A 94 GHz Overmoded Traveling Wave Tube (TWT) Amplifier

Size: px
Start display at page:

Download "A 94 GHz Overmoded Traveling Wave Tube (TWT) Amplifier"

Transcription

1 1 A 94 GHz Overmoded Traveling Wave Tube (TWT) Amplifier Elizabeth J. Kowalski MIT Plasma Science and Fusion Center MURI Teleseminar December 5, 2014

2 2 Outline Introduction TWT Design and Cold Tests TWT Experiment Summary

3 3 TWT Operation Magnet (Solenoid) Electron Gun Slow wave structure Beam tunnel RF in Pass electrons through structure with v e =v p (synchronous operation) Electrons bunch longitudinally, causing exponential growth in the field until saturation RF out Bunching Accelerating Field Electric field in TWT: Exponential growth saturation Decelerating Field

4 E TWT Gain Theory Coupled dispersion relation via circuit theory and electronic equations gives relation of propagation constants: Including loss (d), space charge effects (QC), and non-synchronous operation (b): β = β e + ε Growing Electric Field Solution: Gain (in db) is calculated to be: Citation: Tsimring, 2007 Distance 4

5 Overmoded TWT Project Goals * overmoded TWT design Overmoded design can push to high power at high frequency Our goal is to experimentally validate a 94 GHz overmoded coupled cavity TWT with 30 db of gain (300 W peak power) Low magnetic field (2.5 kg solenoid magnet) Single-beam Pierce electron gun Simple manufacturing of cavity 5

6 6 Outline Introduction TWT Design and Cold Tests TWT Experiment Summary

7 TWT Experimental Overview Solenoid Magnet, 26 cm RF Windows Collector to pump Electron Gun Cavity features highlighted in cyan Operation Parameters Frequency V 0 Current Beam Radius Beam Tunnel Radius Cavities 87 Interaction Length Magnetic Field 94 GHz 31.1 kv 310 ma 0.3 mm 0.4 mm 6.88 cm 2.5 kg Pulse length 2 µs 7

8 2.54 mm Overmoded Cavity Design TM 31 operation at 94 GHz allows for: larger beam tunnel and smaller magnetic field requirements than fundamental mode designs easier manufacturing (larger cavities) RF out 5.8 mm 0.8 mm 0.8 mm TM 31 Electric Field Magnitude RF in beam tunnel (purple indicates vacuum) beam tunnel 8

9 9 Lower Order Modes TM 31 operation allows for a larger cavity design than fundamental mode operation Electric Field Magnitude TM31 TM21 TM11

10 Lossy Dielectric Loading Dielectric placement chosen such that TM 31 is not affected while damping the TM 11 and TM 21 modes AlN composite with tanδ = 0.25 HFSS Simulation of Dielectric Loading TM 11 TM 31 Electric Field Magnitude 0.6 mm TM11 TM21 TM31 TM mm Dielectric 10

11 11 1-D and 3-D Simulations electron beam RF in RF out Analytical calculations and 1-D LMSuite Latte simulations performed with coupling impedance and dispersion relation calculated from HFSS 87-Cavity structure simulated in CST Particle Studio (3-D PIC) with dielectric loading Experimentally anticipated electron beam and magnetic field parameters were used

12 12 TWT Expected Performance CST Particle Studio (3D PIC code) and 1-D LMSuite Latte simulations Structure Parameters Cavities 87 Length 6.88 cm Coupling Impedance 2.8 Ohms TM 31 Loss 4 db/cm Simulation Results Center Frequency GHz Gain 32 db Peak Power 300 W Bandwidth 200 MHz

13 Cold Test Manufacturing CNC milling with inserts for dielectric placement Different materials tested: OFHC copper, AL60 and AL25 Glidcop dielectric placement 19 cavities; OFHC WR10 9 cavities; Glidcop WR mm Beam Tunnel 13

14 14 Cold Test Measurements Good agreement with theory Higher transmission in glidcop structure Effective suppression of modes AlN composite dielectric: ε r = 25 tanδ = 0.24 Comparison to theory (9-cavity glidcop, no diel) TM31 TM41 Dielectric Losses (19-cavity glidcop) TM31 TM41

15 15 Outline Introduction TWT Design and Cold Tests TWT Experiment Summary

16 16 94 GHz TWT Experiment Set Up 94 GHz EIK (driving source) 2.5 kg Solenoid Magnet 30 kv Electron Gun 2 microsecond pulse modulator

17 17 Solenoid Magnet Tested Solenoid magnet with 2.5 kg field for 10 cm tested with iron pole piece Pole piece designed for high-compression electron gun Simulations with Poisson 3-axis measurements showed 2-3 mm misalignment between magnetic field axis and bore axis; iron pole pieces adjusted to compensate 1.8 kg Measurement

18 18 Pierce electron gun designed with Michelle for operation at: 310 ma at 30 kv, 0.3 mm beam radius Current density at cathode = 4 A/cm 2 ; 1.63 mm/0.25mm compression ratio Electron Gun Design ~ 6 in. Ceramic Cathode Anode Pole piece Michelle Simulation

19 19 Electron Gun Manufactured Designed and built at MIT Cathode manufactured by Heatwave Labs Anode Cathode Beam Test Assembly

20 1.1 cm Beam Test Operation Solenoid Magnet, 26 cm RF Windows Collector to pump Electron Gun Operation Parameters Frequency V 0 Current Beam diameter Current Density at cathode Magnetic Field 94 GHz 31.1 kv 310 ma 0.6 mm 4 A/cm kg Pulse length 2 µs 1.4 cm 0.8 mm beam tunnel Electron beam 20

21 21 Electron Gun Beam Test Child-Langmuir curve calculated for P = 0.06 micropervs, where Experiment has been run to 31 kv with 306 ±6 ma at collector (20 ma at anode, 23 ma at beam tunnel) Measurements agree well with expected current

22 22 87-Cavity Structure Assembly 87 Cavities, AL60 LOX glidcop, direct machined Cold tests agreed with theory; full suppression of TM 41 mode

23 Device Gain (db) 23 Results: 21 db device gain Zero-drive stable operation with no evidence of unwanted modes 30.6 kv operation with 250 ma collector current and GHz input signal: 21±2 db linear device gain measured 27 W peak device output power Bandwidth: High gain (30.6 kv) operation point had 30 MHz bandwidth Alternate 28.7 kv operating point had about 110 MHz bandwidth, but much less linear gain Input signal from AMC: solid-state EIO: Klystron

24 24 Results: 27 db circuit gain Circuit gain accounts for coupling losses in the device and is a measure of the gain occurring in the TWT interaction circuit Measured 6±1 db input and output coupling losses 27±2 db circuit linear gain 55 W peak circuit power output Adjusting CST for 250 ma interaction current gives the theoretical circuit gain for the experimental conditions: 28 db linear gain 100 W peak power Input signal from AMC: solid-state EIO: Klystron

25 Summary Designed 94 GHz overmoded coupled cavity TWT Simulated 32 db of gain, 300 W peak power Cold Tests of structures confirm TWT simulations, demonstrate successful manufacturing of cavities and show suppression of unwanted modes with AlN dielectric Electron gun beam test showed 306±6 ma at of current at collector for 31 kv operation and agreed well with theory Overmoded W-band TWT experiment is operational Zero-drive stable with no evidence of fundamental or unwanted modes 27 ±2 db circuit gain (21 ±2 db device gain) at GHz with 250 ma collector current 27 W peak output power at GHz (55 W peak circuit power) Adjusting for experimental conditions, CST predicts 28 db circuit gain, 100 W peak power 25

26 26 Acknowledgements Waves and Beams Division at MIT Plasma Science and Fusion Center Faculty and Staff William Guss Sudheer Jawla Ivan Mastovsky Michael Shapiro Richard Temkin Paul Thomas Paul Woskov Sergey Arsenyev Jason Hummelt Xueying Lu Brian Munroe Grad Students Undergrad Students Samantha Lewis Sam Schaub Alexander Soane Haoran Xu JieXi Zhang Research supported by the Air Force Office of Scientific Research Program on Plasma and Electro-Energetic Physics

Long Pulse Operation of a High Power Microwave Source with a Metamaterial Loaded Waveguide

Long Pulse Operation of a High Power Microwave Source with a Metamaterial Loaded Waveguide MURI Grad Student Teleseminar Long Pulse Operation of a High Power Microwave Source with a Metamaterial Loaded Waveguide Xueying Lu MIT 02/03/2016 Outline Review of Stage I experiment Jason Hummelt thesis

More information

NEW OPPORTUNITIES IN VACUUM ELECTRONICS USING PHOTONIC BAND GAP STRUCTURES

NEW OPPORTUNITIES IN VACUUM ELECTRONICS USING PHOTONIC BAND GAP STRUCTURES NEW OPPORTUNITIES IN VACUUM ELECTRONICS USING PHOTONIC BAND GAP STRUCTURES J. R. Sirigiri, C. Chen, M. A. Shapiro, E. I. Smirnova, and R. J. Temkin Plasma Science and Fusion Center Massachusetts Institute

More information

Module IV, Lecture 2 DNP experiments and hardware

Module IV, Lecture 2 DNP experiments and hardware Module IV, Lecture 2 DNP experiments and hardware tunnel diodes, Gunn diodes, magnetrons, traveling-wave tubes, klystrons, gyrotrons Dr Ilya Kuprov, University of Southampton, 2013 (for all lecture notes

More information

Progress in High Gradient Accelerator Research at MIT

Progress in High Gradient Accelerator Research at MIT Progress in High Gradient Accelerator Research at MIT Presented by Richard Temkin MIT Physics and Plasma Science and Fusion Center May 23, 2007 MIT Accelerator Research Collaborators MIT Plasma Science

More information

Gyroklystron Research at CCR

Gyroklystron Research at CCR Gyroklystron Research at CCR RLI@calcreek.com Lawrence Ives, Michael Read, Jeff Neilson, Philipp Borchard and Max Mizuhara Calabazas Creek Research, Inc. 20937 Comer Drive, Saratoga, CA 95070-3753 W. Lawson

More information

A NOVEL MODE-SELECTIVE GYROTRON WITH A PBG RESONATOR

A NOVEL MODE-SELECTIVE GYROTRON WITH A PBG RESONATOR A NOVEL MODE-SELECTIVE GYROTRON WITH A PBG RESONATOR J. R. Sirigiri, K. E. Kreischer, I. Mastovsky, M. A. Shapiro, and R. J. Temkin Presented y Jagadishwar R. Sirigiri Plasma Science and Fusion Center

More information

DESIGN AND CHARACTERIZATION OF HELIX SLOW WAVE STRUCTURE FOR KU-BAND SPACE TWT

DESIGN AND CHARACTERIZATION OF HELIX SLOW WAVE STRUCTURE FOR KU-BAND SPACE TWT Progress In Electromagnetics Research C, Vol. 16, 171 182, 2010 DESIGN AND CHARACTERIZATION OF HELIX SLOW WAVE STRUCTURE FOR KU-BAND SPACE TWT M. K. Alaria, A. Bera, R. K. Sharma, and V. Srivastava Microwave

More information

DEVELOPMENT OF 100 GHz INTERDIGITAL BACKWARD-WAVE OSCILLATOR

DEVELOPMENT OF 100 GHz INTERDIGITAL BACKWARD-WAVE OSCILLATOR DEVELOPMENT OF 1 GHz INTERDIGITAL BACKWARD-WAVE OSCILLATOR Masashi Kato, Yukihiro Soga, Tetsuya Mimura, Yasutada Kato, Keiichi Kamada, and Mitsuhiro Yoshida* Graduate School of Natural Science and Technology,

More information

Development Status of KSTAR LHCD System

Development Status of KSTAR LHCD System Development Status of KSTAR LHCD System September 24, 2004 Y. S. Bae,, M. H. Cho, W. Namkung Plasma Sheath Lab. Department of Physics, Pohang University of Science and Technology LHCD system overview Objectives

More information

Stability Analysis of C-band 500-kW Klystron with Multi-cell. Output cavity

Stability Analysis of C-band 500-kW Klystron with Multi-cell. Output cavity Stability Analysis of C-band 5-kW Klystron with Multi-cell Output cavity Jihyun Hwang Department of Physics, POSTECH, Pohang 37673 Sung-Ju Park and Won Namkung Pohang Accelerator Laboratory, Pohang 37874

More information

Detection of Lower Hybrid Waves on Alcator C-Mod with Phase Contrast Imaging Using Electro-Optic Modulators

Detection of Lower Hybrid Waves on Alcator C-Mod with Phase Contrast Imaging Using Electro-Optic Modulators Detection of Lower Hybrid Waves on Alcator C-Mod with Phase Contrast Imaging Using Electro-Optic Modulators K. Arai, M. Porkolab, N. Tsujii, P. Koert, R. Parker, P. Woskov, S. Wukitch MIT Plasma Science

More information

R.K.YADAV. 2. Explain with suitable sketch the operation of two-cavity Klystron amplifier. explain the concept of velocity and current modulations.

R.K.YADAV. 2. Explain with suitable sketch the operation of two-cavity Klystron amplifier. explain the concept of velocity and current modulations. Question Bank DEPARTMENT OF ELECTRONICS AND COMMUNICATION SUBJECT- MICROWAVE ENGINEERING(EEC-603) Unit-III 1. What are the high frequency limitations of conventional tubes? Explain clearly. 2. Explain

More information

EC 1402 Microwave Engineering

EC 1402 Microwave Engineering SHRI ANGALAMMAN COLLEGE OF ENGINEERING & TECHNOLOGY (An ISO 9001:2008 Certified Institution) SIRUGANOOR,TRICHY-621105. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC 1402 Microwave Engineering

More information

Estimation of the Loss in the ECH Transmission Lines for ITER

Estimation of the Loss in the ECH Transmission Lines for ITER Estimation of the Loss in the ECH Transmission Lines for ITER S. T. Han, M. A. Shapiro, J. R. Sirigiri, D. Tax, R. J. Temkin and P. P. Woskov MIT Plasma Science and Fusion Center, MIT Building NW16-186,

More information

Second-Harmonic Fundamental Mode Slotted Peniotron

Second-Harmonic Fundamental Mode Slotted Peniotron Second-Harmonic Fundamental Mode Slotted Peniotron L.J. Dressman*, D.B. McDermott, and N.C. Luhmann, Jr. University of California, Davis *Also NAVSEA, Crane D.A. Gallagher Northrop Grumman Corp. T.A. Spencer

More information

Prospects for an Inductive Output Tube (IOT) Based Source

Prospects for an Inductive Output Tube (IOT) Based Source Prospects for an Inductive Output Tube (IOT) Based Source Brian Beaudoin February, 10 2016 Institute for Research in Electronics & Applied Physics 1 https://en.wikipedia.org/wiki/high_frequency_active_auroral_research_program.

More information

Development of Backward Wave Oscillators for Terahertz Applications

Development of Backward Wave Oscillators for Terahertz Applications Development of Backward Wave Oscillators for Terahertz Applications Lawrence Ives, Jeff Neilson, Malcom Caplan, Nikolai Chubun, Carol Kory, Mike Read, Calabazas Creek Research, Inc., 20937 Comer Drive

More information

Behavior of the TTF2 RF Gun with long pulses and high repetition rates

Behavior of the TTF2 RF Gun with long pulses and high repetition rates Behavior of the TTF2 RF Gun with long pulses and high repetition rates J. Baehr 1, I. Bohnet 1, J.-P. Carneiro 2, K. Floettmann 2, J. H. Han 1, M. v. Hartrott 3, M. Krasilnikov 1, O. Krebs 2, D. Lipka

More information

Experimental Plan for Testing the UNM Metamaterial Slow Wave Structure for High Power Microwave Generation

Experimental Plan for Testing the UNM Metamaterial Slow Wave Structure for High Power Microwave Generation Experimental Plan for Testing the UNM Metamaterial Slow Wave Structure for High Power Microwave Generation Kevin Shipman University of New Mexico Albuquerque, NM MURI Teleseminar August 5, 2016 1 Outline

More information

2.2 MW Operation of the European Coaxial-Cavity Pre-Prototype Gyrotron for ITER

2.2 MW Operation of the European Coaxial-Cavity Pre-Prototype Gyrotron for ITER 2.2 MW Operation of the European Coaxial-Cavity Pre-Prototype Gyrotron for ITER G. Gantenbein 1, T. Rzesnicki 1, B. Piosczyk 1, S. Kern 1, S. Illy 1, J. Jin 1, A. Samartsev 1, A. Schlaich 1,2 and M. Thumm

More information

Operation of a 140 GHz Gyro-amplifier using a Dielectric-loaded, Sever-less Confocal Waveguide

Operation of a 140 GHz Gyro-amplifier using a Dielectric-loaded, Sever-less Confocal Waveguide PSFC/JA-17-31 Operation of a 140 GHz Gyro-amplifier using a Dielectric-loaded, Sever-less Confocal Waveguide Alexander V. Soane, Michael A. Shapiro, Sudheer Jawla, Richard J. Temkin August 2017 Plasma

More information

Tutorial: designing a converging-beam electron gun and focusing solenoid with Trak and PerMag

Tutorial: designing a converging-beam electron gun and focusing solenoid with Trak and PerMag Tutorial: designing a converging-beam electron gun and focusing solenoid with Trak and PerMag Stanley Humphries, Copyright 2012 Field Precision PO Box 13595, Albuquerque, NM 87192 U.S.A. Telephone: +1-505-220-3975

More information

High Frequency Gyrotrons and Their Applications

High Frequency Gyrotrons and Their Applications High Frequency Gyrotrons and Their Applications Richard Temkin MIT Dept. of Physics and MIT Plasma Science and Fusion Center Plasma Physics Colloquium Applied Physics and Applied Math Dept. Columbia University

More information

Normal-conducting high-gradient rf systems

Normal-conducting high-gradient rf systems Normal-conducting high-gradient rf systems Introduction Motivation for high gradient Order of 100 GeV/km Operational and state-of-the-art SwissFEL C-band linac: Just under 30 MV/m CLIC prototypes: Over

More information

3. (a) Derive an expression for the Hull cut off condition for cylindrical magnetron oscillator. (b) Write short notes on 8 cavity magnetron [8+8]

3. (a) Derive an expression for the Hull cut off condition for cylindrical magnetron oscillator. (b) Write short notes on 8 cavity magnetron [8+8] Code No: RR320404 Set No. 1 1. (a) Compare Drift space bunching and Reflector bunching with the help of Applegate diagrams. (b) A reflex Klystron operates at the peak of n=1 or 3 / 4 mode. The dc power

More information

STUDY OF HIGH EFFICIENCY NOVEL FOLDED WAVEGUIDE TRAVELING-WAVE TUBE WITH SHEET ELECTRON BEAM

STUDY OF HIGH EFFICIENCY NOVEL FOLDED WAVEGUIDE TRAVELING-WAVE TUBE WITH SHEET ELECTRON BEAM Progress In Electromagnetics Research, Vol. 141, 431 441, 213 STUDY OF HIGH EFFICIENCY NOVEL FOLDED WAVEGUIDE TRAVELING-WAVE TUBE WITH SHEET ELECTRON BEAM Yan Hou *, Jin Xu, Shao-Meng Wang, Zhi-Gang Lu,

More information

Design, Development and Testing of RF Window for C band 250 kw CW Power Klystron

Design, Development and Testing of RF Window for C band 250 kw CW Power Klystron Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 2016, 3(6): 26-30 Research Article ISSN: 2394-658X Design, Development and Testing of RF Window for C band 250

More information

Experimental Results of Series Gyrotrons for the Stellarator W7-X

Experimental Results of Series Gyrotrons for the Stellarator W7-X Experimental Results of Series Gyrotrons for the Stellarator W7-X FT/P2-24 G. Gantenbein 1, H. Braune 2, G. Dammertz 1, V. Erckmann 2, S. Illy 1, S. Kern 1, W. Kasparek 3, H. P. Laqua 2, C. Lechte 3, F.

More information

Design for w-band folded waveguide traveling-wave tube

Design for w-band folded waveguide traveling-wave tube Design for w-band folded waveguide traveling-wave tube Zongfei Jin, Gang Zhang, Tao Tang, Huarong Gong *, Chun Wang, Bin Wang, and Yubin Gong National Key Laboratory of Science and Technology on Vacuum

More information

The report includes materials of three papers:

The report includes materials of three papers: The report includes materials of three papers: Performance of 170 GHz high-power gyrotron for CW operation A. Kasugai, Japan gyrotron team Development of Steady-State 2-MW 170-GHz Gyrotrons for ITER B.

More information

Development of a 20-MeV Dielectric-Loaded Accelerator Test Facility

Development of a 20-MeV Dielectric-Loaded Accelerator Test Facility SLAC-PUB-11299 Development of a 20-MeV Dielectric-Loaded Accelerator Test Facility S.H. Gold, et al. Contributed to 11th Advanced Accelerator Concepts Workshop (AAC 2004), 06/21/2004--6/26/2004, Stony

More information

DESIGN OF A V-BAND HIGH-POWER SHEET-BEAM COUPLED-CAVITY TRAVELING-WAVE TUBE

DESIGN OF A V-BAND HIGH-POWER SHEET-BEAM COUPLED-CAVITY TRAVELING-WAVE TUBE Progress In Electromagnetics Research, Vol. 123, 31 45, 2012 DESIGN OF A V-BAND HIGH-POWER SHEET-BEAM COUPLED-CAVITY TRAVELING-WAVE TUBE Y. Liu 1, *, J. Xu 1, Y. Wei 1, X. Xu 1, F. Shen 1, M. Huang 1,

More information

Schematic diagram of the DAP

Schematic diagram of the DAP Outline Introduction Transmission mode measurement results Previous emission measurement Trapping mechanics Emission measurement with new circuits Emission images Future plan and conclusion Schematic diagram

More information

MEMS COMPATIBLE SEVER FOR 220 GHz ULTRA WIDE BAND TWTA: DESIGN AND PARTICLE-IN-CELL ANALYSIS

MEMS COMPATIBLE SEVER FOR 220 GHz ULTRA WIDE BAND TWTA: DESIGN AND PARTICLE-IN-CELL ANALYSIS Progress In Electromagnetics Research Letters, Vol. 41, 135 148, 2013 MEMS COMPATIBLE SEVER FOR 220 GHz ULTRA WIDE BAND TWTA: DESIGN AND PARTICLE-IN-CELL ANALYSIS Anisullah Baig *, Larry R. Barnett, Diana

More information

mmw Products Millimeter Wave Systems

mmw Products Millimeter Wave Systems mmw Products 2015.01.12 Millimeter Wave Systems 1 Extended Interaction Klystrons EIK Technology Based on Klystrons Rugged Reliable Enhanced Power Bandwidth Efficiency GHz and THz frequencies Moderate voltages

More information

REVIEW OF FAST BEAM CHOPPING F. Caspers CERN AB-RF-FB

REVIEW OF FAST BEAM CHOPPING F. Caspers CERN AB-RF-FB F. Caspers CERN AB-RF-FB Introduction Review of several fast chopping systems ESS-RAL LANL-SNS JAERI CERN-SPL Discussion Conclusion 1 Introduction Beam choppers are typically used for β = v/c values between

More information

High Power Amplifier High Order Modulation Response

High Power Amplifier High Order Modulation Response High Power Amplifier High Order Modulation Response Mike Cascone, Michael Liu, Jim Legarra Communication and Power Industries 811 Hansen Way, Palo Alto, CA 943 email: mike.cascone@cpii.com Tel: (650) 846-3848

More information

Stanford Linear Accelerator Stanford University, Stanford, CA ABSTRACT

Stanford Linear Accelerator Stanford University, Stanford, CA ABSTRACT Design of a high power cross field amplifier at X band with an internally coupled waveguide* SLAC-PUB-5416 January 1991 (A) Kenneth Eppley and Kwok Ko Stanford Linear Accelerator Center, Stanford University,

More information

Development of a Multi-Purpose, Multi-Frequency Gyrotron for DEMO at KIT

Development of a Multi-Purpose, Multi-Frequency Gyrotron for DEMO at KIT KSTAR Conference 2015 February 25-27, 2015, Daejeon, Korea Development of a Multi-Purpose, Multi-Frequency Gyrotron for DEMO at KIT M. Thumm a,b, K.A. Avramidis a, J. Franck a, G. Gantenbein a, S. Illy

More information

Dhanalakshmi College of Engineering Department of ECE EC6701 RF and Microwave Engineering Unit 4 Part A

Dhanalakshmi College of Engineering Department of ECE EC6701 RF and Microwave Engineering Unit 4 Part A Dhanalakshmi College of Engineering Department of ECE EC6701 RF and Microwave Engineering Unit 4 Part A 1. What is magnetron? [N/D-16] an electron tube for amplifying or generating microwaves, with the

More information

International Technology Recommendation Panel. X-Band Linear Collider Path to the Future. RF System Overview. Chris Adolphsen

International Technology Recommendation Panel. X-Band Linear Collider Path to the Future. RF System Overview. Chris Adolphsen International Technology Recommendation Panel X-Band Linear Collider Path to the Future RF System Overview Chris Adolphsen Stanford Linear Accelerator Center April 26-27, 2004 Delivering the Beam Energy

More information

High Power Antenna Design for Lower Hybrid Current Drive in MST

High Power Antenna Design for Lower Hybrid Current Drive in MST High Power Antenna Design for Lower Hybrid Current Drive in MST M.A. Thomas, J.A. Goetz, M.C. Kaufman, S.P. Oliva University of WisconsinMadison J.B.O. Caughman, P.M. Ryan Oak Ridge National Laboratory

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING TUTORIAL BANK Name : MICROWAVE ENGINEERING Code : A70442 Class : IV B. Tech I

More information

RF Design of Normal Conducting Deflecting Cavity

RF Design of Normal Conducting Deflecting Cavity RF Design of Normal Conducting Deflecting Cavity Valery Dolgashev (SLAC), Geoff Waldschmidt, Ali Nassiri (Argonne National Laboratory, Advanced Photon Source) 48th ICFA Advanced Beam Dynamics Workshop

More information

TRAVELING wave tubes (TWTs) are widely used as amplifiers

TRAVELING wave tubes (TWTs) are widely used as amplifiers IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 32, NO. 3, JUNE 2004 1073 On the Physics of Harmonic Injection in a Traveling Wave Tube John G. Wöhlbier, Member, IEEE, John H. Booske, Senior Member, IEEE, and

More information

The Basics of Travelling Wave Tube Amplifiers SCM01

The Basics of Travelling Wave Tube Amplifiers SCM01 The Basics of Travelling Wave Tube Amplifiers SCM01 Roberto Dionisio, Claudio Paoloni European Space Agency Lancaster University roberto.dionisio@esa.int c.paoloni@lancaster.ac.uk Programme 14:20 14:30

More information

High Power Couplers for TTF - FEL

High Power Couplers for TTF - FEL High Power Couplers for TTF - FEL 1. Requirements for High Power Couplers on superconducting Cavities 2. Characteristics of pulsed couplers 3. Standing wave pattern in the coaxial coupler line 4. Advantages

More information

New Features CST COMPUTER SIMULATION TECHNOLOGY CST COMPUTER SIMULATION TECHNOLOGY

New Features CST COMPUTER SIMULATION TECHNOLOGY   CST COMPUTER SIMULATION TECHNOLOGY New Features 2016 Outline Convenience Features for PIC Visualization Keep Mesh SEE Background SEE Model Import Target Frequency PIC Solver Improvements TRK Solver Improvements Visualization Standard 3D

More information

ECRH on the Levitated Dipole Experiment

ECRH on the Levitated Dipole Experiment ECRH on the Levitated Dipole Experiment S. Mahar, J. Kesner, A.C. Boxer, J.E. Ellsworth, I. Karim, A. Roach MIT PSFC A.K. Hansen, D.T. Garnier, M.E. Mauel, E.E.Ortiz Columbia University Presented at the

More information

MEASURES TO REDUCE THE IMPEDANCE OF PARASITIC RESONANT MODES IN THE DAΦNE VACUUM CHAMBER

MEASURES TO REDUCE THE IMPEDANCE OF PARASITIC RESONANT MODES IN THE DAΦNE VACUUM CHAMBER Frascati Physics Series Vol. X (1998), pp. 371-378 14 th Advanced ICFA Beam Dynamics Workshop, Frascati, Oct. 20-25, 1997 MEASURES TO REDUCE THE IMPEDANCE OF PARASITIC RESONANT MODES IN THE DAΦNE VACUUM

More information

Experimental Study on W-Band ( GHz) Oversized Surface Wave Oscillator Driven by Weakly Relativistic Electron Beams )

Experimental Study on W-Band ( GHz) Oversized Surface Wave Oscillator Driven by Weakly Relativistic Electron Beams ) Experimental Study on W-Band (75-110 GHz) Oversized Surface Wave Oscillator Driven by Weakly Relativistic Electron Beams ) Min Thu SAN, Kazuo OGURA, Kiyoyuki YAMBE, Yuta ANNAKA, Shaoyan GONG, Jun KAWAMURA,

More information

Engineering Challenges and Solutions for MeRHIC. Andrew Burrill for the MeRHIC Team

Engineering Challenges and Solutions for MeRHIC. Andrew Burrill for the MeRHIC Team Engineering Challenges and Solutions for MeRHIC Andrew Burrill for the MeRHIC Team Key Components Photoinjector Design Photocathodes & Drive Laser Linac Cavities 703.75 MHz 5 cell cavities 3 rd Harmonic

More information

FAST RF KICKER DESIGN

FAST RF KICKER DESIGN FAST RF KICKER DESIGN David Alesini LNF-INFN, Frascati, Rome, Italy ICFA Mini-Workshop on Deflecting/Crabbing Cavity Applications in Accelerators, Shanghai, April 23-25, 2008 FAST STRIPLINE INJECTION KICKERS

More information

High acceleration gradient. Critical applications: Linear colliders e.g. ILC X-ray FELs e.g. DESY XFEL

High acceleration gradient. Critical applications: Linear colliders e.g. ILC X-ray FELs e.g. DESY XFEL High acceleration gradient Critical applications: Linear colliders e.g. ILC X-ray FELs e.g. DESY XFEL Critical points The physical limitation of a SC resonator is given by the requirement that the RF magnetic

More information

St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad

St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad 500014. Department of Electronics and Communication Engineering SUB: MICROWAVE ENGINEERING SECTION: ECE IV A & B NAME OF THE FACULTY: S RAVI KUMAR,T.SUDHEER

More information

EuroTeV High Bandwidth Wall Current Monitor. Alessandro D Elia AB-BI-PI 1-1 -

EuroTeV High Bandwidth Wall Current Monitor. Alessandro D Elia AB-BI-PI 1-1 - EU contract number RII3-CT-2003-506395 CARE/ELAN Document-2007-012 EuroTeV High Bandwidth Wall Current Monitor Alessandro D Elia AB-BI-PI 1-1 - EU contract number RII3-CT-2003-506395 CARE/ELAN Document-2007-012

More information

REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES. S. Belomestnykh

REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES. S. Belomestnykh REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES S. Belomestnykh HPC workshop JLAB, 30 October 2002 Introduction Many aspects of the high-power coupler design, fabrication, preparation, conditioning, integration

More information

CEBAF waveguide absorbers. R. Rimmer for JLab SRF Institute

CEBAF waveguide absorbers. R. Rimmer for JLab SRF Institute CEBAF waveguide absorbers R. Rimmer for JLab SRF Institute Outline Original CEBAF HOM absorbers Modified CEBAF loads for FEL New materials for replacement loads High power loads for next generation FELs

More information

2 conventional transverse waves using knotted multyfoil antennas. This attenuation decreases with increasing number of foils of multifoils antenna

2 conventional transverse waves using knotted multyfoil antennas. This attenuation decreases with increasing number of foils of multifoils antenna 1 Experimental observation of giant amplification knotted electromagnetic waves in various media M.V. Smelov This article presents the results of experimental studies on excitation, propagation and reception

More information

Pulsed 5 MeV standing wave electron linac for radiation processing

Pulsed 5 MeV standing wave electron linac for radiation processing PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 7, 030101 (2004) Pulsed 5 MeV standing wave electron linac for radiation processing L. Auditore, R. C. Barnà, D. De Pasquale, A. Italiano,

More information

Detailed Design Report

Detailed Design Report Detailed Design Report Chapter 2 MAX IV 3 GeV Storage Ring 2.6. The Radio Frequency System MAX IV Facility CHAPTER 2.6. THE RADIO FREQUENCY SYSTEM 1(15) 2.6. The Radio Frequency System 2.6. The Radio Frequency

More information

Crossed-Field Amplifier (Amplitron)

Crossed-Field Amplifier (Amplitron) Crossed-Field Amplifier (Amplitron) Figure 1: water-cooled Crossed-Field Amplifier L 4756A in its transport case Figure 2: Subset of the cycloidal electron paths into a Crossed-Field Amplifier Also other

More information

The design of a radio frequency quadrupole LINAC for the RIB project at VECC Kolkata

The design of a radio frequency quadrupole LINAC for the RIB project at VECC Kolkata PRAMANA cfl Indian Academy of Sciences Vol. 59, No. 6 journal of December 2002 physics pp. 957 962 The design of a radio frequency quadrupole LINAC for the RIB project at VECC Kolkata V BANERJEE 1;Λ, ALOK

More information

Megawatt Power Level 120 GHz Gyrotrons for ITER Start-Up

Megawatt Power Level 120 GHz Gyrotrons for ITER Start-Up Institute of Physics Publishing Journal of Physics: Conference Series 25 (2005) 7 doi:0.088/742-6596/25//00 Third IAEA Technical Meeting on ECRH Physics and Technology in ITER Megawatt Power Level 20 GHz

More information

Ka-BAND KLOPFENSTEIN TAPERED IMPEDANCE TRANSFORMER FOR RADAR APPLICATIONS

Ka-BAND KLOPFENSTEIN TAPERED IMPEDANCE TRANSFORMER FOR RADAR APPLICATIONS Progress In Electromagnetics Research C, Vol. 27, 253 263, 2012 Ka-BAND KLOPFENSTEIN TAPERED IMPEDANCE TRANSFORMER FOR RADAR APPLICATIONS L. Resley and H. Song * Department of Electrical and Computer Engineering,

More information

Photograph of the rectangular waveguide components

Photograph of the rectangular waveguide components Waveguides Photograph of the rectangular waveguide components BACKGROUND A transmission line can be used to guide EM energy from one point (generator) to another (load). A transmission line can support

More information

Time Domain Response of Split-Ring Resonators in Waveguide Below Cut-Off Structure

Time Domain Response of Split-Ring Resonators in Waveguide Below Cut-Off Structure Time Domain Response of Split-Ring Resonators in Waveguide Below Cut-Off Structure M. Aziz Hmaidi, Mark Gilmore MURI Teleconference 01/06/2017 University of New Mexico, Electrical and Computer Engineering

More information

Predictions of LER-HER limits

Predictions of LER-HER limits Predictions of LER-HER limits PEP-II High Current Performance T. Mastorides, C. Rivetta, J.D. Fox, D. Van Winkle Accelerator Technology Research Div., SLAC 2e 34 Meeting, May 2, 27 Contents In this presentation

More information

A MICROWAVE COUPLER FOR W-BAND MICRO RE-ENTRANT SQUARE CAVITIES

A MICROWAVE COUPLER FOR W-BAND MICRO RE-ENTRANT SQUARE CAVITIES Page 1 of 10 A MICROWAVE COUPLER FOR W-BAND MICRO RE-ENTRANT SQUARE CAVITIES Claudio Paoloni Lancaster University, Engineering Department Lancaster, LA1 4YW, UK Mauro Mineo e2v Technologies, Chelmsford,

More information

...the power in microwaves! MICROWAVE TUBES. product summary MICROWAVE TUBES.

...the power in microwaves! MICROWAVE TUBES. product summary MICROWAVE TUBES. ...the power in microwaves! product summary www.tmdus.com MICROWAVE TUBES FOR RADAR, EW AND COMMUNICATIONS APPLICATIONS At TMD we understand microwave tubes. We ve been immersed in their funny little ways

More information

Design and Testing of RF Window for a High Power Klystron

Design and Testing of RF Window for a High Power Klystron Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 2014, 1(2): 29-34 Research Article ISSN: 2394-658X Design and Testing of RF Window for a High Power Klystron D

More information

The Next Linear Collider Test Accelerator s RF Pulse Compression and Transmission Systems

The Next Linear Collider Test Accelerator s RF Pulse Compression and Transmission Systems SLAC-PUB-7247 February 1999 The Next Linear Collider Test Accelerator s RF Pulse Compression and Transmission Systems S. G. Tantawi et al. Presented at the 5th European Particle Accelerator Conference

More information

Design and experimental study of a high power 140 GHz, TE22.6 mode gyrotron for EAST

Design and experimental study of a high power 140 GHz, TE22.6 mode gyrotron for EAST Invited Paper Design and experimental study of a high power 140 GHz, TE22.6 mode gyrotron for EAST Bentian Liu *, JinjunFeng, Zhiliang Li, Yang Zhang, Efeng Wang, and BoyangTian National Key Laboratory

More information

Waveguides. Metal Waveguides. Dielectric Waveguides

Waveguides. Metal Waveguides. Dielectric Waveguides Waveguides Waveguides, like transmission lines, are structures used to guide electromagnetic waves from point to point. However, the fundamental characteristics of waveguide and transmission line waves

More information

6 - Stage Marx Generator

6 - Stage Marx Generator 6 - Stage Marx Generator Specifications - 6-stage Marx generator has two capacitors per stage for the total of twelve capacitors - Each capacitor has 90 nf with the rating of 75 kv - Charging voltage used

More information

A HIGH EFFICIENCY 17GHz TW CHOPPERTRON

A HIGH EFFICIENCY 17GHz TW CHOPPERTRON 1 SLAC 07 A HIGH EFFICIENCY 17GHz TW CHOPPERTRON J. Haimson and B. Mecklenburg Work performed under the auspices of the U.S. Department of Energy SBIR Grant No.DE-FG02-06ER84468 2 SLAC 07 Figure 1. Centerline

More information

Design and RF Measurements of an X-band Accelerating Structure for the Sparc Project

Design and RF Measurements of an X-band Accelerating Structure for the Sparc Project Design and RF Measurements of an X-band Accelerating Structure for the Sparc Project INFN-LNF ; UNIVERSITY OF ROME LA SAPIENZA ; INFN - MI Presented by BRUNO SPATARO Erice, Sicily, October 9-14; 2005 SALAF

More information

DEVELOPMENT OF CAPACITIVE LINEAR-CUT BEAM POSITION MONITOR FOR HEAVY-ION SYNCHROTRON OF KHIMA PROJECT

DEVELOPMENT OF CAPACITIVE LINEAR-CUT BEAM POSITION MONITOR FOR HEAVY-ION SYNCHROTRON OF KHIMA PROJECT DEVELOPMENT OF CAPACITIVE LINEAR-CUT BEAM POSITION MONITOR FOR HEAVY-ION SYNCHROTRON OF KHIMA PROJECT Ji-Gwang Hwang, Tae-Keun Yang, Seon Yeong Noh Korea Institute of Radiological and Medical Sciences,

More information

Experimental Results on a 1.5 MW, 110 GHz Gyrotron with a Smooth Mirror Mode Converter

Experimental Results on a 1.5 MW, 110 GHz Gyrotron with a Smooth Mirror Mode Converter PSFC/JA-10-63 Experimental Results on a 1.5 MW, 110 GHz Gyrotron with a Smooth Mirror Mode Converter Tax, D.S., Choi, E.M., Mastovsky, I., Neilson, J.M.*, Shapiro, M.A., Sirigiri, J.R., Temkin, R.J., Torrezan,

More information

Lab 1: Pulse Propagation and Dispersion

Lab 1: Pulse Propagation and Dispersion ab 1: Pulse Propagation and Dispersion NAME NAME NAME Introduction: In this experiment you will observe reflection and transmission of incident pulses as they propagate down a coaxial transmission line

More information

MILLIMETER wave traveling wave tubes (TWTs) are

MILLIMETER wave traveling wave tubes (TWTs) are IEEE TRANSACTIONS ON ELECTRON DEVICES 1 Double Corrugated Waveguide for Ka-Band Traveling Wave Tube Claudio Paoloni, Senior Member, IEEE, Mauro Mineo, Manju Henry, and Peter G. Huggard, Senior Member,

More information

Beam BreakUp at Daresbury. Emma Wooldridge ASTeC

Beam BreakUp at Daresbury. Emma Wooldridge ASTeC Beam BreakUp at Daresbury Emma Wooldridge ASTeC Outline The causes of Beam Breakup (BBU) Types of BBU Why investigate BBU? Possible solutions Causes of BBU There are four main causes. Interaction with

More information

Metamaterial-based Slow Wave Structures for Travelling Wave Tubes. Muhammed Zuboraj, Nil Apaydin, Kubilay Sertel, John. L Volakis

Metamaterial-based Slow Wave Structures for Travelling Wave Tubes. Muhammed Zuboraj, Nil Apaydin, Kubilay Sertel, John. L Volakis Metamaterial-based Slow Wave Structures for Travelling Wave Tubes Muhammed Zuboraj, Nil Aaydin, Kubilay Sertel, John. L Volakis 1 Outlines ü Brief introduc on to Travelling Wave Tube Amlifiers ü Fundamental

More information

MuCool Test Area Experimental Program Summary

MuCool Test Area Experimental Program Summary MuCool Test Area Experimental Program Summary Alexey Kochemirovskiy The University of Chicago/Fermilab Alexey Kochemirovskiy NuFact'16 (Quy Nhon, August 21-27, 2016) Outline Introduction Motivation MTA

More information

DOE/ET PFC/RR-87-10

DOE/ET PFC/RR-87-10 PFC/RR-87-10 DOE/ET-51013-227 Concepts of Millimeter/Submillimeter Wave Cavities, Mode Converters and Waveguides Using High Temperature Superconducting Material D.R Chon; L. Bromberg; W. Halverson* B.

More information

3.10 Lower Hybrid Current Drive (LHCD) System

3.10 Lower Hybrid Current Drive (LHCD) System 3.10 Lower Hybrid Current Drive (LHCD) System KUANG Guangli SHAN Jiafang 3.10.1 Purpose of LHCD program 3.10.1.1 Introduction Lower hybrid waves are quasi-static electric waves propagated in magnetically

More information

Dr. Ali Muqaibel. Associate Professor. Electrical Engineering Department King Fahd University of Petroleum & Minerals Dhahran, Saudi Arabia

Dr. Ali Muqaibel. Associate Professor. Electrical Engineering Department King Fahd University of Petroleum & Minerals Dhahran, Saudi Arabia By Associate Professor Electrical Engineering Department King Fahd University of Petroleum & Minerals Dhahran, Saudi Arabia Wednesday, December 1, 14 1 st Saudi Symposium for RADAR Technology 9 1 December

More information

CEBAF Overview June 4, 2010

CEBAF Overview June 4, 2010 CEBAF Overview June 4, 2010 Yan Wang Deputy Group Leader of the Operations Group Outline CEBAF Timeline Machine Overview Injector Linear Accelerators Recirculation Arcs Extraction Systems Beam Specifications

More information

Solid-State Upgrade for the COBRA JUDY S-Band Phased Array Radar

Solid-State Upgrade for the COBRA JUDY S-Band Phased Array Radar Solid-State Upgrade for the COBRA JUDY S-Band Phased Array Radar M. Gaudreau, J. Casey, P. Brown, T. Hawkey, J. Mulvaney, M. Kempkes Diversified Technologies, Inc. 35 Wiggins Avenue, Bedford, MA USA Abstract

More information

FLASH rf gun. beam generated within the (1.3 GHz) RF gun by a laser. filling time: typical 55 μs. flat top time: up to 800 μs

FLASH rf gun. beam generated within the (1.3 GHz) RF gun by a laser. filling time: typical 55 μs. flat top time: up to 800 μs The gun RF control at FLASH (and PITZ) Elmar Vogel in collaboration with Waldemar Koprek and Piotr Pucyk th FLASH Seminar at December 19 2006 FLASH rf gun beam generated within the (1.3 GHz) RF gun by

More information

The impedance budget of the CERN Proton Synchrotron (PS)

The impedance budget of the CERN Proton Synchrotron (PS) The impedance budget of the CERN Proton Synchrotron (PS) Serena Persichelli CERN Hadron Synchrotron Collective effects University of Rome La Sapienza serena.persichelli@cern.ch Why do we study the beam

More information

Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser. P. Castro for the TTF-FEL team

Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser. P. Castro for the TTF-FEL team Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser P. Castro for the TTF-FEL team 100 nm 1 Å FEL radiation TESLA Test Facility at DESY

More information

Thermionic Bunched Electron Sources for High-Energy Electron Cooling

Thermionic Bunched Electron Sources for High-Energy Electron Cooling Thermionic Bunched Electron Sources for High-Energy Electron Cooling Vadim Jabotinski 1, Yaroslav Derbenev 2, and Philippe Piot 3 1 Institute for Physics and Technology (Alexandria, VA) 2 Thomas Jefferson

More information

THE ORION PHOTOINJECTOR: STATUS and RESULTS

THE ORION PHOTOINJECTOR: STATUS and RESULTS THE ORION PHOTOINJECTOR: STATUS and RESULTS Dennis T. Palmer SLAC / ARDB ICFA Sardinia 4 July 2002 1. Introduction 2. Beam Dynamics Simulations 3. Photoinjector 1. RF Gun 2. Solenoidal Magnet 3. Diagnostics

More information

Fast and effective tuned coupling for mono-mode microwave power applicators

Fast and effective tuned coupling for mono-mode microwave power applicators Fast and effective tuned coupling for mono-mode microwave power applicators Wojciech Gwarek Institute of Radioelectronics and Multimedia Technology Warsaw Univ. of Technology Warsaw, Poland Malgorzata

More information

Midterm #1 Prep. Revision: 2018/01/20. Professor M. Csele, Niagara College

Midterm #1 Prep. Revision: 2018/01/20. Professor M. Csele, Niagara College Midterm #1 Prep Revision: 2018/01/20 Professor M. Csele, Niagara College Portions of this presentation are Copyright John Wiley & Sons, 2004 Review Material Safety Finding MPE for a laser Calculating OD

More information

Participant institutions: other INFN sections (Mi, RM1, RM2, Ba, Ca, Pi, Ts, Fe, Le, Fi, Na, LNS), ENEA-Frascat

Participant institutions: other INFN sections (Mi, RM1, RM2, Ba, Ca, Pi, Ts, Fe, Le, Fi, Na, LNS), ENEA-Frascat The THOMSON SOURCE AT SPARC_LAB C. Vaccarezza (Resp. Naz.), M.P. Anania (Ass. Ric.), M. Bellaveglia (Art. 23), M. Cestelli Guidi (Art. 23), D. Di Giovenale (Art. 23) G. Di Pirro, A. Drago, M. Ferrario,

More information

Tendencies in the Development of High-Power Gyrotrons

Tendencies in the Development of High-Power Gyrotrons Tendencies in the Development of High-Power Gyrotrons G.G.Denisov Institute of Applied Physics Russian Academy of Sciences Ltd. Nizhny Novgorod, Russia JAERI/TOSHIBA / FZK/THALES CPI/GA Gyro-devices Extraordinary

More information

Density and temperature maxima at specific? and B

Density and temperature maxima at specific? and B Density and temperature maxima at specific? and B Matthew M. Balkey, Earl E. Scime, John L. Kline, Paul Keiter, and Robert Boivin 11/15/2007 1 Slide 1 Abstract We report measurements of electron density

More information

(i) Determine the admittance parameters of the network of Fig 1 (f) and draw its - equivalent circuit.

(i) Determine the admittance parameters of the network of Fig 1 (f) and draw its - equivalent circuit. I.E.S-(Conv.)-1995 ELECTRONICS AND TELECOMMUNICATION ENGINEERING PAPER - I Some useful data: Electron charge: 1.6 10 19 Coulomb Free space permeability: 4 10 7 H/m Free space permittivity: 8.85 pf/m Velocity

More information