Thermionic Bunched Electron Sources for High-Energy Electron Cooling

Size: px
Start display at page:

Download "Thermionic Bunched Electron Sources for High-Energy Electron Cooling"

Transcription

1 Thermionic Bunched Electron Sources for High-Energy Electron Cooling Vadim Jabotinski 1, Yaroslav Derbenev 2, and Philippe Piot 3 1 Institute for Physics and Technology (Alexandria, VA) 2 Thomas Jefferson National Accelerator Facility (Newport News, VA) 3 Northern Illinois University (DeKalb, IL) MEIC Collaboration Meeting SPRING 2016 Jefferson Lab March 29-31, 2016

2 Outline HEEC schemes (e-sources, beam-beam kicker integration) Beam-beam kicker Required electron sources Emission gating and acceleration schemes Obtaining broad range of bunch repetition rates Summary 2

3 Single Current HEEC with Counter ERL ion bunches (cooled) Energy Recovery Beam (ERB) Solenoid (cooling section) ion bunches (hot) Cooling e-bunches SRF ERL 5 to 50 (10-140) MeV Beams separation Pre-accelerating linac, 2 to 5 MeV Subharmonic bunching Acceleration, MeV Depressed collector Magnetized cooling beam CW injector High average current e-source, 1-2 A 2.1 nc, 1-3 ns FWHM, 952 MHz 4.2 nc, 1-3 ns FWHM, 476 MHz 10 ps rms after compression Y. Derbenev Cooling with Magnetized Electron Beam MEIC Spring 2015 Y. Derbenev Head-on ERL for HEEC JLEIC R&D Meeting, CASA, March 17,

4 Circulating Current HEEC with Counter ERL ion bunches (cooled) Solenoid (cooling section) CCR, x100 ion bunches (hot) Cooling e-bunches FBT kicker-out Reverse FBT ERB kicker-in Reverse FBT FBT cooling beam Reduced power SRF ERL Magnetized cooling beam CW injector Reduced average current and repetition rate by a factor of e-source, A average current 1 nc, 1-3 ns FWHM, MHz 2 nc, 1-3 ns FWHM, MHz 10 ps rms after compression 4

5 Circulating Current HEEC Beam-Beam Kicker with Magnet Dipoles dump Kicking sheet e-bunch Kicking sheet e-bunch Kicking beam e-source From CCR Ejected flat e-bunch Injected flat e-bunch To CCR Kicker-out Flat e-bunch from SRF ERL Kicker-in Kicking beam e-source Bunched sheet beam, ~10x150 mm >2 nc, <1ns FWHM, MHz >1 A average current, MeV 5

6 Bunch Compression and Pre-acceleration Solenoid, T To SRF ERL Bunched e-source 36 th subharmonic 36 MHz 1-3 ns FWHM MeV Ballistic Buncher 1 12 th subharmonic 108 MHz 150 ps FWHM Ballistic Buncher 2 3 rd subharmonic 433 MHz 50 ps FWHM Linac 5 MeV Tapered phase velocity buncher Linac frequency, 9-cells 1296 MHz ps FWHM, 2 MeV The scheme and example values adopted from 1. Yeremian et al. Boeing 120 MeV RF linac injector design and accelerator performance comparison with PARMELA Proc. PAC 89 IEEE (1989) 2. C. H. Kim Electron Injector Studies at LBL LBNL Paper LBL (2010) 3. N. S. Sereno Booster Subharmonic RF Capture Design APS ANL, LS-297 (2002) 6

7 Gating Pulsed [1] Limitations Required Electron Source Emission Gating and Acceleration Limited repetition rate to low subharmonics Jitter errors (gap voltage, current, bunch charge, timing) Poor to no control HOM Limited grid voltage, 200 V (small gap, dense grid, higher emittance) Limited DC floating, 100 kv I gap ~ C gap+c circuit j peak d2 2 3 gap d gap =0.25 mm, j peak =11A/cm 2 U gap = 200 V τ rise C + gap C circuit = 30 pf, t rise = 0.3 ns I gap = 20 A C circuit co-sources jitter. j peak and d gap limit I gap 1. M. J. Browne et al. A multi-channel pulser. for the SLC thermionic electron source PAC 85 SLAC-PUB RF harmonics Repetition rate from the linac frequency to its low subharmonics Advantages No jitter sources DC floating, 500 kv For two and more harmonics, higher grid voltage, >200 V attainable (larger gap, less dense grid, lower emittance) 7

8 Acceleration DC RF TM 010, l/4 Required Electron Source Emission Gating and Acceleration 10 MV/m (up to 30 MV/m with Mo) possible, CW (advantage) Applicable to long bunches, no RF curvature (advantage) HV DC insulation, Floating cathode (limitation) Limited to 0.5 MeV (limitation) no HV DC insulation (advantage) Higher energies > 0.5 MeV in Linacs attainable (advantage) Limited accelerating gradient, <7 MV/m CW (limitation) Due to larger TM 010 cavity, bunch duration to be <0.3 ns FWHM (limit.) l/4 structures can work with longer bunches, <100 ns FWHM (advan.) Cooling beam CW e-source Bunched magnetized beam, ~3 mm radius A average current 2.1 nc, 1-3 ns FWHM, MHz 4.2 nc, 1-3 ns FWHM, MHz 10 ps rms after compression Kicking beam CW e-source Bunched sheet beam, ~10x150 mm >1 A average current, MeV >2 nc, <1ns FWHM, MHz 8

9 Bunched electron sources. Gating and acceleration Single frequency gating of thermionic emission Gridded Cathode DC (IOTs, TRIUMF) or RF (TM 010 or l/4) Acceleration Drawback: long bunch duration (slide 12) Acceleration Single-frequency RF source Voltage break Bidirectional coupler Coaxial transmission line Slug tuner Thermionic cathode Grid 9

10 Dual-Frequency Gating of Thermionic Emission 1 st and (2n+1)l/4-modes 3 rd -harmonic 3 rd harmonic RF source Bidirectional coupler Beam magnetizing solenoid < 30 mm bore radius RF (TM 010 or l/4) or DC acceleration 1 st harmonic RF source Low/high pass rejection filter Slug tuner 3 rd harmonics tuning Voltage break Coaxial transmission lines V. Jabotinski et al. A Dual-Frequency Approach to a High Cathode region Average Current Thermionic Source MEIC Fall

11 Electric field (MV/m) Electric field (MV/m) Dual-Frequency Gating of Thermionic Emission Shortening Bunch Duration 7 injection phase Cavity mode (reference) 7 injection phase Cavity mode (reference) 0 Bias emission duration Emission gating Phase/p emission duration Emission gating 1 st +3 rd harmonics Phase/p Gating the emission with the 1 st harmonic (IOT, TRIUMF) Gating the emission with the 1 st and 3 rd harmonics. 11

12 Electric field (MV/m) Electric field (MV/m) Bias emission duration RF Gating of the Emission Effect of higher harmonics Emission gating 1 st +3 rd harmonics Phase/p 1 st harmonic 1 st vs. 1 st + 3 rd Amplitude x7.9 (RF power x62.4) Bias x τ > 4 sin 1 j peak d gap E peak (rad) t>92.6 o at 20 A/cm 2, 0.5 mm, 5 MV/m emission duration Phase/p 1 st 1 st + 3 rd 1 st + 3 rd + 5 th 1 st + 3 rd + 8 th Harmonics Emission duration (deg.) 1 st st + 3 rd st + 3 rd + 5 th st + 3 rd + 8 th

13 Kicking Sheet Beam E-source Low subharmonic repetition rate 3 rd harmonic 30 MHz 1 st harmonic 10 MHz MeV RF or DC acceleration 10 MHz sweep Sheet beam slit aperture Sheet beam gridless thermionic cathode, e.g. 0.5 x 10 mm 4-11 ns FWHM sheet beam e-bunch Kicking sheet beam e-bunch < 1 ns FWHM, 10 MHz Sweeping is not needed for >40 MHz repetition rates or can be avoided with 3-harmonics gating for the lower frequencies, 10 MHz. 13

14 E (V/m) RF Gated Thermionic Electron Source Low subharmonic repetition rates l/4-mode MHz 3l/4-mode MHz x (mm) 14

15 f l/4 (MHz) x/(l/4) f 3l/4 / f l/ RF Gated Thermionic Electron Source Low subharmonic repetition rates x < l/ f l/4 (MHz) Two off-axis ports for 3-harmonics gating f l/4 (MHz) x (mm) 15

16 RF Gated Thermionic Electron Source Quarter-wave bunching structure x=1 m 74.4 MHz 16

17 RF Gated Thermionic Electron Source Quarter-wave bunching structure with ERB drift tube Radius 50 mm 663 MHz 17

18 Summary We have considered HEEC schemes, identified critical components, their integration, and requirements including the needed electron sources and beam-beam kicker. Beam-beam kicker scheme using magnet dipoles is proposed Thermionic emission is inherently suitable for attaining high average current electron beams that are imperative for HEEC Methods for the emission gating and acceleration have been preliminary explored and e-sources for the cooling and the kicking beams are presented. Techniques aimed at low subharmonic repetition rates along with the linac frequency from the thermionic e-sources are discussed. Preliminary studies outlined the most critical approaches important to developing highly efficient HEEC and the electron sources. 18

19 Back up slides 19

20 Counter ERL. In-Solenoid Beams Separation ion bunches (cooled) ERB Solenoid (cooling section) ion bunches (hot) Cooling e-bunches Side SRF ERL Linac Staggered solenoid with movable pole pieces. Beams separation Acceleration Bunching Depressed collector Magnetized cooling beam CW injector e-source, 1-2 A average current 2.1 nc, 1-3 ns FWHM, 952 MHz 4.2 nc, 1-3 ns FWHM, 476 MHz 10 ps rms after compression Bent solenoid drift: Y. Derbenev Head-on ERL for HEEC JLEIC R&D Meeting, CASA, March 17,

21 Beams Separation using Bent Solenoid Drift To/from Linac Orbits are separated perpendicular to the viewing (top) plane Buncher Acceleration Bent Solenoid [1] Side e-source Spent ERB Twisted Solenoid Staggered solenoid Staggered solenoid movable coil sections movable pole pieces Y. Derbenev Head-on ERL for HEEC JLEIC R&D Meeting, CASA, March 17, 2016

22 Single Current HEEC Concurrent SRF ERL. Counter Injector Linac Solenoid (cooling section) ion bunches (cooled) ion bunches (hot) FBT Cooling e-bunches Reverse FBT ERB kicker-out (~10 MeV) or Dipole (>>5 MeV) 5 MeV SRF ERL ERB kicker-in (~10 MeV) or Dipole (>>5 MeV) Flat ERB, MeV 5 MeV Reverse FBT FBT Magnetized cooling beam CW injector e-source, 1-2 A average current 2.1 nc, 1-3 ns FWHM, 952 MHz 4.2 nc, 1-3 ns FWHM, 476 MHz 10 ps rms after compression 22

23 Circulating Current HEEC Concurrent SRF ERL. Counter Injector Linac Solenoid (cooling section) ion bunches (cooled) ion bunches (hot) FBT kicker-out ERB kicker-out (~10 MeV) or Dipole (>>5 MeV) Reduced power SRF ERL ERB kicker-in (~10 MeV) or Dipole (>>5 MeV) CCR, x100 Flat ERB, MeV 5 MeV kicker-in 5 MeV Reverse FBT FBT Reverse FBT Cooling e-bunches Magnetized cooling beam CW injector Reduced average current and repetition rate by a factor of e-source, A average current 1 nc, 1-3 ns FWHM, MHz 2 nc, 1-3 ns FWHM, MHz 10 ps rms after compression 23

24 RF Gated Thermionic Electron Source Two off axis ports for three-harmonics gating f/3-120 mm f=451 MHz f/3-120 mm ~ 3f 24

25 10 mm RF Gated Thermionic Electron Source Quarter-wave bunching structure, E-field plots 74.4 MHz 25

26 RF Gated Thermionic Electron Source Quarter-wave bunching structure with ERB drift channel ERB drift ERB drift (35 mm off axis) cooling beam cooling beam 663 MHz 26

27 Dual-Frequency Thermionic Electron Source Modeling and Simulations Dual-frequency emission gating RF structure Grid region Thermionic cathode 3mm beam radius Cathode-grid gap mm RF accelerating cavity half-cell, 1 st harmonic 27

A Design Study of a 100-MHz Thermionic RF Gun for the ANL XFEL-O Injector

A Design Study of a 100-MHz Thermionic RF Gun for the ANL XFEL-O Injector A Design Study of a 100-MHz Thermionic RF Gun for the ANL XFEL-O Injector A. Nassiri Advanced Photon Source For ANL XFEL-O Injector Study Group M. Borland (ASD), B. Brajuskovic (AES), D. Capatina (AES),

More information

REVIEW ON SUPERCONDUCTING RF GUNS

REVIEW ON SUPERCONDUCTING RF GUNS REVIEW ON SUPERCONDUCTING RF GUNS D. Janssen #, A. Arnold, H. Büttig, U. Lehnert, P. Michel, P. Murcek, C. Schneider, R. Schurig, F. Staufenbiel, J. Teichert, R. Xiang, Forschungszentrum Rossendorf, Germany.

More information

ALICE SRF SYSTEM COMMISSIONING EXPERIENCE A. Wheelhouse ASTeC, STFC Daresbury Laboratory

ALICE SRF SYSTEM COMMISSIONING EXPERIENCE A. Wheelhouse ASTeC, STFC Daresbury Laboratory ALICE SRF SYSTEM COMMISSIONING EXPERIENCE A. Wheelhouse ASTeC, STFC Daresbury Laboratory ERL 09 8 th 12 th June 2009 ALICE Accelerators and Lasers In Combined Experiments Brief Description ALICE Superconducting

More information

DESIGN AND BEAM DYNAMICS STUDIES OF A MULTI-ION LINAC INJECTOR FOR THE JLEIC ION COMPLEX

DESIGN AND BEAM DYNAMICS STUDIES OF A MULTI-ION LINAC INJECTOR FOR THE JLEIC ION COMPLEX DESIGN AND BEAM DYNAMICS STUDIES OF A MULTI-ION LINAC INJECTOR FOR THE JLEIC ION COMPLEX Speaker: P.N. Ostroumov Contributors: A. Plastun, B. Mustapha and Z. Conway HB2016, July 7, 2016, Malmö, Sweden

More information

FAST RF KICKER DESIGN

FAST RF KICKER DESIGN FAST RF KICKER DESIGN David Alesini LNF-INFN, Frascati, Rome, Italy ICFA Mini-Workshop on Deflecting/Crabbing Cavity Applications in Accelerators, Shanghai, April 23-25, 2008 FAST STRIPLINE INJECTION KICKERS

More information

Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser. P. Castro for the TTF-FEL team

Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser. P. Castro for the TTF-FEL team Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser P. Castro for the TTF-FEL team 100 nm 1 Å FEL radiation TESLA Test Facility at DESY

More information

Progress in High Gradient Accelerator Research at MIT

Progress in High Gradient Accelerator Research at MIT Progress in High Gradient Accelerator Research at MIT Presented by Richard Temkin MIT Physics and Plasma Science and Fusion Center May 23, 2007 MIT Accelerator Research Collaborators MIT Plasma Science

More information

THE ORION PHOTOINJECTOR: STATUS and RESULTS

THE ORION PHOTOINJECTOR: STATUS and RESULTS THE ORION PHOTOINJECTOR: STATUS and RESULTS Dennis T. Palmer SLAC / ARDB ICFA Sardinia 4 July 2002 1. Introduction 2. Beam Dynamics Simulations 3. Photoinjector 1. RF Gun 2. Solenoidal Magnet 3. Diagnostics

More information

Niowave s Growth and the Role of STTR in its Development

Niowave s Growth and the Role of STTR in its Development Niowave s Growth and the Role of STTR in its Development Terry L. Grimm Niowave, Inc. Lansing MI Presented at National Academies STTR Workshop, Wash DC, May 2015 Outline Superconducting electron linacs

More information

Slide Title. Bulleted Text

Slide Title. Bulleted Text Slide Title 1 Slide Outline Title Brief view of the C-AD Complex Review of the RHIC LLRF Upgrade Platform Generic Implementation of a Feedback Loop RHIC Bunch by Bunch Longitudinal Damper Cavity Controller

More information

Fast Kickers at DESY

Fast Kickers at DESY Fast Kickers at DESY Injection / ejection in a TESLA like DR Generation of a pulse with a pulse length of 12ns Measurement at TTF 2 Full power test Measurements at ATF XFEL activity Talk given by Hans

More information

ERLP Status. Mike Dykes

ERLP Status. Mike Dykes ERLP Status Mike Dykes Content ASTeC RF & Diagnostics Group Work of the Group 4GLS ERLP Photo-injector Accelerating Modules Summary High Power RF Engineering Andy Moss SRS Support; DIAMOND; ERLP; MICE;

More information

S.M. Lidia, G. Bazouin, P.A. Seidl Accelerator and Fusion Research Division Lawrence Berkeley National Laboratory Berkeley, CA USA

S.M. Lidia, G. Bazouin, P.A. Seidl Accelerator and Fusion Research Division Lawrence Berkeley National Laboratory Berkeley, CA USA S.M. Lidia, G. Bazouin, P.A. Seidl Accelerator and Fusion Research Division Lawrence Berkeley National Laboratory Berkeley, CA USA The Heavy Ion Fusion Sciences Virtual National Laboratory 1 NDCX Increased

More information

CEBAF waveguide absorbers. R. Rimmer for JLab SRF Institute

CEBAF waveguide absorbers. R. Rimmer for JLab SRF Institute CEBAF waveguide absorbers R. Rimmer for JLab SRF Institute Outline Original CEBAF HOM absorbers Modified CEBAF loads for FEL New materials for replacement loads High power loads for next generation FELs

More information

Project X Cavity RF and mechanical design. T. Khabiboulline, FNAL/TD/SRF

Project X Cavity RF and mechanical design. T. Khabiboulline, FNAL/TD/SRF Project X Cavity RF and mechanical design T. Khabiboulline, FNAL/TD/SRF TTC meeting on CW-SRF, 2013 Project X Cavity RF and mechanical design T 1 High ß Low ß 0.5 HWR SSR1 SSR2 0 1 10 100 1 10 3 1 10 4

More information

Nonintercepting Diagnostics for Transverse Beam Properties: from Rings to ERLs

Nonintercepting Diagnostics for Transverse Beam Properties: from Rings to ERLs Nonintercepting Diagnostics for Transverse Beam Properties: from Rings to ERLs Alex H. Lumpkin Accelerator Operations Division Advanced Photon Source Presented at Jefferson National Accelerator Laboratory

More information

FLASH at DESY. FLASH. Free-Electron Laser in Hamburg. The first soft X-ray FEL operating two undulator beamlines simultaneously

FLASH at DESY. FLASH. Free-Electron Laser in Hamburg. The first soft X-ray FEL operating two undulator beamlines simultaneously FLASH at DESY The first soft X-ray FEL operating two undulator beamlines simultaneously Katja Honkavaara, DESY for the FLASH team FEL Conference 2014, Basel 25-29 August, 2014 First Lasing FLASH2 > First

More information

Short-Pulse X-ray at the Advanced Photon Source Overview

Short-Pulse X-ray at the Advanced Photon Source Overview Short-Pulse X-ray at the Advanced Photon Source Overview Vadim Sajaev and Louis Emery Accelerator Operations and Physics Group Accelerator Systems Division Mini-workshop on Methods of Data Analysis in

More information

Physics Requirements Document Document Title: SCRF 1.3 GHz Cryomodule Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7

Physics Requirements Document Document Title: SCRF 1.3 GHz Cryomodule Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7 Document Number: LCLSII-4.1-PR-0146-R0 Page 1 of 7 Document Approval: Originator: Tor Raubenheimer, Physics Support Lead Date Approved Approver: Marc Ross, Cryogenic System Manager Approver: Jose Chan,

More information

Engineering Challenges and Solutions for MeRHIC. Andrew Burrill for the MeRHIC Team

Engineering Challenges and Solutions for MeRHIC. Andrew Burrill for the MeRHIC Team Engineering Challenges and Solutions for MeRHIC Andrew Burrill for the MeRHIC Team Key Components Photoinjector Design Photocathodes & Drive Laser Linac Cavities 703.75 MHz 5 cell cavities 3 rd Harmonic

More information

TRIUMF Kicker R&D and Other Possibilities

TRIUMF Kicker R&D and Other Possibilities TRIUMF Kicker R&D and Other Possibilities Tom Mattison University of British Columbia Cornell Damping Ring Workshop September 28, 2006 TRIUMF Kicker R&D TRIUMF in Vancouver has a kicker group that has

More information

Illinois. I Physics. Investigation of TESLA Damping Ring Kickers using the A0 Photoinjector Beam

Illinois. I Physics. Investigation of TESLA Damping Ring Kickers using the A0 Photoinjector Beam George Gollin, Investigation of TESLA Damping Ring Kickers using the A0 hotoinjector Beam 1 I hysics Investigation of TESLA Damping Ring Kickers using the A0 hotoinjector Beam George Gollin Department

More information

RF Design of Normal Conducting Deflecting Cavity

RF Design of Normal Conducting Deflecting Cavity RF Design of Normal Conducting Deflecting Cavity Valery Dolgashev (SLAC), Geoff Waldschmidt, Ali Nassiri (Argonne National Laboratory, Advanced Photon Source) 48th ICFA Advanced Beam Dynamics Workshop

More information

Commissioning of the ALICE SRF Systems at Daresbury Laboratory Alan Wheelhouse, ASTeC, STFC Daresbury Laboratory ESLS RF 1 st 2 nd October 2008

Commissioning of the ALICE SRF Systems at Daresbury Laboratory Alan Wheelhouse, ASTeC, STFC Daresbury Laboratory ESLS RF 1 st 2 nd October 2008 Commissioning of the ALICE SRF Systems at Daresbury Laboratory Alan Wheelhouse, ASTeC, STFC Daresbury Laboratory ESLS RF 1 st 2 nd October 2008 Overview ALICE (Accelerators and Lasers In Combined Experiments)

More information

International Technology Recommendation Panel. X-Band Linear Collider Path to the Future. RF System Overview. Chris Adolphsen

International Technology Recommendation Panel. X-Band Linear Collider Path to the Future. RF System Overview. Chris Adolphsen International Technology Recommendation Panel X-Band Linear Collider Path to the Future RF System Overview Chris Adolphsen Stanford Linear Accelerator Center April 26-27, 2004 Delivering the Beam Energy

More information

Development of a 20-MeV Dielectric-Loaded Accelerator Test Facility

Development of a 20-MeV Dielectric-Loaded Accelerator Test Facility SLAC-PUB-11299 Development of a 20-MeV Dielectric-Loaded Accelerator Test Facility S.H. Gold, et al. Contributed to 11th Advanced Accelerator Concepts Workshop (AAC 2004), 06/21/2004--6/26/2004, Stony

More information

Acceleration of High-Intensity Protons in the J-PARC Synchrotrons. KEK/J-PARC M. Yoshii

Acceleration of High-Intensity Protons in the J-PARC Synchrotrons. KEK/J-PARC M. Yoshii Acceleration of High-Intensity Protons in the J-PARC Synchrotrons KEK/J-PARC M. Yoshii Introduction 1. J-PARC consists of 400 MeV Linac, 3 GeV Rapid Cycling Synchrotron (RCS) and 50 GeV Main synchrotron

More information

Does the short pulse mode need energy recovery?

Does the short pulse mode need energy recovery? Does the short pulse mode need energy recovery? Rep. rate Beam power @ 5GeV 1nC @ 100MHz 500MW Absolutely 1nC @ 10MHz 1nC @ 1MHz 50MW 5MW Maybe 1nC @ 100kHz 0.5MW No Most applications we have heard about

More information

High acceleration gradient. Critical applications: Linear colliders e.g. ILC X-ray FELs e.g. DESY XFEL

High acceleration gradient. Critical applications: Linear colliders e.g. ILC X-ray FELs e.g. DESY XFEL High acceleration gradient Critical applications: Linear colliders e.g. ILC X-ray FELs e.g. DESY XFEL Critical points The physical limitation of a SC resonator is given by the requirement that the RF magnetic

More information

Main Injector Cavity Simulation and Optimization for Project X

Main Injector Cavity Simulation and Optimization for Project X Main Injector Cavity Simulation and Optimization for Project X Liling Xiao Advanced Computations Group Beam Physics Department Accelerator Research Division Status Meeting, April 7, 2011 Outline Background

More information

VELOCITY MODULATION SYSTEM FOR ENHANCEMENT OF 50 PICOSECOND RADIATION. N. J. Norris and R. K. Hanst EG&G, Inc., Santa Barbara, California

VELOCITY MODULATION SYSTEM FOR ENHANCEMENT OF 50 PICOSECOND RADIATION. N. J. Norris and R. K. Hanst EG&G, Inc., Santa Barbara, California 1969 EEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution

More information

Superconducting RF System. Heung-Sik Kang

Superconducting RF System. Heung-Sik Kang Design of PLS-II Superconducting RF System Heung-Sik Kang On behalf of PLS-II RF group Pohang Accelerator Laboratory Content 1. Introduction 2. Physics design 3. Cryomodules 4. Cryogenic system 5. High

More information

Low-Level RF. S. Simrock, DESY. MAC mtg, May 05 Stefan Simrock DESY

Low-Level RF. S. Simrock, DESY. MAC mtg, May 05 Stefan Simrock DESY Low-Level RF S. Simrock, DESY Outline Scope of LLRF System Work Breakdown for XFEL LLRF Design for the VUV-FEL Cost, Personpower and Schedule RF Systems for XFEL RF Gun Injector 3rd harmonic cavity Main

More information

Lattice Design for PRISM-FFAG. A. Sato Osaka University for the PRISM working group

Lattice Design for PRISM-FFAG. A. Sato Osaka University for the PRISM working group Lattice Design for PRISM-FFAG A. Sato Osaka University for the PRISM working group contents PRISM overview PRISM-FFAG dynamics study & its method PRISM Phase Rotated Intense Slow Muon source Anticipated

More information

Normal-Conducting Photoinjector for High Power CW FEL

Normal-Conducting Photoinjector for High Power CW FEL LA-UR-04-5617,-5808 www.arxiv.org: physics/0404109 Normal-Conducting Photoinjector for High Power CW FEL Sergey Kurennoy, LANL, Los Alamos, NM, USA An RF photoinjector capable of producing high continuous

More information

FREE ELECTRON LASER RESEARCH IN CHINA

FREE ELECTRON LASER RESEARCH IN CHINA 1996 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or

More information

CEBAF Overview June 4, 2010

CEBAF Overview June 4, 2010 CEBAF Overview June 4, 2010 Yan Wang Deputy Group Leader of the Operations Group Outline CEBAF Timeline Machine Overview Injector Linear Accelerators Recirculation Arcs Extraction Systems Beam Specifications

More information

A HIGH EFFICIENCY 17GHz TW CHOPPERTRON

A HIGH EFFICIENCY 17GHz TW CHOPPERTRON 1 SLAC 07 A HIGH EFFICIENCY 17GHz TW CHOPPERTRON J. Haimson and B. Mecklenburg Work performed under the auspices of the U.S. Department of Energy SBIR Grant No.DE-FG02-06ER84468 2 SLAC 07 Figure 1. Centerline

More information

5.2.3 DecayChannelSolenoids BeamDynamics Induction Linac Approach

5.2.3 DecayChannelSolenoids BeamDynamics Induction Linac Approach Chapter 5 MUON PHASE ROTATION CHANNEL Contents 5.1 Introduction... 207 5.2 rfapproach... 208 5.2.1 Introduction... 208 5.2.2 rfcavities... 209 5.2.3 DecayChannelSolenoids... 212 5.2.4 BeamDynamics... 218

More information

RF design studies of 1300 MHz CW buncher for European X-FEL. Shankar Lal PITZ DESY-Zeuthen

RF design studies of 1300 MHz CW buncher for European X-FEL. Shankar Lal PITZ DESY-Zeuthen RF design studies of 1300 MHz CW buncher for European X-FEL Shankar Lal PITZ DESY-Zeuthen Outline Introduction Buncher design: Literature survey RF design of two-cell buncher: First design Two- cell buncher:

More information

TECHNICAL CHALLENGES OF THE LCLS-II CW X-RAY FEL *

TECHNICAL CHALLENGES OF THE LCLS-II CW X-RAY FEL * TECHNICAL CHALLENGES OF THE LCLS-II CW X-RAY FEL * T.O. Raubenheimer # for the LCLS-II Collaboration, SLAC, Menlo Park, CA 94025, USA Abstract The LCLS-II will be a CW X-ray FEL upgrade to the existing

More information

New Tracking Gantry-Synchrotron Idea. G H Rees, ASTeC, RAL, U.K,

New Tracking Gantry-Synchrotron Idea. G H Rees, ASTeC, RAL, U.K, New Tracking Gantry-Synchrotron Idea G H Rees, ASTeC, RAL, U.K, Scheme makes use of the following: simple synchrotron and gantry magnet lattices series connection of magnets for 5 Hz tracking one main

More information

REVIEW OF FAST BEAM CHOPPING F. Caspers CERN AB-RF-FB

REVIEW OF FAST BEAM CHOPPING F. Caspers CERN AB-RF-FB F. Caspers CERN AB-RF-FB Introduction Review of several fast chopping systems ESS-RAL LANL-SNS JAERI CERN-SPL Discussion Conclusion 1 Introduction Beam choppers are typically used for β = v/c values between

More information

Outline. I. Progress and R&D plan on SRF cavity. II. HOM damping for low-risk and FFAG lattice erhic. III. Summary. Wencan Xu 2

Outline. I. Progress and R&D plan on SRF cavity. II. HOM damping for low-risk and FFAG lattice erhic. III. Summary. Wencan Xu 2 BROOKHAVEN SCIENCE ASSOCIATES SRF R&D for erhic On behalf of team Brookhaven National Laboratory JLEIC Collaboration workshop 1 Outline I. Progress and R&D plan on SRF cavity II. HOM damping for low-risk

More information

Energy Recovering Linac Issues

Energy Recovering Linac Issues Energy Recovering Linac Issues L. Merminga Jefferson Lab EIC Accelerator Workshop Brookhaven National Laboratory February 26-27, 2002 Outline Energy Recovery RF Stability in Recirculating, Energy Recovering

More information

ERL Prototype at BNL. Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.

ERL Prototype at BNL. Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. ERL Prototype at BNL Ilan Ben-Zvi, for the Superconducting Accelerator and Electron Cooling group, Collider-Accelerator Department Brookhaven National Laboratory & Center for Accelerator Science and Education

More information

ReA3 Marc Doleans (On behalf of the ReA3 team)

ReA3 Marc Doleans (On behalf of the ReA3 team) ReA3 Marc Doleans (On behalf of the ReA3 team) HIAT09, 08/06/2009, Slide 1 Building addition Office building (~100 staff + conf. rooms) ReA3 Experimental area 9100 sqft HIAT09, 08/06/2009, Slide 2 Why

More information

Illinois. I Physics. Fourier engineering: progress on alternative TESLA kickers

Illinois. I Physics. Fourier engineering: progress on alternative TESLA kickers George Gollin, Fourier engineering Victoria, LC 2004 1 I hysics Fourier engineering: progress on alternative TESLA kickers George Gollin Department of hysics University of at Urbana-Champaign USA George

More information

X-Band Linear Collider Report*

X-Band Linear Collider Report* SLAC DOE Program Review X-Band Linear Collider Path to the Future X-Band Linear Collider Report* D. L. Burke NLC Program Director * Abstracted from recent presentations to the International Technical Recommendation

More information

Development of a 20 MeV Dielectric-Loaded Test Accelerator

Development of a 20 MeV Dielectric-Loaded Test Accelerator SLAC-PUB-12454 Development of a 20 MeV Dielectric-Loaded Test Accelerator Steven H. Gold*, Allen K. Kinkead, Wei Gai, John G. Power, Richard Konecny, Chunguang Jing, Jidong Long, Sami G. Tantawi, Christopher

More information

Initial Beam Phasing of the SRF Cavities in LCLS-II

Initial Beam Phasing of the SRF Cavities in LCLS-II Introduction Initial Beam Phasing of the SRF Cavities in LCLS-II P. Emma Nov. 28, 2016 One of the more challenging aspects of commissioning the LCLS-II accelerator is in the initial phasing of the SRF

More information

Dark Current Kicker Studies at FLASH

Dark Current Kicker Studies at FLASH Dark Current Kicker Studies at FLASH F. Obier, J. Wortmann, S. Schreiber, W. Decking, K. Flöttmann FLASH Seminar, DESY, 02 Feb 2010 History of the dark current kicker 2005 Vertical kicker was installed

More information

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH INVESTIGATION OF A RIDGE-LOADED WAVEGUIDE STRUCTURE FOR CLIC X-BAND CRAB CAVITY

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH INVESTIGATION OF A RIDGE-LOADED WAVEGUIDE STRUCTURE FOR CLIC X-BAND CRAB CAVITY CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CLIC Note 1003 INVESTIGATION OF A RIDGE-LOADED WAVEGUIDE STRUCTURE FOR CLIC X-BAND CRAB CAVITY V.F. Khan, R. Calaga and A. Grudiev CERN, Geneva, Switzerland.

More information

COMMISSIONING AND INITIAL OPERATING EXPERIENCE WITH THE SNS 1 GEV LINAC*

COMMISSIONING AND INITIAL OPERATING EXPERIENCE WITH THE SNS 1 GEV LINAC* COMMISSIONING AND INITIAL OPERATING EXPERIENCE WITH THE SNS 1 GEV LINAC* Stuart Henderson, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge TN, USA Abstract The Spallation Neutron Source

More information

QUARTER WAVE COAXIAL LINE CAVITY FOR NEW DELHI LINAC BOOSTER*

QUARTER WAVE COAXIAL LINE CAVITY FOR NEW DELHI LINAC BOOSTER* QUARTER WAVE COAXIAL LINE CAVITY FOR NEW DELHI LINAC BOOSTER* P.N. Prakash and A.Roy Nuclear Science Centre, P.O.Box 10502, New Delhi 110 067, INDIA and K.W.Shepard Physics Division, Argonne National Laboratory,

More information

Pulsed 5 MeV standing wave electron linac for radiation processing

Pulsed 5 MeV standing wave electron linac for radiation processing PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 7, 030101 (2004) Pulsed 5 MeV standing wave electron linac for radiation processing L. Auditore, R. C. Barnà, D. De Pasquale, A. Italiano,

More information

Design and RF Measurements of an X-band Accelerating Structure for the Sparc Project

Design and RF Measurements of an X-band Accelerating Structure for the Sparc Project Design and RF Measurements of an X-band Accelerating Structure for the Sparc Project INFN-LNF ; UNIVERSITY OF ROME LA SAPIENZA ; INFN - MI Presented by BRUNO SPATARO Erice, Sicily, October 9-14; 2005 SALAF

More information

5.5 SNS Superconducting Linac

5.5 SNS Superconducting Linac JP0150514 ICANS - XV 15 th Meeting of the International Collaboration on Advanced Neutron Sources November 6-9, 2000 Tsukuba, Japan Ronald M. Sundelin Jefferson Lab* 5.5 SNS Superconducting Linac 12000

More information

Drive Beam Photo-injector Option for the CTF3 Nominal Phase

Drive Beam Photo-injector Option for the CTF3 Nominal Phase CTF3 Review Drive Beam Photo-injector Option for the CTF3 Nominal Phase Motivation CTF3 Drive Beam Requirements CTF3 RF gun design The Laser (I. Ross / RAL) The Photocathode Cost estimate Possible schedule

More information

Overview of ERL Projects: SRF Issues and Challenges. Matthias Liepe Cornell University

Overview of ERL Projects: SRF Issues and Challenges. Matthias Liepe Cornell University Overview of ERL Projects: SRF Issues and Challenges Matthias Liepe Cornell University Overview of ERL projects: SRF issues and challenges Slide 1 Outline Introduction: SRF for ERLs What makes it special

More information

COMMISSIONING STATUS AND FURTHER DEVELOPMENT OF THE NOVOSIBIRSK MULTITURN ERL*

COMMISSIONING STATUS AND FURTHER DEVELOPMENT OF THE NOVOSIBIRSK MULTITURN ERL* COMMISSIONING STATUS AND FURTHER DEVELOPMENT OF THE NOVOSIBIRSK MULTITURN ERL* O.A.Shevchenko #, V.S.Arbuzov, E.N.Dementyev, B.A.Dovzhenko, Ya.V.Getmanov, E.I.Gorniker, B.A.Knyazev, E.I.Kolobanov, A.A.Kondakov,

More information

H. Weise, Deutsches Elektronen-Synchrotron, Hamburg, Germany for the XFEL Group

H. Weise, Deutsches Elektronen-Synchrotron, Hamburg, Germany for the XFEL Group 7+(7(6/$;)(/352-(&7 H. Weise, Deutsches Elektronen-Synchrotron, Hamburg, Germany for the XFEL Group $EVWUDFW The overall layout of the X-Ray FEL to be built in international collaboration at DESY will

More information

1.8 MW Upgrade of the PSI Proton Accelerator Facility

1.8 MW Upgrade of the PSI Proton Accelerator Facility 1.8 MW Upgrade of the PSI Proton Accelerator Facility Pierre A. Schmelzbach for the PSI Accelerator Divisions This talk: analyzes the potential for improvements from the ion source to the spallation target

More information

Outline of the proposed JLAMP VUV/soft X-ray FEL and the challenges for the photon beamlines and optics

Outline of the proposed JLAMP VUV/soft X-ray FEL and the challenges for the photon beamlines and optics Outline of the proposed JLAMP VUV/soft X-ray FEL and the challenges for the photon beamlines and optics J. Michael Klopf Jefferson Lab - Free Electron Laser Division Workshop on Future Light Sources SLAC

More information

Status of the APEX Project at LBNL

Status of the APEX Project at LBNL at LBNL Fernando Sannibale K. Baptiste, B. Bailey, D. Colomb, C. Cork, J. Corlett, S. De Santis, J. Feng, D. Filippetto, G.Huang, R. Kraft, S. Kwiatkowski, D. Li, M. Messerly, R. Muller, W. E. Norum, H.

More information

The TESLA Linear Collider. Winfried Decking (DESY) for the TESLA Collaboration

The TESLA Linear Collider. Winfried Decking (DESY) for the TESLA Collaboration The TESLA Linear Collider Winfried Decking (DESY) for the TESLA Collaboration Outline Project Overview Highlights 2000/2001 Publication of the TDR Cavity R&D TTF Operation A0 and PITZ TESLA Beam Dynamics

More information

Status, perspectives, and lessons from FLASH and European XFEL

Status, perspectives, and lessons from FLASH and European XFEL 2014 International Workshop on EUV and Soft X-ray Sources November 3-6, 2014 Dublin, Ireland Status, perspectives, and lessons from FLASH and European XFEL R. Brinkmann, E.A. Schneidmiller, J, Sekutowicz,

More information

Crab Cavity Systems for Future Colliders. Silvia Verdú-Andrés, Ilan Ben-Zvi, Qiong Wu (Brookhaven National Lab), Rama Calaga (CERN)

Crab Cavity Systems for Future Colliders. Silvia Verdú-Andrés, Ilan Ben-Zvi, Qiong Wu (Brookhaven National Lab), Rama Calaga (CERN) International Particle Accelerator Conference Copenhagen (Denmark) 14-19 May, 2017 Crab Cavity Systems for Future Colliders Silvia Verdú-Andrés, Ilan Ben-Zvi, Qiong Wu (Brookhaven National Lab), Rama Calaga

More information

SNS CRYOMODULE PERFORMANCE*

SNS CRYOMODULE PERFORMANCE* SNS CRYOMODULE PERFORMANCE* J. Preble*, I. E. Campisi, E. Daly, G. K. Davis, J. R. Delayen, M. Drury, C. Grenoble, J. Hogan, L. King, P. Kneisel, J. Mammosser, T. Powers, M. Stirbet, H. Wang, T. Whitlatch,

More information

KEK ERL CRYOMODULE DEVELOPMENT

KEK ERL CRYOMODULE DEVELOPMENT KEK ERL CRYOMODULE DEVELOPMENT H. Sakai*, T. Furuya, E. Kako, S. Noguchi, M. Sato, S. Sakanaka, T. Shishido, T. Takahashi, K. Umemori, K. Watanabe and Y. Yamamoto KEK, 1-1, Oho, Tsukuba, Ibaraki, 305-0801,

More information

LINEAR INDUCTION ACCELERATORS AT THE LOS ALAMOS NATIONAL LABORATORY DARHT FACILITY

LINEAR INDUCTION ACCELERATORS AT THE LOS ALAMOS NATIONAL LABORATORY DARHT FACILITY LINEAR INDUCTION ACCELERATORS AT THE LOS ALAMOS NATIONAL LABORATORY DARHT FACILITY Subrata Nath Los Alamos National Laboratory, Los Alamos, NM 87545, USA Abstract The Dual-Axis Radiographic Hydrodynamic

More information

A 3 GHz SRF reduced-β Cavity for the S-DALINAC

A 3 GHz SRF reduced-β Cavity for the S-DALINAC A 3 GHz SRF reduced-β Cavity for the S-DALINAC D. Bazyl*, W.F.O. Müller, H. De Gersem Gefördert durch die DFG im Rahmen des GRK 2128 20.11.2018 M.Sc. Dmitry Bazyl TU Darmstadt TEMF Upgrade of the Capture

More information

Performance of the TTF Photoinjector Laser System

Performance of the TTF Photoinjector Laser System Performance of the TTF Photoinjector Laser System S. Schreiber, DESY Laser Issues for Electron Photoinjectors, October 23-25, 22, Stanford, California, USA & I. Will, A. Liero, W. Sandner, MBI Berlin Overview

More information

FAST KICKERS LNF-INFN

FAST KICKERS LNF-INFN ILC Damping Rings R&D Workshop - ILCDR06 September 26-28, 2006 at Cornell University FAST KICKERS R&D @ LNF-INFN Fabio Marcellini for the LNF fast kickers study group* * D. Alesini, F. Marcellini P. Raimondi,

More information

200 MHz 350 MHz 750 MHz Linac2 RFQ2 202 MHz 0.5 MeV /m Weight : 1000 kg/m Ext. diameter : 45 cm

200 MHz 350 MHz 750 MHz Linac2 RFQ2 202 MHz 0.5 MeV /m Weight : 1000 kg/m Ext. diameter : 45 cm M. Vretenar, CERN for the HF-RFQ Working Group (V.A. Dimov, M. Garlasché, A. Grudiev, B. Koubek, A.M. Lombardi, S. Mathot, D. Mazur, E. Montesinos, M. Timmins, M. Vretenar) 1 1988-92 Linac2 RFQ2 202 MHz

More information

EMMA the World's First Non-Scaling FFAG Accelerator

EMMA the World's First Non-Scaling FFAG Accelerator EMMA the World's First Non-Scaling FFAG Accelerator Susan Smith STFC Daresbury Laboratory CONTENTS Introduction Contents What are ns-ffags? and Why EMMA? The international collaboration EMMA goals and

More information

Attosecond Diagnostics of Muti GeV Electron Beams Using W Band Deflectors

Attosecond Diagnostics of Muti GeV Electron Beams Using W Band Deflectors Attosecond Diagnostics of Muti GeV Electron Beams Using W Band Deflectors V.A. Dolgashev, P. Emma, M. Dal Forno, A. Novokhatski, S. Weathersby SLAC National Accelerator Laboratory FEIS 2: Femtosecond Electron

More information

Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA

Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA d e Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA Accelerator & Fusion Research Division I # RECEIVED Presented at the International Workshop on Collective Effects and Impedance for B-Factories,

More information

Normal-conducting high-gradient rf systems

Normal-conducting high-gradient rf systems Normal-conducting high-gradient rf systems Introduction Motivation for high gradient Order of 100 GeV/km Operational and state-of-the-art SwissFEL C-band linac: Just under 30 MV/m CLIC prototypes: Over

More information

Jørgen S. Nielsen Institute for Storage Ring Facilities, Aarhus, University of Aarhus Denmark

Jørgen S. Nielsen Institute for Storage Ring Facilities, Aarhus, University of Aarhus Denmark Jørgen S. Nielsen Institute for Storage Ring Facilities, Aarhus, University of Aarhus Denmark What is ISA? ISA operates and develops the storage ring ASTRID and related facilities ISA staff assist internal

More information

Advances in CW Ion Linacs

Advances in CW Ion Linacs IPAC 2015 P.N. Ostroumov May 8, 2015 Content Two types of CW ion linacs Example of a normal conducting CW RFQ Cryomodule design and performance High performance quarter wave and half wave SC resonators

More information

Accelerator Complex U70 of IHEP-Protvino: Status and Upgrade Plans

Accelerator Complex U70 of IHEP-Protvino: Status and Upgrade Plans INSTITUTE FOR HIGH ENERGY PHYSICS () Protvino, Moscow Region, 142281, Russia Accelerator Complex U70 of -Protvino: Status and Upgrade Plans (report 4.1-1) Sergey Ivanov, on behalf of the U70 staff September

More information

A High Gradient Coreless Induction Method of Acceleration

A High Gradient Coreless Induction Method of Acceleration A High Gradient Coreless Induction Method of Acceleration A. Krasnykh (SLAC National Accelerator Lab, USA) and A. Kardo-Sysoev (Ioffe PTI, St. Petersburg, Russia) ICFA Workshop on Novel Concepts, 2009

More information

Tutorial on Design of RF system for Indus Accelerator. Maherdra Lad Head, Radio Frequency Systems Division RRCAT, Indore

Tutorial on Design of RF system for Indus Accelerator. Maherdra Lad Head, Radio Frequency Systems Division RRCAT, Indore Tutorial on Design of RF system for Indus Accelerator Maherdra Lad Head, Radio Frequency Systems Division RRCAT, Indore Basic principle of RF Acceleration RF Power Amplifier The RF source supplies power

More information

Illinois. Speculations About a Fourier Series Kicker for the TESLA Damping Rings. Physics

Illinois. Speculations About a Fourier Series Kicker for the TESLA Damping Rings. Physics Speculations About a Fourier Series Kicker for the TESLA Damping Rings George Gollin Department of University of llinois at Urbana-Champaign LCRD 2.22 1 llinois ntroduction TESLA damping ring fast kicker

More information

Beam Diagnostics, Low Level RF and Feedback for Room Temperature FELs. Josef Frisch Pohang, March 14, 2011

Beam Diagnostics, Low Level RF and Feedback for Room Temperature FELs. Josef Frisch Pohang, March 14, 2011 Beam Diagnostics, Low Level RF and Feedback for Room Temperature FELs Josef Frisch Pohang, March 14, 2011 Room Temperature / Superconducting Very different pulse structures RT: single bunch or short bursts

More information

Suppression of Vertical Oscillation and Observation of Flux Improvement during Top-up Injection at PLS-II

Suppression of Vertical Oscillation and Observation of Flux Improvement during Top-up Injection at PLS-II Suppression of Vertical Oscillation and Observation of Flux Improvement during Top-up Injection at PLS-II Y-G. Son, 1 J.-Y. Kim, 1 C. Mitsuda, 2 K. Kobayashi, 2 J. Ko, 1 T-Y. Lee, 1 J-Y. Choi, 1 D-E. Kim,

More information

SwissFEL Design and Status

SwissFEL Design and Status SwissFEL Design and Status Hans H. Braun Mini Workshop on Compact X ray Free electron Lasers Eastern Forum of Science and Technology Shanghai July 19, 2010 SwissFEL, the next large facility at PSI SwissFEL

More information

Maurizio Vretenar Linac4 Project Leader EuCARD-2 Coordinator

Maurizio Vretenar Linac4 Project Leader EuCARD-2 Coordinator Maurizio Vretenar Linac4 Project Leader EuCARD-2 Coordinator Every accelerator needs a linac as injector to pass the region where the velocity of the particles increases with energy. At high energies (relativity)

More information

I Illinois. A Fourier Series Kicker for the TESLA Damping Rings. Physics

I Illinois. A Fourier Series Kicker for the TESLA Damping Rings. Physics A Fourier Series Kicker for the TESLA Damping Rings George Gollin Department of University of Illinois at Urbana-Champaign LCRD 2.22 1 Introduction The TESLA damping ring fast kicker must inject/eject

More information

ELECTRON BEAM DIAGNOSTICS AND FEEDBACK FOR THE LCLS-II*

ELECTRON BEAM DIAGNOSTICS AND FEEDBACK FOR THE LCLS-II* THB04 Proceedings of FEL2014, Basel, Switzerland ELECTRON BEAM DIAGNOSTICS AND FEEDBACK FOR THE LCLS-II* Josef Frisch, Paul Emma, Alan Fisher, Patrick Krejcik, Henrik Loos, Timothy Maxwell, Tor Raubenheimer,

More information

RF STATUS OF SUPERCONDUCTING MODULE DEVELOPMENT SUITABLE FOR CW OPERATION: ELBE CRYOSTATS

RF STATUS OF SUPERCONDUCTING MODULE DEVELOPMENT SUITABLE FOR CW OPERATION: ELBE CRYOSTATS RF STATUS OF SUPERCONDUCTING MODULE DEVELOPMENT SUITABLE FOR CW OPERATION: ELBE CRYOSTATS J. Teichert, A. Büchner, H. Büttig, F. Gabriel, P. Michel, K. Möller, U. Lehnert, Ch. Schneider, J. Stephan, A.

More information

Current Industrial SRF Capabilities and Future Plans

Current Industrial SRF Capabilities and Future Plans and Future Plans Capabilities in view of Design Engineering Manufacturing Preparation Testing Assembly Taking into operation Future Plans Participate in and contribute to development issues, provide prototypes

More information

THE U. S. RIA PROJECT SRF LINAC*

THE U. S. RIA PROJECT SRF LINAC* THE U. S. RIA PROJECT SRF LINAC* K. W. Shepard, ANL, Argonne, IL 60540, USA Abstract The nuclear physics community in the U. S. has reaffirmed the rare isotope accelerator facility (RIA) as the number

More information

Superstructures; First Cold Test and Future Applications

Superstructures; First Cold Test and Future Applications Superstructures; First Cold Test and Future Applications DESY: C. Albrecht, V. Ayvazyan, R. Bandelmann, T. Büttner, P. Castro, S. Choroba, J. Eschke, B. Faatz, A. Gössel, K. Honkavaara, B. Horst, J. Iversen,

More information

Stability Analysis of C-band 500-kW Klystron with Multi-cell. Output cavity

Stability Analysis of C-band 500-kW Klystron with Multi-cell. Output cavity Stability Analysis of C-band 5-kW Klystron with Multi-cell Output cavity Jihyun Hwang Department of Physics, POSTECH, Pohang 37673 Sung-Ju Park and Won Namkung Pohang Accelerator Laboratory, Pohang 37874

More information

Bioimaging of cells and tissues using accelerator-based sources

Bioimaging of cells and tissues using accelerator-based sources Analytical and Bioanalytical Chemistry Electronic Supplementary Material Bioimaging of cells and tissues using accelerator-based sources Cyril Petibois, Mariangela Cestelli Guidi Main features of Free

More information

PROGRESS IN INDUCTION LINACS

PROGRESS IN INDUCTION LINACS PROGRESS IN INDUCTION LINACS George J. Caporaso Lawrence Livermore National Laboratory, Livermore, California 94550 USA Abstract This presentation will be a broad survey of progress in induction technology

More information

Advance on High Power Couplers for SC Accelerators

Advance on High Power Couplers for SC Accelerators Advance on High Power Couplers for SC Accelerators Eiji Kako (KEK, Japan) IAS conference at Hong Kong for High Energy Physics, 2017, January 23th Eiji KAKO (KEK, Japan) IAS at Hong Kong, 2017 Jan. 23 1

More information

Experience with 3.9 GHz cavity HOM couplers

Experience with 3.9 GHz cavity HOM couplers Cornell University, October 11-13, 2010 Experience with 3.9 GHz cavity HOM couplers T. Khabiboulline, N. Solyak, FNAL. 3.9 GHz cavity general parameters Third harmonic cavity (3.9GHz) was proposed to compensate

More information