FAST RF KICKER DESIGN

Size: px
Start display at page:

Download "FAST RF KICKER DESIGN"

Transcription

1 FAST RF KICKER DESIGN David Alesini LNF-INFN, Frascati, Rome, Italy ICFA Mini-Workshop on Deflecting/Crabbing Cavity Applications in Accelerators, Shanghai, April 23-25, 2008

2 FAST STRIPLINE INJECTION KICKERS OUTLINE general considerations: injection with fast stripline kickers, pulse length and transverse field profile properties advantages of tapered striplines DAΦNE new injection kickers: design, HV pulsers R&D, beam coupling impedance, installation and first results on beam commissioning ILC kickers studies: effects of the non-uniformity of deflecting field, tapered strip advantages on beam coupling and transfer impedance INJECTION WITH RF DEFLECTORS: CTF3 case SW RF deflector for the Delay Loop TW RFDs for the Combiner Ring: beam vertical instability induced by RFD, design of damped RF deflectors

3 General considerations: injection with fast stripline kickers and pulse length beam E TEM odd mode +V B -V V IN Generator pulse shape V T ILC T f -2L/c=4σ B /c Injected bunch L=kicker length T r =rise time length Stored bunches T f =flat top length σ B =bunch length T B =bunch spacing T r T f T r t 2T B 2L/c+T r 2L/c+T r t assuming T r =300ps E [GeV] ILC DR 5 DAΦNE 0.51 V T DAΦNE Injection upgrade T B [ns] T B T f [ns] 2 5 t L [cm] 30 70

4 General considerations: transverse field profile properties and circular/elliptical cross sections φ a=25 mm Field uniformity B, E field lines Circular case φ Beam axis Vacuum chamber strip Horizontal component of the electric field (E T ) on the kicker axis as a function of the electrode coverage angle. Circular/elliptical cases Efficiency The profile of deflecting field depends on the coverage angle.

5 Advantages of tapered striplines Tapers are usually used to avoid abrupt steps in the vacuum chamber in order to reduce the intensity of wakefields and HOM (impedance of the machine). The uniformity of deflection depends on the coverage angle. Tapering the transition between the kicker structure and the adjacent beam pipe it is possible to minimize: the non uniformity of transverse deflection as a function of the transverse position; the contribution of the kicker to the machine impedance; the reflection coefficient at high frequency (short pulses) because of smoother transition between feedthrough coax line and strip line. Outer chamber Strip feedthrough Beam axis Kicker structure Constant impedance sections

6 DAΦNE new injection kickers: design (1/2) E [MeV] Bunch spacing [ns] L rings [m] Max numb. Of bunches DAΦNE MAIN PARAMETERS Input ports Strip ceramic supports Elliptical cross section BEAM Output ports (LOAD) HV feedthrough Tapered stripline

7 DAΦNE new injection kickers: design (2/2) The elliptical cross section was originally chosen to minimize the variation of the vertical dimension of the beam pipe between the injection region and the adjacent dipole region and to increase the deflection efficiency. By a tapered stripline kicker it is possible to minimize: a) the non uniformity of transverse deflection as a function of the transverse position; b) the contribution of the kicker to the machine impedance; c) the reflection coefficient at high frequency (short pulses) because of smoother transition between feedthrough coax line and stripline. EXPECTED BENEFITS higher maximum stored currents; Improved stability of colliding beams during injection; less background allowing data acquisition during injection; Field flatness by integration L k /2 L T ±3%

8 DAΦNE new injection kickers: HFSS model a) Ceramic stand-off effects Input ports b) HOM studies c) Real deflecting field calculation and frequency response Optimization of the whole structure Output ports d) Coaxial-strip transition optimization and beam transfer impedance Beam direction

9 DAΦNE new injection kickers: beam coupling and transfer impedance calculation Longitudinal impedance Transfer impedance

10 DAΦNE new injection kickers: parameters PARAMETERS Beam Energy E [MeV] Time spacing between bunches [ns] Deflection [mrad] Total deflecting voltage VT [MV] Total kicker length L [cm] Voltage per strip [kv] Input pulse length [ns] Pulse length seen by bunches [ns] Max rep rate [Hz]

11 DAΦNE new injection kickers: HV R&D Input ports Elliptical cross section HV feedthrough Strip ceramic supports BEAM Output ports (LOAD) Tapered stripline

12 DAΦNE new injection kickers: R&D on HV feedthrough (1/2) When HV is applied the possibility of discharges is higher in the end-section of the kicker electrodes, where the electrode itself is closer to the vacuum tube. HV 50 Ohm (wide band) commercial feedthroughs do not exist and an R&D activity has been necessary. The wide band of the feedthroughs is important to keep low the beam impedance of the kicker even well beyond the frequencies content of the input pulse. A stripline with the same dimension and the same distance from the chamber of the kicker stripline in the end section has been built. Coax ceramic feedthrough have been mounted on this test device and HV tests have been done.

13 DAΦNE new injection kickers: R&D on HV feedthrough (2/2) Several FID GmbH HV pulser have been tested up to the final version under specification: 45 kv, flat top 5 ns A commercial feedthrough (not 50 Ohm) has been initially tested without success. An HV feedthrough at 50 Ohm has been designed, realized and tested at LNF with complete success up to 50 kv with the FID pulser.

14 DAΦNE new injection kickers: HV tests on the new kickers (1/3)

15 DAΦNE new injection kickers: HV tests on the new kickers (2/3) Old pulser (LNF) New pulser (FID) 45 kv 25 kv 5 ns 250 ns

16 DAΦNE new injection kickers: HV tests on the new kickers (3/3) New pulser (FID) Old pulser (LNF)

17 DAΦNE new injection kickers: RF characterization Connectors for RF test with NA

18 DAΦNE new injection kickers: Installation in the DAΦNE rings (Nov. 07) e+ e+ IP The new kickers can be feed by the old pulsers (200 ns) or by the new pulsers (6 ns). First test on e+ ring with fast pulsers have been successfully done. Unfortunately we had problems with the new fast FID pulsers after few hours of operation.

19 ILC kickers studies: effects of the non-uniformity of deflecting field (1/4) STARTING POINT PARAMETERS β x_kick =65 m; β y_kick =20 m A x_max =A y_max =0.09 m rad (injected) Bunches distance = 3.08 ns Considered stripline geometries Geometry 1 y φ/2=45 deg x Geometry 2 25 mm

20 ILC kickers studies: effects of the non-uniformity of deflecting field (2/4) Geometry 1 Geometry 2

21 ILC kickers studies: effects of the non-uniformity of deflecting field (3/4) Horizontal plane Geometry 1 Vertical plane A x_max =0.15 m rad A y_max =0.13 m rad A x_98% =0.11 m rad A y_98% =0.09 m rad

22 ILC kickers studies: effects of the non-uniformity of deflecting field (4/4) Geometry 1 V strip =10kV

23 ILC kickers studies: Tapered strip advantages L tap =50mm L tot =300mm We will built a dedicated tapered stripline kicker to be installed in the KEK

24 INJECTION WITH RF DEFLECTORS: CLIC Test Facility (CTF) CERN Aim: build a small-scale version of the CLIC RF power source, in order to: -demonstrate full beam-loading acceleration -demonstrate electron beam pulse compression and frequency multiplication using RF deflectors: -provide the RF power to test the CLIC accelerating structures and components 3GHz The RF deflectors for the DL and CR have been The DL RFD is SW while the CR RFDs are TW structures.

25 INJECTION WITH RF DEFLECTORS: SW RFD for the DL See F. Marcellini, LHC-CC08 efficency (deflection vs. rf power) per unit length filling time circulator SW high To keep acceptable the difference (less than 1%) of deflection angle between the head and the tail of the train the loaded cavity Q has been reduced. A good compromise between filling time and shunt impedance reduction has been a loaded Q value between 3000 and generally slow (proportional to the quality factor) necessary L K W TW Low generally fast (proportional to the group velocity and the structure length) NOT necessary Instead of circulator a 90 deg hybrid juction has been used to protect the source from reflections L H K W Frequency [GHz] Defl. voltage [MV] DESIGN PARAMETER angle of deflection [mrad] Max. Beam energy [MeV] Klystron output Power [MW] Obtained recombination W W W C C C

26 INJECTION WITH RF DEFLECTORS: TW RFD for the CR Frequency Number of cells TW mode Length Group velocity Filling time Input power Deflection angle 3 [GHz] 10 2π/3 33 [cm] c 47 [ns] 2 MW 5 [mrad] Metallic rods have been inserted to shift the frequency of the deflecting mode with vertical polarity. The dimensions and position of the rods have been choosed in order to avoid the excitation of the vertical modes from the beam power spectrum line at GHz and RF generator. f 50 MHz

27 INJECTION WITH RF DEFLECTORS: recombination and vert. instability (1/3) BUNCH RECOMBINATION AT LOW CHARGE Bunch combination has been obtained for the first time during the CTF3 preliminary phase using the TW deflectors designed for the CR at low charge. x Streak camera images 333 ps BUNCH RECOMBINATION AT HIGH CHARGE In the last commissioning the recombination has been tried at high charge but a strong vertical instability occurred. 83 ps t Stored current Vertical position Horizontal position

28 INJECTION WITH RF DEFLECTORS: recombination and vert. instability (2/3) The instability phenomenology has been studied and, finally, it has been associated to the vertical SW deflecting modes. In fact even if they are shifted in frequency by the rods, beam spectrum lines can excite it and generate the instability it the beam passes vertically off axis. 2 ωrf ω τ One particular vertical mode RF R T 2Q VT () τ q ye sin( ωrfτ ) corresponding to the 2π/3 cell c Q phase advance has the strongest shunt impedance Q f RF GHz R T 1.6 MΩ q=2.33 nc y=5 mm Spectrum of a 200 bunches in the combiner ring in 4 turns (f REV 3.56 MHz) Vertical mode resonance

29 INJECTION WITH RF DEFLECTORS: recombination and vert. instability (3/3) A dedicated tracking code has been written to study the multi-bunch multi-turn effects (see D. Alesini. CTF3 Coll. Meeting, Jan 2008). Vertical beam offset y=2 mm Beam emittance 0.4 mm mrad 1) Good agreement between analytical model/tracking and phenomenology; 2) Strong instability driven by few mm off-axis beam; 3) Tuning dependence study seems suggest that a vertical tune near half integer can reduce the effects on beam dynamics; 4) Particular bunch patterns can also reduce the effects on beam dynamics; 5) The reduction of the vertical β-function at the deflector can also help in the control of the instability; 6) Localized vertical bumps at the deflectors to minimize the vertical residual orbit can reduce the effects of the trapped modes; 7) The reduction of the Q-factors of the modes can reduce the driven force of such vertical modes;

30 INJECTION WITH RF DEFLECTORS: new damped RFD The most efficient way to figth the instability is to absorb the vertical deflecting modes excited by the beam.. New RF deflectors are now in costruction. In the deflectors the rods of each cell have been moved toward the center in order to increase the frequency shift. Moreover each rod has been modified in order to be, in the same time, an absorbing antenna.

31 CONCLUSIONS FAST STRIPLINE INJECTION KICKERS advantages of tapered striplines with respect to conventional design DAΦNE new injection kickers collider successfully installed in the ILC kickers studies: effects of the non-uniformity of deflecting field and advantages of tapered stripline on beam impedance INJECTION WITH RF DEFLECTORS: CTF3 case SW RF deflector for the Delay Loop: design including a 90 deg hybrid junction to avoid circulators TW RFDs for the Combiner Ring: good operation at low charge but vertical beam instability at high currents induced by the vertical modes. Changed of vertical tune will give possibilities to mitigate the instability and new damped RF deflectors are now in conrruction

FAST KICKERS LNF-INFN

FAST KICKERS LNF-INFN ILC Damping Rings R&D Workshop - ILCDR06 September 26-28, 2006 at Cornell University FAST KICKERS R&D @ LNF-INFN Fabio Marcellini for the LNF fast kickers study group* * D. Alesini, F. Marcellini P. Raimondi,

More information

MEASURES TO REDUCE THE IMPEDANCE OF PARASITIC RESONANT MODES IN THE DAΦNE VACUUM CHAMBER

MEASURES TO REDUCE THE IMPEDANCE OF PARASITIC RESONANT MODES IN THE DAΦNE VACUUM CHAMBER Frascati Physics Series Vol. X (1998), pp. 371-378 14 th Advanced ICFA Beam Dynamics Workshop, Frascati, Oct. 20-25, 1997 MEASURES TO REDUCE THE IMPEDANCE OF PARASITIC RESONANT MODES IN THE DAΦNE VACUUM

More information

RF Design of Normal Conducting Deflecting Cavity

RF Design of Normal Conducting Deflecting Cavity RF Design of Normal Conducting Deflecting Cavity Valery Dolgashev (SLAC), Geoff Waldschmidt, Ali Nassiri (Argonne National Laboratory, Advanced Photon Source) 48th ICFA Advanced Beam Dynamics Workshop

More information

REVIEW OF FAST BEAM CHOPPING F. Caspers CERN AB-RF-FB

REVIEW OF FAST BEAM CHOPPING F. Caspers CERN AB-RF-FB F. Caspers CERN AB-RF-FB Introduction Review of several fast chopping systems ESS-RAL LANL-SNS JAERI CERN-SPL Discussion Conclusion 1 Introduction Beam choppers are typically used for β = v/c values between

More information

A WAVEGUIDE OVERLOADED CAVITY AS LONGITUDINAL KICKER FOR THE DAΦNE BUNCH-BY-BUNCH FEEDBACK SYSTEM

A WAVEGUIDE OVERLOADED CAVITY AS LONGITUDINAL KICKER FOR THE DAΦNE BUNCH-BY-BUNCH FEEDBACK SYSTEM International Workshop on Collective Effects and Impedance for B-Factories, Tsukuba, Japan, June 1995 A WAVEGUIDE OVERLOADED CAVITY AS LONGITUDINAL KICKER FOR THE DAΦNE BUNCH-BY-BUNCH FEEDBACK SYSTEM A.

More information

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH INVESTIGATION OF A RIDGE-LOADED WAVEGUIDE STRUCTURE FOR CLIC X-BAND CRAB CAVITY

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH INVESTIGATION OF A RIDGE-LOADED WAVEGUIDE STRUCTURE FOR CLIC X-BAND CRAB CAVITY CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CLIC Note 1003 INVESTIGATION OF A RIDGE-LOADED WAVEGUIDE STRUCTURE FOR CLIC X-BAND CRAB CAVITY V.F. Khan, R. Calaga and A. Grudiev CERN, Geneva, Switzerland.

More information

The BESSY Higher Order Mode Damped Cavity - Further Improvements -

The BESSY Higher Order Mode Damped Cavity - Further Improvements - The BESSY Higher Order Mode Damped Cavity - Further Improvements - Ernst Weihreter Reminder of Technical Problems Solutions Conclusions BESSY HOM Damped Cavity Project collaboration: (EC funded) - BESSY

More information

Status of the HOM Damped Cavity Project

Status of the HOM Damped Cavity Project Status of the HOM Damped Cavity Project E. Weihreter / BESSY for the HOM Damped Cavity Collaboration BESSY, Daresbury Lab, DELTA, MaxLab, NTHU Project funded by the EC under contract HPRI-CT-1999-50011

More information

Attosecond Diagnostics of Muti GeV Electron Beams Using W Band Deflectors

Attosecond Diagnostics of Muti GeV Electron Beams Using W Band Deflectors Attosecond Diagnostics of Muti GeV Electron Beams Using W Band Deflectors V.A. Dolgashev, P. Emma, M. Dal Forno, A. Novokhatski, S. Weathersby SLAC National Accelerator Laboratory FEIS 2: Femtosecond Electron

More information

Illinois. I Physics. Investigation of TESLA Damping Ring Kickers using the A0 Photoinjector Beam

Illinois. I Physics. Investigation of TESLA Damping Ring Kickers using the A0 Photoinjector Beam George Gollin, Investigation of TESLA Damping Ring Kickers using the A0 hotoinjector Beam 1 I hysics Investigation of TESLA Damping Ring Kickers using the A0 hotoinjector Beam George Gollin Department

More information

Fast Kickers at DESY

Fast Kickers at DESY Fast Kickers at DESY Injection / ejection in a TESLA like DR Generation of a pulse with a pulse length of 12ns Measurement at TTF 2 Full power test Measurements at ATF XFEL activity Talk given by Hans

More information

Design and RF Measurements of an X-band Accelerating Structure for the Sparc Project

Design and RF Measurements of an X-band Accelerating Structure for the Sparc Project Design and RF Measurements of an X-band Accelerating Structure for the Sparc Project INFN-LNF ; UNIVERSITY OF ROME LA SAPIENZA ; INFN - MI Presented by BRUNO SPATARO Erice, Sicily, October 9-14; 2005 SALAF

More information

Progress in High Gradient Accelerator Research at MIT

Progress in High Gradient Accelerator Research at MIT Progress in High Gradient Accelerator Research at MIT Presented by Richard Temkin MIT Physics and Plasma Science and Fusion Center May 23, 2007 MIT Accelerator Research Collaborators MIT Plasma Science

More information

Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA

Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA d e Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA Accelerator & Fusion Research Division I # RECEIVED Presented at the International Workshop on Collective Effects and Impedance for B-Factories,

More information

Crab Cavity Systems for Future Colliders. Silvia Verdú-Andrés, Ilan Ben-Zvi, Qiong Wu (Brookhaven National Lab), Rama Calaga (CERN)

Crab Cavity Systems for Future Colliders. Silvia Verdú-Andrés, Ilan Ben-Zvi, Qiong Wu (Brookhaven National Lab), Rama Calaga (CERN) International Particle Accelerator Conference Copenhagen (Denmark) 14-19 May, 2017 Crab Cavity Systems for Future Colliders Silvia Verdú-Andrés, Ilan Ben-Zvi, Qiong Wu (Brookhaven National Lab), Rama Calaga

More information

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH DESIGN OF PHASE FEED FORWARD SYSTEM IN CTF3 AND PERFORMANCE OF FAST BEAM PHASE MONITORS

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH DESIGN OF PHASE FEED FORWARD SYSTEM IN CTF3 AND PERFORMANCE OF FAST BEAM PHASE MONITORS CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CLIC Note 1007 DESIGN OF PHASE FEED FORWARD SYSTEM IN CTF3 AND PERFORMANCE OF FAST BEAM PHASE MONITORS P.K. Skowro nski, A. Andersson (CERN, Geneva), A.

More information

CLIC Compact Linear Collider

CLIC Compact Linear Collider f1 CLIC Compact LInear Collider Frank Zimmermann for the CLIC Study Team many CLIC contributors! special thanks to Hans Braun, Jean-Pierre Delahaye, & Frank Tecker! Frank Zimmermann UPHUK3 2007, Bodrumr,

More information

Thermionic Bunched Electron Sources for High-Energy Electron Cooling

Thermionic Bunched Electron Sources for High-Energy Electron Cooling Thermionic Bunched Electron Sources for High-Energy Electron Cooling Vadim Jabotinski 1, Yaroslav Derbenev 2, and Philippe Piot 3 1 Institute for Physics and Technology (Alexandria, VA) 2 Thomas Jefferson

More information

The impedance budget of the CERN Proton Synchrotron (PS)

The impedance budget of the CERN Proton Synchrotron (PS) The impedance budget of the CERN Proton Synchrotron (PS) Serena Persichelli CERN Hadron Synchrotron Collective effects University of Rome La Sapienza serena.persichelli@cern.ch Why do we study the beam

More information

Normal-conducting high-gradient rf systems

Normal-conducting high-gradient rf systems Normal-conducting high-gradient rf systems Introduction Motivation for high gradient Order of 100 GeV/km Operational and state-of-the-art SwissFEL C-band linac: Just under 30 MV/m CLIC prototypes: Over

More information

The HOM measurement of a TESLA cavity (Z84) for HOM-BPM and cavity alignment

The HOM measurement of a TESLA cavity (Z84) for HOM-BPM and cavity alignment The HOM measurement of a TESLA cavity (Z84) for HOM-BPM and cavity alignment Ken.Watanabe:GUAS/AS (KEK) : presenter Hitoshi.Hayano, Shuichi.Noguchi, Eiji.Kako, Toshio.Shishido (KEK) Joint DESY and University

More information

LHC TRANSVERSE FEEDBACK SYSTEM: FIRST RESULTS OF COMMISSIONING. V.M. Zhabitsky XXI Russian Particle Accelerator Conference

LHC TRANSVERSE FEEDBACK SYSTEM: FIRST RESULTS OF COMMISSIONING. V.M. Zhabitsky XXI Russian Particle Accelerator Conference LHC TRANSVERSE FEEDBACK SYSTEM: FIRST RESULTS OF COMMISSIONING V.M. Zhabitsky XXI Russian Particle Accelerator Conference 28.09-03.10.2008, Zvenigorod LHC Transverse Feedback System: First Results of Commissioning

More information

Development of a Fast High-Power Pulser and ILC DR Injection/Extraction Kicker. Anatoly Krasnykh (SLAC)

Development of a Fast High-Power Pulser and ILC DR Injection/Extraction Kicker. Anatoly Krasnykh (SLAC) Development of a Fast High-Power Pulser and ILC DR Injection/Extraction Kicker Anatoly Krasnykh (SLAC) ILC Damping Ring R&D Workshop Cornell University September 26-28, 2006 1 Contents 1. Introduction:

More information

Dark Current Kicker Studies at FLASH

Dark Current Kicker Studies at FLASH Dark Current Kicker Studies at FLASH F. Obier, J. Wortmann, S. Schreiber, W. Decking, K. Flöttmann FLASH Seminar, DESY, 02 Feb 2010 History of the dark current kicker 2005 Vertical kicker was installed

More information

Illinois. I Physics. Fourier engineering: progress on alternative TESLA kickers

Illinois. I Physics. Fourier engineering: progress on alternative TESLA kickers George Gollin, Fourier engineering Victoria, LC 2004 1 I hysics Fourier engineering: progress on alternative TESLA kickers George Gollin Department of hysics University of at Urbana-Champaign USA George

More information

Influences of a Beam-Pipe Discontinuity on the Signals of a Nearby Beam Position Monitor (BPM)

Influences of a Beam-Pipe Discontinuity on the Signals of a Nearby Beam Position Monitor (BPM) Internal Report DESY M 1-2 May 21 Influences of a Beam-Pipe Discontinuity on the Signals of a Nearby Beam Position Monitor (BPM) A.K. Bandyopadhyay, A. Joestingmeier, A.S. Omar, R. Wanzenberg Deutsches

More information

Bunch-by-Bunch Broadband Feedback for the ESRF

Bunch-by-Bunch Broadband Feedback for the ESRF Bunch-by-Bunch Broadband Feedback for the ESRF ESLS RF meeting / Aarhus 21-09-2005 J. Jacob, E. Plouviez, J.-M. Koch, G. Naylor, V. Serrière Goal: Active damping of longitudinal and transverse multibunch

More information

Main Injector Cavity Simulation and Optimization for Project X

Main Injector Cavity Simulation and Optimization for Project X Main Injector Cavity Simulation and Optimization for Project X Liling Xiao Advanced Computations Group Beam Physics Department Accelerator Research Division Status Meeting, April 7, 2011 Outline Background

More information

EuroTeV High Bandwidth Wall Current Monitor. Alessandro D Elia AB-BI-PI 1-1 -

EuroTeV High Bandwidth Wall Current Monitor. Alessandro D Elia AB-BI-PI 1-1 - EU contract number RII3-CT-2003-506395 CARE/ELAN Document-2007-012 EuroTeV High Bandwidth Wall Current Monitor Alessandro D Elia AB-BI-PI 1-1 - EU contract number RII3-CT-2003-506395 CARE/ELAN Document-2007-012

More information

A Design Study of a 100-MHz Thermionic RF Gun for the ANL XFEL-O Injector

A Design Study of a 100-MHz Thermionic RF Gun for the ANL XFEL-O Injector A Design Study of a 100-MHz Thermionic RF Gun for the ANL XFEL-O Injector A. Nassiri Advanced Photon Source For ANL XFEL-O Injector Study Group M. Borland (ASD), B. Brajuskovic (AES), D. Capatina (AES),

More information

Beam BreakUp at Daresbury. Emma Wooldridge ASTeC

Beam BreakUp at Daresbury. Emma Wooldridge ASTeC Beam BreakUp at Daresbury Emma Wooldridge ASTeC Outline The causes of Beam Breakup (BBU) Types of BBU Why investigate BBU? Possible solutions Causes of BBU There are four main causes. Interaction with

More information

Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser. P. Castro for the TTF-FEL team

Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser. P. Castro for the TTF-FEL team Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser P. Castro for the TTF-FEL team 100 nm 1 Å FEL radiation TESLA Test Facility at DESY

More information

Electromagnetic characterization of materials for the CLIC Damping Rings and high frequency issues

Electromagnetic characterization of materials for the CLIC Damping Rings and high frequency issues Electromagnetic characterization of materials for the CLIC Damping Rings and high frequency issues Eirini Koukovini-Platia CERN, EPFL Acknowlegdements G. De Michele, C. Zannini, G. Rumolo (CERN) 1 Outline

More information

Circumference 187 m (bending radius = 8.66 m)

Circumference 187 m (bending radius = 8.66 m) 4. Specifications of the Accelerators Table 1. General parameters of the PF storage ring. Energy 2.5 GeV (max 3.0 GeV) Initial stored current multi-bunch 450 ma (max 500 ma at 2.5GeV) single bunch 70 ma

More information

Superconducting RF System. Heung-Sik Kang

Superconducting RF System. Heung-Sik Kang Design of PLS-II Superconducting RF System Heung-Sik Kang On behalf of PLS-II RF group Pohang Accelerator Laboratory Content 1. Introduction 2. Physics design 3. Cryomodules 4. Cryogenic system 5. High

More information

Trajectory Measurements in the DAΦNE Transfer Line using log Amplifier

Trajectory Measurements in the DAΦNE Transfer Line using log Amplifier K K DAΦNE TECHNICAL NOTE INFN - LNF, Accelerator Division Frascati, April 6, 2004 Note: CD-14 Trajectory Measurements in the DAΦNE Transfer Line using log Amplifier A. Stella, O. Coiro Abstract The diagnostic

More information

Tutorial on Design of RF system for Indus Accelerator. Maherdra Lad Head, Radio Frequency Systems Division RRCAT, Indore

Tutorial on Design of RF system for Indus Accelerator. Maherdra Lad Head, Radio Frequency Systems Division RRCAT, Indore Tutorial on Design of RF system for Indus Accelerator Maherdra Lad Head, Radio Frequency Systems Division RRCAT, Indore Basic principle of RF Acceleration RF Power Amplifier The RF source supplies power

More information

REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES. S. Belomestnykh

REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES. S. Belomestnykh REVIEW OF HIGH POWER CW COUPLERS FOR SC CAVITIES S. Belomestnykh HPC workshop JLAB, 30 October 2002 Introduction Many aspects of the high-power coupler design, fabrication, preparation, conditioning, integration

More information

Specification of the kicker Measurement of the magnetic field inside the kicker Optimisation of the kicker impedance to 50 Status and picture of the

Specification of the kicker Measurement of the magnetic field inside the kicker Optimisation of the kicker impedance to 50 Status and picture of the Specification of the kicker Measurement of the magnetic field inside the kicker Optimisation of the kicker impedance to 50 Status and picture of the kicker The Specification of the Feedbackkicker technical

More information

Betatron tune Measurement

Betatron tune Measurement Betatron tune Measurement Tom UESUGI, Y. Kuriyama, Y. Ishi FFA school, Sep. 8-9, Osaka, 218 CONTENTS Betatron oscillation and tune How to measure tunes KURNS FFAG, Diagnostics BETATRON OSCILLATION AND

More information

Current Industrial SRF Capabilities and Future Plans

Current Industrial SRF Capabilities and Future Plans and Future Plans Capabilities in view of Design Engineering Manufacturing Preparation Testing Assembly Taking into operation Future Plans Participate in and contribute to development issues, provide prototypes

More information

DQW HOM Coupler for LHC

DQW HOM Coupler for LHC DQW HOM Coupler for LHC J. A. Mitchell 1, 2 1 Engineering Department Lancaster University 2 BE-RF-BR Section CERN 03/07/2017 J. A. Mitchell (PhD Student) HL LHC UK Jul 17 03/07/2017 1 / 27 Outline 1 LHC

More information

RF coupling impedance measurements for particle accelerator devices

RF coupling impedance measurements for particle accelerator devices 20th IMEKO TC4 International Symposium and 18th International Workshop on ADC Modelling and Testing Research on Electric and Electronic Measurement for the Economic Upturn Benevento, Italy, September 15-17,

More information

Physics Requirements Document Document Title: SCRF 1.3 GHz Cryomodule Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7

Physics Requirements Document Document Title: SCRF 1.3 GHz Cryomodule Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7 Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7 Document Approval: Originator: Tor Raubenheimer, Physics Support Lead Date Approved Approver: Marc Ross, Cryogenic System Manager Approver: Jose Chan,

More information

LC Technology Hans Weise / DESY

LC Technology Hans Weise / DESY LC Technology Hans Weise / DESY All you need is... Luminosity! L σ 2 N e x σ y σ y σ x L n b f rep Re-writing reflects the LC choices... L P E b c. m. N e σ σ x y... beam power... bunch population... Ac-to-beam

More information

Detection of Beam Induced Dipole-Mode Signals in the SLC S-Band Structures* Abstract

Detection of Beam Induced Dipole-Mode Signals in the SLC S-Band Structures* Abstract -. SLAC-PUB-79 June 1997 Detection of Beam nduced Dipole-Mode Signals in the SLC S-Band Structures* M. Seidel, C. Adolphsen, R. Assmann, D.H. Whittum Stanford Linear Accelerator Center, Stanford University,

More information

Chapter 5. Array of Star Spirals

Chapter 5. Array of Star Spirals Chapter 5. Array of Star Spirals The star spiral was introduced in the previous chapter and it compared well with the circular Archimedean spiral. This chapter will examine the star spiral in an array

More information

BEPCII-THE SECOND PHASE CONSTRUCTION OF BEIJING ELECTRON POSITRON COLLIDER

BEPCII-THE SECOND PHASE CONSTRUCTION OF BEIJING ELECTRON POSITRON COLLIDER BEPCII-THE SECOND PHASE CONSTRUCTION OF BEIJING ELECTRON POSITRON COLLIDER C. Zhang, G.X. Pei for BEPCII Team IHEP, CAS, P.O. Box 918, Beijing 100039, P.R. China Abstract BEPCII, the second phase construction

More information

HOM/LOM Coupler Study for the ILC Crab Cavity*

HOM/LOM Coupler Study for the ILC Crab Cavity* SLAC-PUB-1249 April 27 HOM/LOM Coupler Study for the ILC Crab Cavity* L. Xiao, Z. Li, K. Ko, SLAC, Menlo Park, CA9425, U.S.A Abstract The FNAL 9-cell 3.9GHz deflecting mode cavity designed for the CKM

More information

Acceleration of High-Intensity Protons in the J-PARC Synchrotrons. KEK/J-PARC M. Yoshii

Acceleration of High-Intensity Protons in the J-PARC Synchrotrons. KEK/J-PARC M. Yoshii Acceleration of High-Intensity Protons in the J-PARC Synchrotrons KEK/J-PARC M. Yoshii Introduction 1. J-PARC consists of 400 MeV Linac, 3 GeV Rapid Cycling Synchrotron (RCS) and 50 GeV Main synchrotron

More information

RF Cavity Design. Erk Jensen CERN BE/RF. CERN Accelerator School Accelerator Physics (Intermediate level) Darmstadt 2009

RF Cavity Design. Erk Jensen CERN BE/RF. CERN Accelerator School Accelerator Physics (Intermediate level) Darmstadt 2009 RF Cavity Design Erk Jensen CERN BE/RF CERN Accelerator School Accelerator Physics (Intermediate level) Darmstadt 009 CAS Darmstadt '09 RF Cavity Design 1 Overview DC versus RF Basic equations: Lorentz

More information

RF Physics: Status and Plans

RF Physics: Status and Plans RF Physics: Status and Plans Program Advisory Committee meeting February 6-7, 2002 S. J. Wukitch Outline: 1. Overview of RF Physics issues 2. Review of antenna performance and near term modifications.

More information

The HPRF system for a new 6 GeV synchrotron light source in Beijing

The HPRF system for a new 6 GeV synchrotron light source in Beijing 中国科学院高能物理研究所 INSTITUTE OF HIGH ENERGY PHYSICS CHINESE ACADEMY OF SCIENCES The HPRF system for a new 6 GeV synchrotron light source in Beijing (RF group, IHEP) The HEPS HPRF team Power coupler & power source

More information

Using Higher Order Modes in the Superconducting TESLA Cavities for Diagnostics at DESY

Using Higher Order Modes in the Superconducting TESLA Cavities for Diagnostics at DESY Using Higher Order Modes in the Superconducting TESLA Cavities for Diagnostics at FLASH @ DESY N. Baboi, DESY, Hamburg for the HOM team : S. Molloy 1, N. Baboi 2, N. Eddy 3, J. Frisch 1, L. Hendrickson

More information

3.9 GHz Deflecting Mode Cavity

3.9 GHz Deflecting Mode Cavity 3.9 GHz Deflecting Mode Cavity Timothy W. Koeth July 12, 2005 History of 3.9 GHz DMC Cavity Simulations The Other Modes concern and modeling R/Q Wake Field Simulations Design: OM couplers Testing: Vertical

More information

Status of Proton Beam Commissioning at MedAustron Ion Beam Therapy Center

Status of Proton Beam Commissioning at MedAustron Ion Beam Therapy Center Status of Proton Beam Commissioning at MedAustron Ion Beam Therapy Center A. Garonna, A. Wastl, C. Kurfuerst, T. Kulenkampff, C. Schmitzer, L. Penescu, M. Pivi, M. Kronberger, F. Osmic, P. Urschuetz On

More information

High acceleration gradient. Critical applications: Linear colliders e.g. ILC X-ray FELs e.g. DESY XFEL

High acceleration gradient. Critical applications: Linear colliders e.g. ILC X-ray FELs e.g. DESY XFEL High acceleration gradient Critical applications: Linear colliders e.g. ILC X-ray FELs e.g. DESY XFEL Critical points The physical limitation of a SC resonator is given by the requirement that the RF magnetic

More information

Accelerator Complex U70 of IHEP-Protvino: Status and Upgrade Plans

Accelerator Complex U70 of IHEP-Protvino: Status and Upgrade Plans INSTITUTE FOR HIGH ENERGY PHYSICS () Protvino, Moscow Region, 142281, Russia Accelerator Complex U70 of -Protvino: Status and Upgrade Plans (report 4.1-1) Sergey Ivanov, on behalf of the U70 staff September

More information

The TESLA Linear Collider. Winfried Decking (DESY) for the TESLA Collaboration

The TESLA Linear Collider. Winfried Decking (DESY) for the TESLA Collaboration The TESLA Linear Collider Winfried Decking (DESY) for the TESLA Collaboration Outline Project Overview Highlights 2000/2001 Publication of the TDR Cavity R&D TTF Operation A0 and PITZ TESLA Beam Dynamics

More information

Detailed Design Report

Detailed Design Report Detailed Design Report Chapter 2 MAX IV 3 GeV Storage Ring 2.6. The Radio Frequency System MAX IV Facility CHAPTER 2.6. THE RADIO FREQUENCY SYSTEM 1(15) 2.6. The Radio Frequency System 2.6. The Radio Frequency

More information

arxiv: v1 [physics.ins-det] 7 Dec 2016

arxiv: v1 [physics.ins-det] 7 Dec 2016 CERN-TOTEM-NOTE-2015-002 August 2015 RF Measurements of the New TOTEM Roman Pot O. Berrig, N. Biancacci, F. Caspers, A. Danisi, J. Eberhardt, J. Kuczerowski, N. Minafra, B. Salvant, C. Vollinger arxiv:1612.02200v1

More information

O. Napoly LC02, SLAC, Feb. 5, Higher Order Modes Measurements

O. Napoly LC02, SLAC, Feb. 5, Higher Order Modes Measurements O. Napoly LC02, SLAC, Feb. 5, 2002 Higher Order Modes Measurements with Beam at the TTF Linac TTF Measurements A collective effort including most of Saclay, Orsay and DESY TTF physicists : S. Fartoukh,

More information

MULTIBUNCH INSTABILITIES AND CURES

MULTIBUNCH INSTABILITIES AND CURES Presented at 5th European Particle Accelerator Conference (EPAC 96), Sitges, Spain, 10-14 Jun 1996. MULTIBUNCH INSTABILITIES AND CURES SLAC-PUB-9866 M. Serio, R. Boni, A. Drago, A. Gallo, A. Ghigo, F.

More information

OVERVIEW OF RECENT TRENDS AND DEVELOPMENTS FOR BPM SYSTEMS

OVERVIEW OF RECENT TRENDS AND DEVELOPMENTS FOR BPM SYSTEMS OVERVIEW OF RECENT TRENDS AND DEVELOPMENTS FOR BPM SYSTEMS Manfred Wendt Fermilab Assembled with great help of the colleagues from the beam instrumentation community! Contents Introduction BPM Pickup Broadband

More information

COUPLER DESIGN CONSIDERATIONS FOR THE ILC CRAB CAVITY

COUPLER DESIGN CONSIDERATIONS FOR THE ILC CRAB CAVITY COUPLER DESIGN CONSIDERATIONS FOR THE ILC CRAB CAVITY C. Beard 1), G. Burt 2), A. C. Dexter 2), P. Goudket 1), P. A. McIntosh 1), E. Wooldridge 1) 1) ASTeC, Daresbury laboratory, Warrington, Cheshire,

More information

STABILITY CONSIDERATIONS

STABILITY CONSIDERATIONS Abstract The simple theory describing the stability of an RF system with beam will be recalled together with its application to the LEP case. The so-called nd Robinson stability limit can be pushed by

More information

Project X Cavity RF and mechanical design. T. Khabiboulline, FNAL/TD/SRF

Project X Cavity RF and mechanical design. T. Khabiboulline, FNAL/TD/SRF Project X Cavity RF and mechanical design T. Khabiboulline, FNAL/TD/SRF TTC meeting on CW-SRF, 2013 Project X Cavity RF and mechanical design T 1 High ß Low ß 0.5 HWR SSR1 SSR2 0 1 10 100 1 10 3 1 10 4

More information

Resonant Excitation of High Order Modes in the 3.9 GHz Cavity of LCLS-II Linac

Resonant Excitation of High Order Modes in the 3.9 GHz Cavity of LCLS-II Linac Resonant Excitation of High Order Modes in the 3.9 GHz Cavity of LCLS-II Linac LCLS-II TN-16-05 9/12/2016 A. Lunin, T. Khabiboulline, N. Solyak, A. Sukhanov, V. Yakovlev April 10, 2017 LCLSII-TN-16-06

More information

Couplers for Project X. S. Kazakov, T. Khabiboulline

Couplers for Project X. S. Kazakov, T. Khabiboulline Couplers for Project X S. Kazakov, T. Khabiboulline TTC meeting on CW-SRF, 2013 Requirements to Project X couplers Cavity SSR1 (325MHz): Cavity SSR2 (325MHz): Max. energy gain - 2.1 MV, Max. power, 1 ma

More information

Short-Pulse X-ray at the Advanced Photon Source Overview

Short-Pulse X-ray at the Advanced Photon Source Overview Short-Pulse X-ray at the Advanced Photon Source Overview Vadim Sajaev and Louis Emery Accelerator Operations and Physics Group Accelerator Systems Division Mini-workshop on Methods of Data Analysis in

More information

International Technology Recommendation Panel. X-Band Linear Collider Path to the Future. RF System Overview. Chris Adolphsen

International Technology Recommendation Panel. X-Band Linear Collider Path to the Future. RF System Overview. Chris Adolphsen International Technology Recommendation Panel X-Band Linear Collider Path to the Future RF System Overview Chris Adolphsen Stanford Linear Accelerator Center April 26-27, 2004 Delivering the Beam Energy

More information

SIGNAL ELECTRIC FIELD MAGNETIC FIELD # 1 (#2) #3 (# 4) WAVEGUIDE VACUUM CHAMBER BEAM PIPE VACUUM CHAMBER

SIGNAL ELECTRIC FIELD MAGNETIC FIELD # 1 (#2) #3 (# 4) WAVEGUIDE VACUUM CHAMBER BEAM PIPE VACUUM CHAMBER New Microwave Beam Position Monitors for the TESLA Test Facility FEL T. Kamps and R. Lorenz DESY Zeuthen, Platanenallee 6, D-15738 Zeuthen Abstract. Beam-based alignment is essential for the operation

More information

Calibrating the Cavity Voltage. Presentation of an idea

Calibrating the Cavity Voltage. Presentation of an idea Calibrating the Cavity Voltage. Presentation of an idea Stefan Wilke, DESY MHF-e 21st ESLS rf meeting Kraków, 15th/16th nov 2017 Accelerators at DESY. linear and circular Page 2 Accelerators at DESY. linear

More information

Vision for the Future: BESSY VSR A Variable Bunch Length Storage Ring

Vision for the Future: BESSY VSR A Variable Bunch Length Storage Ring Vision for the Future: BESSY VSR A Variable Bunch Length Storage Ring Gode Wüstefeld, HZB ESLS, Aarhus, Nov. 23-24, 211 presented by P. Kuske Outline BESSY VSR - Motivation - Limits of short bunches: measurements

More information

New apparatus for precise synchronous phase shift measurements in storage rings 1

New apparatus for precise synchronous phase shift measurements in storage rings 1 New apparatus for precise synchronous phase shift measurements in storage rings 1 Boris Podobedov and Robert Siemann Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 Measuring

More information

Design of a Tapered Stripline Fast Faraday Cup for Measurements on Heavy Ion Beams: Problems and Solutions

Design of a Tapered Stripline Fast Faraday Cup for Measurements on Heavy Ion Beams: Problems and Solutions Design of a Tapered Stripline Fast Faraday Cup for Measurements on Heavy Ion Beams: Problems and Solutions F. Marcellini* and M. Poggi** * INFN, Laboratori Nazionali di Frascati, Frascati (Italy) and **INFN,

More information

HIGH POWER COUPLER FOR THE TESLA TEST FACILITY

HIGH POWER COUPLER FOR THE TESLA TEST FACILITY Abstract HIGH POWER COUPLER FOR THE TESLA TEST FACILITY W.-D. Moeller * for the TESLA Collaboration, Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg, Germany The TeV Energy Superconducting Linear

More information

Fabrication Techniques for the X-band Accelerator Structures. Juwen Wang WORKSHOP ON X-BAND RF TECHNOLOGY FOR FELs March 5, 2010

Fabrication Techniques for the X-band Accelerator Structures. Juwen Wang WORKSHOP ON X-BAND RF TECHNOLOGY FOR FELs March 5, 2010 Fabrication Techniques for the X-band Accelerator Structures Juwen Wang WORKSHOP ON X-BAND RF TECHNOLOGY FOR FELs March 5, 2010 Outline 1. Introduction Brief history Achievements 2. Basics of X-Band Accelerator

More information

PINGER MAGNET SYSTEM FOR THE ALBA SYNCHROTRON LIGHT SOURCE

PINGER MAGNET SYSTEM FOR THE ALBA SYNCHROTRON LIGHT SOURCE ACDIV-2015-03 May, 2015 PINGER MAGNET SYSTEM FOR THE ALBA SYNCHROTRON LIGHT SOURCE M.Pont, N.Ayala, G.Benedetti, M.Carla, Z.Marti, R.Nuñez ALBA Synchrotron, Barcelona, Spain Abstract A pinger magnet system

More information

IR HOM Issues. Collection of HOM effects. Sasha Novokhatski SLAC, Stanford University. Parallel Session: RF, HOM, Power June 15, 2006

IR HOM Issues. Collection of HOM effects. Sasha Novokhatski SLAC, Stanford University. Parallel Session: RF, HOM, Power June 15, 2006 IR HOM Issues Collection of HOM effects Sasha Novokhatski SLAC, Stanford University Parallel Session: RF, HOM, Power June 15, 2006 Luminosity and wake fields We need high current beams of short bunches

More information

Multi-bunch feedback systems

Multi-bunch feedback systems Multi-bunch feedback systems M. Lonza Elettra Synchrotron Light Laboratory, Sincrotrone Trieste S.C.p.A., Trieste, Italy Abstract Coupled-bunch instabilities excited by the interaction of the particle

More information

Maurizio Vretenar Linac4 Project Leader EuCARD-2 Coordinator

Maurizio Vretenar Linac4 Project Leader EuCARD-2 Coordinator Maurizio Vretenar Linac4 Project Leader EuCARD-2 Coordinator Every accelerator needs a linac as injector to pass the region where the velocity of the particles increases with energy. At high energies (relativity)

More information

Linear Particle Accelerator Control Performance

Linear Particle Accelerator Control Performance Linear Particle Accelerator Control Performance 2007 ExpertTune-TiPS Conference April 17-19, 2007 Austin, TX Johnny Tang Overview of the Spallation Neutron Source Accelerator J. Tang 2 Overview of the

More information

J. Jacob: Status of the ESRF RF upgrade

J. Jacob: Status of the ESRF RF upgrade 17th ESLS RF Meeting 2013 HZB BESSY 18th 19th September Status of the ESRF RF upgrade J. Jacob J.-M. Mercier V. Serrière M. Langlois G. Gautier [CINEL] 1 RF upgrade phase 1 until 2015 - reminder Replacement

More information

Crab Cavities for FCC

Crab Cavities for FCC Crab Cavities for FCC R. Calaga, A. Grudiev, CERN FCC Week 2017, May 30, 2017 Acknowledgements: O. Bruning, E. Cruz-Alaniz, K. Ohmi, R. Martin, R. Tomas, F. Zimmermann Livingston Plot 100 TeV FCC-hh: 0.5-3x1035

More information

RF System Models and Longitudinal Beam Dynamics

RF System Models and Longitudinal Beam Dynamics RF System Models and Longitudinal Beam Dynamics T. Mastoridis 1, P. Baudrenghien 1, J. Molendijk 1, C. Rivetta 2, J.D. Fox 2 1 BE-RF Group, CERN 2 AARD-Feedback and Dynamics Group, SLAC T. Mastoridis LLRF

More information

Illinois. Speculations About a Fourier Series Kicker for the TESLA Damping Rings. Physics

Illinois. Speculations About a Fourier Series Kicker for the TESLA Damping Rings. Physics Speculations About a Fourier Series Kicker for the TESLA Damping Rings George Gollin Department of University of llinois at Urbana-Champaign LCRD 2.22 1 llinois ntroduction TESLA damping ring fast kicker

More information

DESIGN AND BEAM DYNAMICS STUDIES OF A MULTI-ION LINAC INJECTOR FOR THE JLEIC ION COMPLEX

DESIGN AND BEAM DYNAMICS STUDIES OF A MULTI-ION LINAC INJECTOR FOR THE JLEIC ION COMPLEX DESIGN AND BEAM DYNAMICS STUDIES OF A MULTI-ION LINAC INJECTOR FOR THE JLEIC ION COMPLEX Speaker: P.N. Ostroumov Contributors: A. Plastun, B. Mustapha and Z. Conway HB2016, July 7, 2016, Malmö, Sweden

More information

Design of ESS-Bilbao RFQ Linear Accelerator

Design of ESS-Bilbao RFQ Linear Accelerator Design of ESS-Bilbao RFQ Linear Accelerator J.L. Muñoz 1*, D. de Cos 1, I. Madariaga 1 and I. Bustinduy 1 1 ESS-Bilbao *Corresponding author: Ugaldeguren III, Polígono A - 7 B, 48170 Zamudio SPAIN, jlmunoz@essbilbao.org

More information

Room Temperature High Repetition Rate RF Structures for Light Sources

Room Temperature High Repetition Rate RF Structures for Light Sources Room Temperature High Repetition Rate RF Structures for Light Sources Sami G. Tantawi SLAC Claudio Pellegrini, R. Ruth, J. Wang. V. Dolgashev, C. Bane, Zhirong Huang, Jeff Neilson, Z. Li Outline Motivation

More information

Position of the LHC luminous region

Position of the LHC luminous region Position of the LHC luminous region SL/HRF reported by Philippe Baudrenghien Philippe Baudrenghien SL-HRF 1 RF low-level during physics (tentative...) Good lifetime -> One phase loop per beam... - Goal

More information

Third Harmonic Superconducting passive cavities in ELETTRA and SLS

Third Harmonic Superconducting passive cavities in ELETTRA and SLS RF superconductivity application to synchrotron radiation light sources Third Harmonic Superconducting passive cavities in ELETTRA and SLS 2 cryomodules (one per machine) with 2 Nb/Cu cavities at 1.5 GHz

More information

A HIGH EFFICIENCY 17GHz TW CHOPPERTRON

A HIGH EFFICIENCY 17GHz TW CHOPPERTRON 1 SLAC 07 A HIGH EFFICIENCY 17GHz TW CHOPPERTRON J. Haimson and B. Mecklenburg Work performed under the auspices of the U.S. Department of Energy SBIR Grant No.DE-FG02-06ER84468 2 SLAC 07 Figure 1. Centerline

More information

SRF in Storage Rings. Michael Pekeler ACCEL Instruments GmbH Bergisch Gladbach Germany

SRF in Storage Rings. Michael Pekeler ACCEL Instruments GmbH Bergisch Gladbach Germany SRF in Storage Rings Michael Pekeler ACCEL Instruments GmbH 51429 Bergisch Gladbach Germany SRF in Storage Rings Michael Pekeler ACCEL Instruments GmbH 51429 Bergisch Gladbach Germany TESLA type cavity:

More information

Beam Position Monitors: Detector Principle and Signal Estimation. Peter Forck. Gesellschaft für Schwerionenforschung GSI, Darmstadt, Germany

Beam Position Monitors: Detector Principle and Signal Estimation. Peter Forck. Gesellschaft für Schwerionenforschung GSI, Darmstadt, Germany Outline: Beam Position Monitors: Detector Principle and Signal Estimation Peter Forck Gesellschaft für Schwerionenforschung GSI, Darmstadt, Germany General discussion on BPM features and specification

More information

Experiment to Measure Ramped Electron Bunches at the UCLA Neptune Laboratory Using a Transverse Deflecting Cavity 1

Experiment to Measure Ramped Electron Bunches at the UCLA Neptune Laboratory Using a Transverse Deflecting Cavity 1 Experiment to Measure Ramped Electron Bunches at the UCLA Neptune Laboratory Using a Transverse Deflecting Cavity 1 R. J. England, D. Alesini, B. O Shea, J. B. Rosenzweig and G. Travish UCLA Dept. Physics

More information

KEK Digital Accelerator and Its Beam Commissioning

KEK Digital Accelerator and Its Beam Commissioning KEK Digital Accelerator and Its Beam Commissioning Ken Takayama High Energy Accelerator Research Organization (KEK) Tokyo Institute of Technology on behalf of KEK Digital Accelerator Project Team September

More information

CLIC Power Extraction and Transfer Structure. (2004)

CLIC Power Extraction and Transfer Structure. (2004) CLIC Power Extraction and Transfer Structure. (24) CLIC linac subunit layout: CLIC accelerating Structure (HDS) Main beam 3 GHz, 2 MW per structure Drive beam (64 A) CLIC Power Extraction and Transfer

More information

Slide Title. Bulleted Text

Slide Title. Bulleted Text Slide Title 1 Slide Outline Title Brief view of the C-AD Complex Review of the RHIC LLRF Upgrade Platform Generic Implementation of a Feedback Loop RHIC Bunch by Bunch Longitudinal Damper Cavity Controller

More information

with a Suspended Stripline Feeding

with a Suspended Stripline Feeding Wide Band and High Gain Planar Array with a Suspended Stripline Feeding Network N. Daviduvitz, U. Zohar and R. Shavit Dept. of Electrical and Computer Engineering Ben Gurion University i of the Negev,

More information