pf MCTRACE ID= TL13 W= 0. mm R= L= mm 5 mm 3 1 MLIN ID= TL5 W= 1.4 mm L= 0.5 mm SUBCKT ID= S1 NET= "MGF193" 1 MLIN ID= TL6 W= 1.4 mm L= 0.5 mm 3 MCTRACE ID= TL1 W= 0. mm L= mm R= 5 mm 1

12 S parameters for the design Frequency: 6.8 GHz

13 Γ S selected for maximum gain Load (0.74, 15) Γ L ( O pt) : (0.771, ) Gen. GT=15.1 NF=3.18 G T : db NF: 3.36 Γ : (0.68 (0.73,, 167.5) 173.5) S ( O pt)

14 Selection of Γ S as a compromise between G T and NF Load NF=1.5 db Source X Γ L X Γs G T = 10.7 db NF=1.36 db Γ L = Γ S = Ga=10.5 db

15 Input matching network 107 x Γ s x 1+j1.15 LOAD ID= Z1 Z= 50 Ohm TLIN ID= TL1 Z0= 50 Ohm EL= Deg F0= GHz TLOC ID= TL Z0= 50 Ohm EL= Deg F0= GHz PORT P= 1 Z= 50 Ohm Γ S

16 Output matching network x Γ L TLIN ID= TL1 Z0= 50 Ohm EL= Deg F0= GHz PORT P= 1 Z= 50 Ohm 96.3 LOAD ID= Z1 Z= 50 Ohm TLOC ID= TL Z0= 50 Ohm EL= Deg F0= GHz x 1+j1.3 Γ L

17 Scheme of the overall amplifier MLEF ID=TL4 W=3.5 mm L=.43 mm PORT P=1 Z=50 Ohm MLIN ID=TL6 W=1.386 mm L=1 mm 3 MTEE$ ID=TL5 1 MSUB Er=.54 H=0.508 mm T=0.035 mm Rho=1 Tand=0 ErNom=. Name=SUB1 MLIN ID=TL1 W= mm L=1.47 mm SUBCKT ID=S1 NET="transistor" 1 MLIN ID=TL3 W=0.364 mm L=1.617 mm MTEE$ ID=TL8 1 3 MLEF ID=TL9 W=1.443 mm L=4.96 mm MLIN ID=TL7 W=1.387 mm L=1 mm PORT P= Z=50 Ohm

18 Amplifier Layout

19 Amplifier Response Optimized Initial Response Response 6.5 GHz GHz db db 6.5 GHz db 6.5 GHz db DB(GT()) (L) DB(GT()) Ampli (L) Ampli DB(NF()) (R) DB(NF()) Ampli (R) Ampli Frequency 6.4 (GHz) Frequency (GHz)

20 Scheme of a power microwave amplifier Reti di Polarizzazione R 0 V in MATCH In MATCH Out R 0 Γ S Γ L The concept is identical to the ones seen before. In this case however the values of Γ S e Γ L to be assigned have to maximize the power delivered to the load (for specified biasing conditions). Instability must be obviously avoided (commercial devices are generally pre-matched internally for unconditional stability). The active device must be characterized for large signal operation

21 Example of PA design Amplifier Requirements Frequency Band: GHz Output Mean Power (-tone): 0 dbm Carrier-to-IM3: >35 db Minimum GT: >9 db Active Device MGFK5V4045 Mitsubishi (GaAs FET) IP3: 36 dbm (CI=IP3-Pm-6=38 db) P1dB: 5 dbm (min) Device unconditionally stable. Optimum Loads: Freq. Γs Γs ΓL ΓL G T,MAX

22 Ideal design The maximum Transducer Gain is obtained by imposing the optimum loads. The values so obtained are not constant with frequency: they decreases, reaching the minimum at 14.5 GHz (9.6 db). It is then convenient to design the transforming network at the highest frequency using then optimization for getting the requirements satisfied in the whole band. The networks used are double stub networks with shunt open stubs (no use of via-hole). The design can be approached in two (equivalent) ways: Γ S(L) Φ Φ 1 Φ 50Ω Γ S(L) Φ Φ 1 Φ 50Ω

23 Design of the Double Stub with the Smith Chart (case 1) Insert Γ S(L) and store Draw the circle g=1 rotated of -70 (toward source) Draw the circle g=cost passing for the current point Select one on the intersection betwen the two circles as the new current point. The susceptance b 1 is given by the imaginary part of Delta Y with the sign reversed. Give an increment of +70 to the phase of gamma of the current point (the new current point must be on the circle g=1) The imaginary part of the Y of the current point represents b. It has: φ 1 =tan -1 (b 1 ) and φ =tan -1 (b )

24 Result of initial design Ω MGFK Ω Zc=50 Ω for all the lines G T,max G T Γ in Γ out

25 Optimized result (imposing optimum loads) 150Ω, Ω, Ω 150 Ω Ω MGFK 0 Ω Ω Ω G T,max G T Γ in Γ out

26 Optimized result (imposing GT>9.5 db) 150Ω, Ω, Ω 14.5 Ω Ω MGFK 0. Ω Ω Ω DB( S(1,1) ) (L) Ampli -30 DB( S(,) ) (L) Ampli DB( S(,1) ) (R) Ampli DB(GMax()) (R) Ampli Frequency (GHz) 5

27 Balanced Amplifier Vin 1a 0 90 C=3 db a 3a V in / Γ in jv in / Γ in A A V in jv in A A b 3b C=3 db b Vout V = AV, V = j A V Gain: 3 Reflection: b in b in V V P V = V = j + = j AV = A b 3b out out 4b in Pin V = V, V = AV, V =Γ AV, V = j AV, + + 1a in a in a in in 3a in V3a = jγin AV in, V1 a = ( jv3a + Va ) = Γin AV in +Γin AV in V Γ in = = 0 V 1a + 1a

28 IP3 in balanced amplifiers Pin db HYB P in / jp in / A A P out P j out 3 db HYB 90 0 Pout [ ] P = 3( P 3) IP, P = 3( P 3) IP int,1 out 3 int, out 3 P = 3( P 3) IP + 3 = 3P IP 6 = 3P IP int out 3 out 3 out 3 IP = IP Result: the equivalent IP3 of the overall amplifier is doubled with respect the one of the single amplifiers. This means that for the same overall output power the power of the intermodulation products is 6 db lower.

29 Result of balanced configuration (amplifiers optimized for G T >9.5 db) 150Ω, Ω, Ω 14.5 Ω Ω MGFK 0. Ω Ω Ω Scheme of each amplifier

Dedication. This project is for Evelyn, whose love and encouragements keeps me going just fine.

Dedication. This project is for Evelyn, whose love and encouragements keeps me going just fine. 1 Dedication This project is for Evelyn, whose love and encouragements keeps me going just fine. 2 Acknowledgement My acknowledgements go to Dr.-Ing. Wilfred N. Mwema, for his inspiration and support.

More information

Exercise S11= S12= S21= S22=

Exercise S11= S12= S21= S22= Exercise 010217 The following scheme refers to an oscillator working at fosc=425 MHz. The S parameters of the transistor are also reported on the figure. ΓL L C Γs Γout OUT MATCH S11=0.69-55 S12=0.026

More information

AM036MX-QG-R 1 WATT, 2 GHz POWER AMPLIFIER

AM036MX-QG-R 1 WATT, 2 GHz POWER AMPLIFIER AM036MX-QG-R 1 WATT, 2 GHz POWER AMPLIFIER AN136 January 2011 REV 3 INTRODUCTION This application note describes the design of a one-watt, single stage power amplifier at 2GHz using AMCOM s low cost surface

More information

This note describes the S-Parameter measurement of the MGF0915A Power GaAs FET using

This note describes the S-Parameter measurement of the MGF0915A Power GaAs FET using This note describes the S-Parameter measurement of the MGF915A Power GaAs FET using the Mitsubishi D-Case Application Breadboard. A bias network is established which is Transparent to the RF input and

More information

Application Note 5057

Application Note 5057 A 1 MHz to MHz Low Noise Feedback Amplifier using ATF-4143 Application Note 7 Introduction In the last few years the leading technology in the area of low noise amplifier design has been gallium arsenide

More information

Linear networks analysis

Linear networks analysis Linear networks analysis For microwave linear networks analysis is performed in frequency domain. The analysis is based on the evaluation of the scattering matrix of the n port network From S matrix all

More information

A 400, 900, and 1800 MHz Buffer/Driver Amplifier using the HBFP-0450 Silicon Bipolar Transistor

A 400, 900, and 1800 MHz Buffer/Driver Amplifier using the HBFP-0450 Silicon Bipolar Transistor A 4, 9, and 18 MHz Buffer/Driver Amplifier using the HBFP-4 Silicon Bipolar Transistor Application Note 16 Introduction Avago Technologies HBFP-4 is a high performance isolated collector silicon bipolar

More information

Case Study Amp2: Wideband Amplifier Design. Case Study: Amp2 Wideband Amplifier Design Using the Negative Image Model.

Case Study Amp2: Wideband Amplifier Design. Case Study: Amp2 Wideband Amplifier Design Using the Negative Image Model. MICROWAVE AND RF DEIGN Case tudy: Amp Wideband Amplifier Design Using the Negative Image Model Presented by Michael teer Reading: Chapter 18, ection 18. Index: CAmp Based on material in Microwave and RF

More information

Introduction to Surface Acoustic Wave (SAW) Devices

Introduction to Surface Acoustic Wave (SAW) Devices May 31, 2018 Introduction to Surface Acoustic Wave (SAW) Devices Part 7: Basics of RF Circuits Ken-ya Hashimoto Chiba University k.hashimoto@ieee.org http://www.te.chiba-u.jp/~ken Contents Noise Figure

More information

Millimeter Wave Electronics. Spring Assignment Week 7-8 Power Amplifier Design. Due: Tuesday, June 10, 9:45 11:45 a.m.

Millimeter Wave Electronics. Spring Assignment Week 7-8 Power Amplifier Design. Due: Tuesday, June 10, 9:45 11:45 a.m. EE-711 Millimeter Wave Electronics Spring 24 Assignment Week 7-8 Power Amplifier Design Due: Tuesday, June 1, 9:45 11:45 a.m. Bo Zhao Ping Chen 1. Requirements and parameters Zg and Z L impedance of 5

More information

Microwave Circuit Design and Measurements Lab. MATCHING NETWORK DESIGN AND CIRCUIT LAYOUT Lab #8

Microwave Circuit Design and Measurements Lab. MATCHING NETWORK DESIGN AND CIRCUIT LAYOUT Lab #8 MATCHING NETWORK DESIGN AND CIRCUIT LAYOUT Lab #8 In this laboratory session and the associated out-of-lab computer-aided design work, the design of input and output matching networks in order to maximize

More information

Measured RF Performance Summary

Measured RF Performance Summary Summary Application Note The AP603 is a high dynamic range power amplifier in a lead-free/rohs-compliant 5x6mm power DFN SMT package. It features an internal active-bias circuit that provides temperature

More information

1 of 7 12/20/ :04 PM

1 of 7 12/20/ :04 PM 1 of 7 12/20/2007 11:04 PM Trusted Resource for the Working RF Engineer [ C o m p o n e n t s ] Build An E-pHEMT Low-Noise Amplifier Although often associated with power amplifiers, E-pHEMT devices are

More information

The Design of A 125W L-Band GaN Power Amplifier

The Design of A 125W L-Band GaN Power Amplifier Sheet Code RFi0613 White Paper The Design of A 125W L-Band GaN Power Amplifier This paper describes the design and evaluation of a single stage 125W L-Band GaN Power Amplifier using a low-cost packaged

More information

Novel Dual Balun / Coupler Is Space Saving Semi-Lumped.

Novel Dual Balun / Coupler Is Space Saving Semi-Lumped. The use of a traditional coupler as a Balun has many advantageous. A single design can be adapted for both Class A applications and Push Pull applications. The method is best suited for narrow to moderate

More information

The Design of E-band MMIC Amplifiers

The Design of E-band MMIC Amplifiers The Design of E-band MMIC Amplifiers Liam Devlin, Stuart Glynn, Graham Pearson, Andy Dearn * Plextek Ltd, London Road, Great Chesterford, Essex, CB10 1NY, UK; (lmd@plextek.co.uk) Abstract The worldwide

More information

ATF-531P8 E-pHEMT GaAs FET Low Noise Amplifier Design for 800 and 900 MHz Applications. Application Note 1371

ATF-531P8 E-pHEMT GaAs FET Low Noise Amplifier Design for 800 and 900 MHz Applications. Application Note 1371 ATF-31P8 E-pHEMT GaAs FET Low Noise Amplifier Design for 8 and 9 MHz Applications Application Note 1371 Introduction A critical first step in any LNA design is the selection of the active device. Low cost

More information

Application Note 1373

Application Note 1373 ATF-511P8 900 MHz High Linearity Amplifier Application Note 1373 Introduction Avago s ATF-511P8 is an enhancement mode PHEMT designed for high linearity and medium power applications. With an OIP3 of 41

More information

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN COMMUNICATION ENGINEERING

JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN COMMUNICATION ENGINEERING COMPLEXITY IN DEIGNING OF LOW NOIE AMPLIFIER Ms.PURVI ZAVERI. Asst. Professor Department Of E & C Engineering, Babariya College Of Engineering And Technology,Varnama -Baroda,Gujarat purvizaveri@yahoo.co.uk

More information

Data Sheet. AMMP GHz High Gain Amplifier in SMT Package. Description. Features. Applications. Package Diagram. Functional Block Diagram

Data Sheet. AMMP GHz High Gain Amplifier in SMT Package. Description. Features. Applications. Package Diagram. Functional Block Diagram AMMP- GHz High Gain Amplifier in SMT Package Data Sheet Description The AMMP- MMIC is a GaAs wide-band amplifier in a surface mount package designed for medium output power and high gain over the - GHz

More information

Designing Stability into 1296 MHz and 2304 MHz Low Noise Amplifiers

Designing Stability into 1296 MHz and 2304 MHz Low Noise Amplifiers Optical Navigation Division Designing Stability into 96 MHz and 4 MHz Low Noise Amplifiers By Al Ward W5LUA & Tommy Henderson WD5AGO July 8, 7 Central States VHF Society San Antonio, Texas What do we want

More information

Γ L = Γ S =

Γ L = Γ S = TOPIC: Microwave Circuits Q.1 Determine the S parameters of two port network consisting of a series resistance R terminated at its input and output ports by the characteristic impedance Zo. Q.2 Input matching

More information

Simulation Study of Broadband LNA for Software Radio Application.

Simulation Study of Broadband LNA for Software Radio Application. Simulation Study of Broadband LNA for Software Radio Application. Yazid Mohamed, Norsheila Fisal and Mazlina Esa June 000 Telemetics and Optic Panel Faculty of Electrical Engineering University Technology

More information

Application Note A008

Application Note A008 Microwave Oscillator Design Application Note A008 Introduction This application note describes a method of designing oscillators using small signal S-parameters. The background theory is first developed

More information

800 to 950 MHz Amplifiers using the HBFP-0405 and HBFP-0420 Low Noise Silicon Bipolar Transistors. Application Note 1161

800 to 950 MHz Amplifiers using the HBFP-0405 and HBFP-0420 Low Noise Silicon Bipolar Transistors. Application Note 1161 8 to 95 MHz Amplifiers using the HBFP-45 and HBFP-42 Low Noise Silicon Bipolar Transistors Application Note 1161 Introduction Hewlett-Packard s HBFP-45 and HBFP-42 are high performance isolated collector

More information

Design of Low Noise Amplifier for Wimax Application

Design of Low Noise Amplifier for Wimax Application IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 6, Issue 1 (May. - Jun. 2013), PP 87-96 Design of Low Noise Amplifier for Wimax Application

More information

915 MHz Power Amplifier. EE172 Final Project. Michael Bella

915 MHz Power Amplifier. EE172 Final Project. Michael Bella 915 MHz Power Amplifier EE17 Final Project Michael Bella Spring 011 Introduction: Radio Frequency Power amplifiers are used in a wide range of applications, and are an integral part of many daily tasks.

More information

Case Study: Amp5. Design of a WiMAX Power Amplifier. WiMAX power amplifier. Amplifier topology. Power. Amplifier

Case Study: Amp5. Design of a WiMAX Power Amplifier. WiMAX power amplifier. Amplifier topology. Power. Amplifier MICROWAVE AND DESIGN Case Study: Amp5 Design of a WiMAX Presented by Michael Steer Reading: Chapter 19, Section 19.6 Index: CS_Amp5 Based on material in Microwave and Design: A Systems Approach, nd Edition,

More information

HELA-10: HIGH IP3, WIDE BAND, LINEAR POWER AMPLIFIER

HELA-10: HIGH IP3, WIDE BAND, LINEAR POWER AMPLIFIER AN-60-009 Ref. EA-7193 Application Note on HELA-10: HIGH IP3, WIDE BAND, LINEAR POWER AMPLIFIER Mini-Circuits P.O. Box 350166 Brooklyn, NY 11235 AN-60-009 Rev.: F M150261 (04/15/15) File name: AN60009.doc

More information

The Design & Simulation of LNA for GHz Using AWR Microwave Office

The Design & Simulation of LNA for GHz Using AWR Microwave Office The Design & Simulation of LNA for 2.4-2.5 GHz Using AWR Microwave Office 1 Osman Selcuk; 2 Hamid Torpi 1 Department of Computer Science, King Graduate School Monroe College New Rochelle, NY 11377, USA

More information

MMA GHz 1W Traveling Wave Amplifier Data Sheet

MMA GHz 1W Traveling Wave Amplifier Data Sheet Features: Frequency Range:.1 2 GHz P3dB: +29 dbm Gain: 12.5 db Vdd =12 V Ids =5 ma Input and Output Fully Matched to 5 Ω Applications: Fiber optics communication systems Microwave and wireless communication

More information

Experiment 3 - Printed Filters.

Experiment 3 - Printed Filters. Experiment 3 - Printed Filters. S. Levy, Z. Ibragimov, D. Ackerman and H. Matzner. May 3, 2009 Contents 1 Background Theory 2 1.1 EllipticFilterDesign... 2 1.1.1 ImpedanceandFrequencyScaling... 3 1.1.2

More information

Application Note 5379

Application Note 5379 VMMK-1225 Applications Information Application Note 5379 Introduction The Avago Technologies VMMK-1225 is a low noise enhancement mode PHEMT designed for use in low cost commercial applications in the

More information

High Frequency Amplifiers

High Frequency Amplifiers EECS 142 Laboratory #3 High Frequency Amplifiers A. M. Niknejad Berkeley Wireless Research Center University of California, Berkeley 2108 Allston Way, Suite 200 Berkeley, CA 94704-1302 October 27, 2008

More information

Lecture 14 - Low Noise Amplifier Design

Lecture 14 - Low Noise Amplifier Design Lecture 14 - Low Noise Amplifier Design Microwave Active Circuit Analysis and Design Clive Poole and Izzat Darwazeh Academic Press Inc. Poole-Darwazeh 2015 Lecture 14 - Low Noise Amplifier Design Slide1

More information

Application Note 1131

Application Note 1131 Low Noise Amplifiers for 320 MHz and 850 MHz Using the AT-32063 Dual Transistor Application Note 1131 Introduction This application note discusses the Avago Technologies AT-32063 dual low noise silicon

More information

400 MHz to 4000 MHz ½ Watt RF Driver Amplifier ADL5324

400 MHz to 4000 MHz ½ Watt RF Driver Amplifier ADL5324 Data Sheet FEATURES Operation from MHz to MHz Gain of 14.6 db at 21 MHz OIP of 4.1 dbm at 21 MHz P1dB of 29.1 dbm at 21 MHz Noise figure of.8 db Dynamically adjustable bias Adjustable power supply bias:.

More information

Maxim > Design Support > Technical Documents > Application Notes > Wireless and RF > APP 3571

Maxim > Design Support > Technical Documents > Application Notes > Wireless and RF > APP 3571 Maxim > Design Support > Technical Documents > Application Notes > Wireless and RF > APP 3571 Keywords: automotive keyless entry, MAX2640, LNA, 315MHz, RKE, stability, automotive, keyless entry APPLICATION

More information

Low Noise Amplifiers with High Dynamic Range

Low Noise Amplifiers with High Dynamic Range Low Noise Amplifiers with High Dynamic Range Item Type text; Proceedings Authors Ridgeway, Robert Publisher International Foundation for Telemetering Journal International Telemetering Conference Proceedings

More information

Microwave Oscillator Design. Application Note A008

Microwave Oscillator Design. Application Note A008 Microwave Oscillator Design Application Note A008 NOTE: This publication is a reprint of a previously published Application Note and is for technical reference only. For more current information, see the

More information

Application Note 5446

Application Note 5446 Design the Avago MGA-31T6 into a High Gain, Low Noise, Low current GPS LNA Module Application Note 446 Introduction The MGA-31T6 is a low cost and easy-to-use GaAs LNA (Low Noise Amplifier). The LNA is

More information

Low noise amplifier, principles

Low noise amplifier, principles 1 Low noise amplifier, principles l l Low noise amplifier (LNA) design Introduction -port noise theory, review LNA gain/noise desense Bias network and its effect on LNA IP3 LNA stability References Why

More information

RF2334. Typical Applications. Final PA for Low Power Applications Broadband Test Equipment

RF2334. Typical Applications. Final PA for Low Power Applications Broadband Test Equipment RF233 AMPLIFIER Typical Applications Broadband, Low Noise Gain Blocks IF or RF Buffer Amplifiers Driver Stage for Power Amplifiers Final PA for Low Power Applications Broadband Test Equipment Product Description

More information

FP2189. Functional Diagram. Product Description. Product Features. Applications. Typical Performance (5) Specifications. Absolute Maximum Rating

FP2189. Functional Diagram. Product Description. Product Features. Applications. Typical Performance (5) Specifications. Absolute Maximum Rating FP89 -Watt HFET Product Features 5 MHz +3 dbm PdB +3 dbm Output IP3 High Drain Efficiency 8.5 db @ 9 MHz Lead-free/Green/RoHS-compliant SOT-89 Package MTTF > Years Applications Mobile Infrastructure CATV

More information

ATF-531P8 900 MHz High Linearity Amplifier. Application Note 1372

ATF-531P8 900 MHz High Linearity Amplifier. Application Note 1372 ATF-531P8 9 MHz High Linearity Amplifier Application Note 1372 Introduction This application note describes the design and construction of a single stage 85 MHz to 9 MHz High Linearity Amplifier using

More information

Application Note 5011

Application Note 5011 MGA-62563 High Performance GaAs MMIC Amplifier Application Note 511 Application Information The MGA-62563 is a high performance GaAs MMIC amplifier fabricated with Avago Technologies E-pHEMT process and

More information

AH102. Product Description. Functional Diagram. Product Features. Typical Parameters. Specifications. Absolute Maximum Ratings. Ordering Information

AH102. Product Description. Functional Diagram. Product Features. Typical Parameters. Specifications. Absolute Maximum Ratings. Ordering Information Medium Power, High Linearity Amplifier The Communications Edge Product Features - MHz Bandwidth +45 dbm Output IP3 13 db Gain +27 dbm P1dB MTBF > 7 Hours Internally Matched Multiple Bias Voltages (+7.

More information

RF3375 GENERAL PURPOSE AMPLIFIER

RF3375 GENERAL PURPOSE AMPLIFIER Basestation Applications Broadband, Low-Noise Gain Blocks IF or RF Buffer Amplifiers Driver Stage for Power Amplifiers Final PA for Low-Power Applications High Reliability Applications RF3375General Purpose

More information

High Gain Low Noise Amplifier Design Using Active Feedback

High Gain Low Noise Amplifier Design Using Active Feedback Chapter 6 High Gain Low Noise Amplifier Design Using Active Feedback In the previous two chapters, we have used passive feedback such as capacitor and inductor as feedback. This chapter deals with the

More information

California Eastern Laboratories

California Eastern Laboratories California Eastern Laboratories AN143 Design of Power Amplifier Using the UPG2118K APPLICATION NOTE I. Introduction Renesas' UPG2118K is a 3-stage 1.5W GaAs MMIC power amplifier that is usable from approximately

More information

AT General Purpose, Low Current NPN Silicon Bipolar Transistor. Data Sheet

AT General Purpose, Low Current NPN Silicon Bipolar Transistor. Data Sheet AT-4532 General Purpose, Low Current NPN Silicon Bipolar Transistor Data Sheet Description Avago s AT-4532 is a general purpose NPN bipolar transistor that has been optimized for maximum f t at low voltage

More information

RF2044 GENERAL PURPOSE AMPLIFIER

RF2044 GENERAL PURPOSE AMPLIFIER GENERAL PURPOSE AMPLIFIER RoHS Compliant & Pb-Free Product Package Style: Micro-X Ceramic Features DC to >6000MHz Operation Internally matched Input and Output 20dB Small Signal Gain 4.0dB Noise Figure

More information

RF circuits design Grzegorz Beziuk. RF Amplifier design. References

RF circuits design Grzegorz Beziuk. RF Amplifier design. References RF circuits design Grzegorz Beziuk RF Amplifier design References [1] Tietze U., Schenk C., Electronic circuits : handbook for design and applications, Springer 008 [] Pozar D. M., Microwave engineering

More information

Application Note 5421

Application Note 5421 MGA-30489 1.9GHz W-CDMA Driver Amplifier Design using Avago Technologies MGA-30489 Application Note 5421 Introduction Avago Technologies MGA-30489 is high linearity, 0.25Watt (24dBm) driver amplifier designed

More information

MGA-632P8 1.9 GHz low noise amplifier Application Note 5295

MGA-632P8 1.9 GHz low noise amplifier Application Note 5295 MGA-63P8 1.9 GHz low noise amplifier Application Note 595 Introduction The MGA-63P8 is a GaAs EPHEMT LNA with integrated active bias. The target applications are Tower Mounted Amplifiers and LNAs in cellular

More information

Surface Mount SOT-363 (SC-70) Package. Pin Connections and Package Marking GND. V dd. Note: Package marking provides orientation and identification.

Surface Mount SOT-363 (SC-70) Package. Pin Connections and Package Marking GND. V dd. Note: Package marking provides orientation and identification. GHz V Low Current GaAs MMIC LNA Technical Data MGA-876 Features Ultra-Miniature Package.6 db Min. Noise Figure at. GHz. db Gain at. GHz Single + V or V Supply,. ma Current Applications LNA or Gain Stage

More information

General configuration

General configuration Transmitter General configuration In some cases the modulator operates directly at the transmission frequency (no up conversion required) In digital transmitters, the information is represented by the

More information

Features. Specifications

Features. Specifications MGA-30489 0.25W Driver Amplifier Data Sheet Description Avago Technologies s MGA-30489 is a 0.25W highly dynamic range Driver Amplifier MMIC, housed in a SOT-89 standard plastic package. The device features

More information

EE4101E: RF Communications. Low Noise Amplifier Design Using ADS (Report)

EE4101E: RF Communications. Low Noise Amplifier Design Using ADS (Report) EE4101E: RF Communications Low Noise Amplifier Design Using ADS (Report) SEM 1: 2014/2015 Student 1 Name Student 2 Name : Ei Ei Khin (A0103801Y) : Kyaw Soe Hein (A0103612Y) Page 1 of 29 INTRODUCTION The

More information

Data Sheet. HMMC-5200 DC 20 GHz HBT Series Shunt Amplifier. Features. Description

Data Sheet. HMMC-5200 DC 20 GHz HBT Series Shunt Amplifier. Features. Description HMMC-52 DC 2 GHz HBT Series Shunt Amplifier Data Sheet Description The HMMC-52 is a DC to 2 GHz, 9.5 db gain, feedback amplifier designed to be used as a cascadable gain block for a variety of applications.

More information

Application Note 5460

Application Note 5460 MGA-89 High Linearity Amplifier with Low Operating Current for 9 MHz to. GHz Applications Application Note 6 Introduction The Avago MGA-89 is a high dynamic range amplifier designed for applications in

More information

GaAs MMIC Power Amplifier

GaAs MMIC Power Amplifier GaAs MMIC Power Amplifier AM324036WM-BM-R AM324036WM-FM-R Aug 10 Rev 6 DESCRIPTION AMCOM s is part of the GaAs MMIC power amplifier series. It has 29dB gain and 36dBm output power over the 3.2 to 4.0GHz

More information

87x. MGA GHz 3 V Low Current GaAs MMIC LNA. Data Sheet

87x. MGA GHz 3 V Low Current GaAs MMIC LNA. Data Sheet MGA-876 GHz V Low Current GaAs MMIC LNA Data Sheet Description Avago s MGA-876 is an economical, easy-to-use GaAs MMIC amplifier that offers low noise and excellent gain for applications from to GHz. Packaged

More information

This article describes the design of a multiband,

This article describes the design of a multiband, A Low-Noise Amplifier for 2 GHz Applications Using the NE334S01 Transistor By Ulrich Delpy NEC Electronics (Europe) This article describes the design of a multiband, low-noise amplifier (LNA) using the

More information

Application Note 5012

Application Note 5012 MGA-61563 High Performance GaAs MMIC Amplifier Application Note 5012 Application Information The MGA-61563 is a high performance GaAs MMIC amplifier fabricated with Avago Technologies E-pHEMT process and

More information

6-33. Mixer IF. IF Amp LO. Transmitter

6-33. Mixer IF. IF Amp LO. Transmitter 6-33 Power Amplifier (PA) Design Antenna Mixer IF BPF Filter PA IF Amp LO Transmitter A PA is used in the final stage of wireless transmitters to increase the radiated power level. Typical PA output powers

More information

Design of Impedance Matching Circuit

Design of Impedance Matching Circuit ISSN 2278 0211 (Online) Design of Impedance Matching Circuit Shiwani Shekhar B.Tech Final Year Student, Electronics & Communication Engineering Department J.K. Institute of Applied Physics & Technology,

More information

GaAs MMIC Power Amplifier

GaAs MMIC Power Amplifier GaAs MMIC Power Amplifier AM1327MM-BM-R AM1327MM-FM-R Aug 2010 Rev 2 DESCRIPTION AMCOM s is part of the GaAs HiFET MMIC power amplifier series. It is a 2-stage GaAs HIFET MESFET MMIC power amplifier biased

More information

Application Note 5295

Application Note 5295 MGA-63P8 1.9 GHz low noise amplifier using MGA-63P8 Application Note 595 Introduction The MGA-63P8 is a GaAs EPHEMT with an integrated active bias. The target applications are Tower Mounted Amplifier /

More information

Typical Gmax, OIP3, 5V,270mA 42 OIP3. 30 P1dB Frequency (GHz)

Typical Gmax, OIP3, 5V,270mA 42 OIP3. 30 P1dB Frequency (GHz) Medium Power Discrete SiGe Transistor MEDIUM POWER DISCRETE SiGe TRANSISTOR RFMD Green, RoHS Compliant, Pb-Free (Z Part Number) Package: SOT-89 Product Description RFMD s SGA-9289 is a high performance

More information

50 MHz to 4.0 GHz RF/IF Gain Block ADL5602

50 MHz to 4.0 GHz RF/IF Gain Block ADL5602 Data Sheet FEATURES Fixed gain of 20 db Operation from 50 MHz to 4.0 GHz Highest dynamic range gain block Input/output internally matched to 50 Ω Integrated bias control circuit OIP3 of 42.0 dbm at 2.0

More information

PRODUCT APPLICATION NOTES

PRODUCT APPLICATION NOTES Extending the HMC189MS8 Passive Frequency Doubler Operating Range with External Matching General Description The HMC189MS8 is a miniature passive frequency doubler in a plastic 8-lead MSOP package. The

More information

Relevant Projects. RF-Thermal characterization of MEMS devices. High power GaN arrays for power beaming

Relevant Projects. RF-Thermal characterization of MEMS devices. High power GaN arrays for power beaming Relevant Projects Non-Linear RF device characterization from external EMI/EM excitations!haracterization is necessary for our EMI/EM MURI! Pulsed-RF is of most importance/ RF-Thermal characterization of

More information

MMA GHz, 0.1W Gain Block Data Sheet

MMA GHz, 0.1W Gain Block Data Sheet Features: Frequency Range: 6 22 GHz P1dB: 18.5 dbm @Vds=5V Psat: 19.5 dbm @ Gain: 14 db Vdd =3 to 6 V Ids = 13 ma Input and Output Fully Matched to 5 Ω Applications: Communication systems Microwave instrumentations

More information

Simulation of GaAs phemt Ultra-Wideband Low Noise Amplifier using Cascaded, Balanced and Feedback Amplifier Techniques

Simulation of GaAs phemt Ultra-Wideband Low Noise Amplifier using Cascaded, Balanced and Feedback Amplifier Techniques 2011 International Conference on Circuits, System and Simulation IPCSIT vol.7 (2011) (2011) IACSIT Press, Singapore Simulation of GaAs phemt Ultra-Wideband Low Noise Amplifier using Cascaded, Balanced

More information

Data Sheet. VMMK GHz Positive Gain Slope Low Noise Amplifier in SMT Package. Features. Description

Data Sheet. VMMK GHz Positive Gain Slope Low Noise Amplifier in SMT Package. Features. Description VMMK-3603 1-6 GHz Positive Gain Slope Low Noise Amplifier in SMT Package Data Sheet Description The VMMK-3603 is a small and easy-to-use, broadband, positive gain slope low noise amplifier operating in

More information

Data Sheet. MGA Current-Adjustable, Low Noise Amplifier. Description. Features. Specifications at 500 MHz; 3V, 10 ma (Typ.

Data Sheet. MGA Current-Adjustable, Low Noise Amplifier. Description. Features. Specifications at 500 MHz; 3V, 10 ma (Typ. MGA-5 Current-Adjustable, Low Noise Amplifier Data Sheet Description Avago Technologies MGA-5 is an economical, easy-to-use GaAs MMIC amplifier that offers excellent linearity and low noise figure for

More information

Ceramic Packaged GaAs Power phemt DC-12 GHz

Ceramic Packaged GaAs Power phemt DC-12 GHz Ceramic Packaged GaAs Power phemt DC-12 GHz DESCRIPTION AMCOM s is a discrete GaAs phemt that has a total gate width of 1.mm. It is in a ceramic BH package for operating up to 12 GHz. The BH package has

More information

T he noise figure of a

T he noise figure of a LNA esign Uses Series Feedback to Achieve Simultaneous Low Input VSWR and Low Noise By ale. Henkes Sony PMCA T he noise figure of a single stage transistor amplifier is a function of the impedance applied

More information

NLB-310. RoHS Compliant & Pb-Free Product. Typical Applications

NLB-310. RoHS Compliant & Pb-Free Product. Typical Applications Typical Applications Narrow and Broadband Commercial and Military Radio Designs Linear and Saturated Amplifiers 0 RoHS Compliant & Pb-Free Product NLB-310 CASCADABLE BROADBAND GaAs MMIC AMPLIFIER DC TO

More information

Chapter 4 Transmission Line Transformers and Hybrids Introduction

Chapter 4 Transmission Line Transformers and Hybrids Introduction RF Electronics Chapter4: Transmission Line Transformers and Hybrids Page Chapter 4 Transmission Line Transformers and Hybrids Introduction s l L Figure. Transmission line parameters. For a transmission

More information

Application Note AN 1085

Application Note AN 1085 900 and 400 MHz Amplifiers Using the AT-3 Series Low Noise Silicon Bipolar Transistors Application Note AN 1085 1. Introduction Discrete transistors offer low cost solutions for commercial applications

More information

MMA C3 6-22GHz, 0.1W Gain Block Data Sheet

MMA C3 6-22GHz, 0.1W Gain Block Data Sheet Features: Frequency Range: 6 22 GHz P1dB: 18.5 dbm @Vdd=5V P3dB: 19.5 dbm @Vdd=5V Gain: 14 db Vdd =3 to 6 V Ids = 130 ma Input and Output Fully Matched to 50 Ω Applications: Communication systems Microwave

More information

Design Challenges and Performance Parameters of Low Noise Amplifier

Design Challenges and Performance Parameters of Low Noise Amplifier Design Challenges and Performance Parameters of Low Noise Amplifier S. S. Gore Department of Electronics & Tele-communication, SITRC Nashik, (India) G. M. Phade Department of Electronics & Tele-communication,

More information

Dual-band LNA Design for Wireless LAN Applications. 2.4 GHz LNA 5 GHz LNA Min Typ Max Min Typ Max

Dual-band LNA Design for Wireless LAN Applications. 2.4 GHz LNA 5 GHz LNA Min Typ Max Min Typ Max Dual-band LNA Design for Wireless LAN Applications White Paper By: Zulfa Hasan-Abrar, Yut H. Chow Introduction Highly integrated, cost-effective RF circuitry is becoming more and more essential to the

More information

SHF-0186K GHz, 0.5 Watt GaAs HFET

SHF-0186K GHz, 0.5 Watt GaAs HFET DESIGN APPLICATION NOTE --- AN SHF-86K Amplifier Application Circuits Abstract Sirenza Microdevices SHF-86K is a high performance AlGaAs/GaAs Heterostructure FET (HFET) housed in a low-cost surface-mount

More information

GHz LOW NOISE AMPLIFIER WHM AE 1

GHz LOW NOISE AMPLIFIER WHM AE 1 .. GHz LOW NOISE AMPLIFIER WHM-AE WHM-AE LNA is a low noise figure, wideband, and high linearity SMT packaged amplifier. The amplifier offers typical noise figure of.9 db and output IP of. dbm at the frequency

More information

Application Note 1299

Application Note 1299 A Low Noise High Intercept Point Amplifier for 9 MHz Applications using ATF-54143 PHEMT Application Note 1299 1. Introduction The Avago Technologies ATF-54143 is a low noise enhancement mode PHEMT designed

More information

AM002535MM-BM-R AM002535MM-FM-R

AM002535MM-BM-R AM002535MM-FM-R AM002535MM-BM-R AM002535MM-FM-R December 2008 Rev. 1 DESCRIPTION AMCOM s AM002535MM-BM-R is part of the GaAs MMIC power amplifier series. It has 24 db gain, 34 dbm output power over most of the 0.03 to

More information

Application Note 5499

Application Note 5499 MGA-31389 and MGA-31489 High-Gain Driver Amplifier Using Avago MGA-31389 and MGA-31489 Application Note 5499 Introduction The MGA-31389 and MGA-31489 from Avago Technologies are.1 Watt flat-gain driver

More information

1.0 6 GHz Ultra Low Noise Amplifier

1.0 6 GHz Ultra Low Noise Amplifier 1.0 6 GHz Ultra Low Noise Amplifier Features Frequency Range: 1.0-6 GHz 0.7 db mid-band Noise Figure 18 db mid band Gain 13dBm Nominal P1dB Bias current : 50mA 0.15-um InGaAs phemt Technology 16-Pin QFN

More information

Features. Specifications. Applications. Vcc

Features. Specifications. Applications. Vcc AVT-55689 50 6000 MHz InGaP HBT Gain Block Data Sheet Description Avago Technologies AVT-55689 is an economical, easy-touse, general purpose InGaP HBT MMIC gain block amplifier utilizing Darlington pair

More information

Application Note 5303

Application Note 5303 MGA-6P8 9 MHz low noise amplifier using MGA-6P8 Application Note 5 Introduction The MGA-6P8 is a GaAs EPHEMT with an integrated active bias. The target applications are Tower Mounted Amplifier / Main LNA

More information

30 MHz to 6 GHz RF/IF Gain Block ADL5544

30 MHz to 6 GHz RF/IF Gain Block ADL5544 Data Sheet FEATURES Fixed gain of 17.4 db Broadband operation from 3 MHz to 6 GHz Input/output internally matched to Ω Integrated bias control circuit OIP3 of 34.9 dbm at 9 MHz P1dB of 17.6 dbm at 9 MHz

More information

Low Power RF Transceivers

Low Power RF Transceivers Low Power RF Transceivers Mr. Zohaib Latif 1, Dr. Amir Masood Khalid 2, Mr. Uzair Saeed 3 1,3 Faculty of Computing and Engineering, Riphah International University Faisalabad, Pakistan 2 Department of

More information

RFIC DESIGN ELEN 351 Session4

RFIC DESIGN ELEN 351 Session4 RFIC DESIGN ELEN 351 Session4 Dr. Allen Sweet January 29, 2003 Copy right 2003 ELEN 351 1 Power Amplifier Classes Indicate Efficiency and Linearity Class A: Most linear, max efficiency is 50% Class AB:

More information

UNDERSTANDING NOISE PARAMETER MEASUREMENTS (AN )

UNDERSTANDING NOISE PARAMETER MEASUREMENTS (AN ) UNDERSTANDING NOISE PARAMETER MEASUREMENTS (AN-60-040) Overview This application note reviews noise theory & measurements and S-parameter measurements used to characterize transistors and amplifiers at

More information

RF2317. Laser Diode Driver Return Channel Amplifier Base Stations. CATV Distribution Amplifiers Cable Modems Broadband Gain Blocks

RF2317. Laser Diode Driver Return Channel Amplifier Base Stations. CATV Distribution Amplifiers Cable Modems Broadband Gain Blocks CATV Distribution Amplifiers Cable Modems Broadband Gain Blocks Laser Diode Driver Return Channel Amplifier Base Stations The is a general purpose, low cost high linearity RF amplifier IC. The device is

More information

Application Note 1320

Application Note 1320 ATF-3P8 9 MHz High Linearity Amplifier Application Note 3 Introduction Avago Technologies ATF-3P8 is an enhancement mode PHEMT designed for low noise and high linearity applications. With a noise figure

More information

Design and simulation of Parallel circuit class E Power amplifier

Design and simulation of Parallel circuit class E Power amplifier International Journal of scientific research and management (IJSRM) Volume 3 Issue 7 Pages 3270-3274 2015 \ Website: www.ijsrm.in ISSN (e): 2321-3418 Design and simulation of Parallel circuit class E Power

More information