R.K.YADAV. 2. Explain with suitable sketch the operation of two-cavity Klystron amplifier. explain the concept of velocity and current modulations.

Size: px
Start display at page:

Download "R.K.YADAV. 2. Explain with suitable sketch the operation of two-cavity Klystron amplifier. explain the concept of velocity and current modulations."

Transcription

1 Question Bank DEPARTMENT OF ELECTRONICS AND COMMUNICATION SUBJECT- MICROWAVE ENGINEERING(EEC-603) Unit-III 1. What are the high frequency limitations of conventional tubes? Explain clearly. 2. Explain with suitable sketch the operation of two-cavity Klystron amplifier. explain the concept of velocity and current modulations. 3. Explain how velocity modulation creates density modulation in a Klystron amplifier. How does the reflex Klystron differ from amplifier Klystron? 4. Explain with schematic diagram the operation of Reflex Klystron Oscillator. Draw Applegate diagram for the Reflex Klystron Oscillator. 5. Obtain relation between repeller voltage and frequency of operation of Reflex Klystron Oscillator.. 6. What are modes in Reflex Klystron oscillator? Sketch output power and frequency of Klystron versus repeller voltage for Reflex Klystron. 7. Derive an expression for the efficiency of the Klystron amplifier. 8. A two-cavity Klystron amplifier has the following parameters: Vo = 1000V, Ro = 40 K ohms, Io = 25 ma, f = 3 GHz. Gap spacing in either cavity (d) = 1 mm. Spacing between the two cavities (L) = 4 cms. Effective shunt impedance, excluding beam loading (Rsh) = 3 p K ohms. Find (i) The input gap voltage to give maximum voltage (V2) (ii) The voltage gain, neglecting the beam loading in the output cavity, (iii) The efficiency of the amplifier, neglecting beam loading. (Ans: 96.5V, 8.595, 46.2%) 9. A two-cavity Klystron operates at 4.5GHz. The dc beam voltage is 10KV. Cavity gap spacing is 2mm. For a given input, the magnitude of the gap voltage is 100V. Calculate the time the electrons are in the gap, the transit angle, and the range of velocities of electrons as they leave the gap region. (Ans psec, 0.95 rad, 0.598x108m/s and 0.588x108 m/s). 10. Describe with suitable diagram the following Microwave (i) Travelling wave tube (TWT) (ii) Magnetron. 11. A Reflex Klystron is operating at 9GHz and the mode number n is 2. Calculate the transit time in secs.

2 12. What is a re-entrant cavity? Explain it. In Reflex Klystron, the re-entrant cavity is resonant at 9 GHz. The half power frequencies are separated? 15 MHz from the centre frequency. Calculate the loaded Q for the cavity. 13. Describe qualitatively the mechanism of operation of a travelling wave tube amplifier. How the oscillations are prevented in practice. 14. What is a slow wave structure? Give some typical structures, which support slow waves. 15. Explain the working of a magnetron oscillator. With the help of the Rieke diagram, discuss its performance under varying load conditions. What is the typical range of efficiencies obtainable in a magnetron? 16. What is strapping of Magnetrons? Describe the techniques used in magnetrons for mode separation and for tuning its output frequency. 17. What is meant by π-mode operation in a magnetron? Describe how strapping separates the? mode from other possible modes. 18. With the aid of a sketch, explain the operation of a backward-wave oscillator (BWO). 19. A cylindrical magnetron has the following parameters. Inner radius = 0.15m Outer radius = 0.45m Magnetic flux density = 1.2 milliwebers/m2 (a) Calculate the Hull cut off voltage (b) Determine the cut off magnetic flux density of the beam voltage is 6KV. UNIT-I 1. The guide wavelength of copper rectangular waveguide with 10GHz is 1.2λ. The guide is required to transmit 500W. If (b/a)=0.5, compute Emax, current density in each wall of waveguide, attenuation. 2. If a = 3 cm and b = 1.2 cm, calculate the cutoff frequencies of the TE10, TE01, and TE11 modes, assuming that the waveguide is filled with air. Calculate the guide wavelength, the phase velocity, and the group velocity, for propagating signals having a frequency 100MHz above the TE10 mode cutoff frequency. [35%] 3. Find the field component present in TM 11 mode of propagation? 4. For a rectangular waveguide of internal dimension X cm operating at 5GHz, find out the propagation constant and phase velocity for TE 10 and TE 11 mode of propagation. 5. What are various types of attenuation taking place in any waveguide? 6. An air filled cylindrical waveguide of internal diameter 5cm supports TE 11 mode of propagation. If p 11 = 1.84 find out the cut-off frequency, guide wavelength and wave impedance at 3GHz.

3 7. Define quality factor of any resonator. Design a rectangular cavity to have resonant frequency of 10.2GHz having dimensions a = d and b = a/2. 8. Why there is non-existence of TEM modes in a rectangular waveguides? Explain 9. Write short notes on:- Microstrip lines 10. Derive the expression for field equations under TM mode in rectangular waveguide. 11. Show that the TM 01 and TM 10 mode in a rectangular waveguide do not exist. 12. A rectangular waveguide is designed to propagate the dominant mode TE 10 at a frequency of 5GHz. The cut-off frequency is 0.8 of the signal frequency. The ratio of the guide height to width is 2. The time average power flowing through the guide is 1KW. Determine the magnitude of electric and magnetic intensities in the guide and indicate where these occur in the guide. 13. An air-filled circular waveguide is to be operated at a frequency of 6GHz and is to have dimension such that f c = 0.8f for the dominant mode. Determine- A)Diameter of the guide.b)wavelength λ g and the phase velocity v g in the guide. 14. Explain how rectangular waveguide can act as a High Pass Filter. 15. Write short notes on:- Waveguide excitation 16. Write short notes on:- Dominant and degenerate modes. UNIT II 1. Explain the working of a multi-hole directional coupler and define the following terms in reference to a multi-hole directional coupler - i) Directivity ii) Coupling factor. 2. What are S-parameters? Derive S-parameter of Hybrid Tee if all the ports of the Tee are matched and power is incident from port 3 only? 3. What is Circulator? How can a four port Circulator be realized using two magic tee & a Gyrator? 4. Name the reciprocal and non-reciprocal microwave devices. Explain any one. 5. What do you mean by E-plane and H-plane Tee? Compare their propagation characteristics.

4 6. Write short notes on :Hybrid Ring 7. Determine the scattering parameter for a 10dB directional coupler. The directivity D = 30dB. Assume that it is lossless and the VSWR at each port is 1.0 under matched conditions. Designate the ports in the main guide as 1 and 2 while the ports in the auxiliary guide as 3 and What is attenuation? Name various types of attenuators. Discuss any one type. 9. Describe the principle and mechanism of operation of rotary attenuator. 10. Describe in detail the principle and working in of a rotary phase changer. 11. Write short notes on (A) Variable and fixed attenuators (B) Slotted waveguide section. 12. Derive the S-matrix for a loss-less reciprocal, 4-port directional coupler. 13. Explain Faraday rotation in ferrites. What is the expression for rotation per unit length? Mention its uses. 14. The input power to a 20dB attenuator is 100mW. Find the output power and the power absorbed by the attenuator. 15. A 5 db waveguide attenuator is specified as having a VSWR of 1.2. Assuming that it is reciprocal, find its S-parameters. 16. Determine s-parameters of a 10dB directional coupler of directional coupler of directivity 30dB.Assuming directivity of coupler loss-less VSWR at each port under matched condition is unity. UNIT-IV 1. Explain the working of the following: i) IMPATT ii) Microwave Bipolar Transistor Diode iii) Tunnel Diode. 2. What is transferred electron effect and how it is used for generation of microwave signal in Gunn diode. Compare it with tunnel diode. 3. Describe the Ridley-Watkins-Hilsum theory. 4. List and explain two performance characteristics of MASER. 5. Explain the differences between microwave transistors and transferred electron devices (TEDs).

5 6. Describe the following: (i) Gunn effect, (ii) high-field domain theory, (iii) Two- Valley theory. 7. Define negative differential mobility, and state the necessary conditions for transferred electron effect to occur. 8. Describe the modes of operation for Gunn diodes. 9. For a transit-time domain mode, the domain velocity is equal to the carrier drift velocity and is about 107 cm/s. Determine the drift length of the diode at a frequency of 8GHz. 10. Describe how a gunn diode can be used in an oscillator circuit. 11. Describe the following (a) Read diode 12. Explain the construction and working of IMPATT diode. 13. Explain how necessary conditions are achieved for the oscillators to take place In IMPATT Diode. 14. Describe the following: (c) TRAPATT diode (d) BARITT diode 15. An IMPATT diode has a drift length of 2?m. Calculate (i) the drift time of the carriers, and (ii) the operating frequency of the IMPATT diode. 16. Describe an oscillator circuit using IMPATT diode. UNIT 5 1. Discuss methods for measurement of low and high microwave power. 2. How VSWR of the unknown load is measured with the help of a slotted wave carriage using microwave bench set-up. Draw of the block diagram of the set-up. 3. Explain double minimum method for measurement of VSWR. 4. Explain Attenuation loss measurement. 5. Explain the various methods of measuring Microwave frequencies. 6. Explain the working principle of Microwave Power Meter. 7. Explain the various methods of measuring microwave power. 8. Explain the various methods of measuring Wavelength. 9. Explain the various methods of measuring Impedance. 10. Explain Insertion loss measurement.

3. (a) Derive an expression for the Hull cut off condition for cylindrical magnetron oscillator. (b) Write short notes on 8 cavity magnetron [8+8]

3. (a) Derive an expression for the Hull cut off condition for cylindrical magnetron oscillator. (b) Write short notes on 8 cavity magnetron [8+8] Code No: RR320404 Set No. 1 1. (a) Compare Drift space bunching and Reflector bunching with the help of Applegate diagrams. (b) A reflex Klystron operates at the peak of n=1 or 3 / 4 mode. The dc power

More information

St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad

St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad 500014. Department of Electronics and Communication Engineering SUB: MICROWAVE ENGINEERING SECTION: ECE IV A & B NAME OF THE FACULTY: S RAVI KUMAR,T.SUDHEER

More information

EC 1402 Microwave Engineering

EC 1402 Microwave Engineering SHRI ANGALAMMAN COLLEGE OF ENGINEERING & TECHNOLOGY (An ISO 9001:2008 Certified Institution) SIRUGANOOR,TRICHY-621105. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC 1402 Microwave Engineering

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING TUTORIAL BANK Name : MICROWAVE ENGINEERING Code : A70442 Class : IV B. Tech I

More information

. From the above data, determine the network is symmetric or not.

. From the above data, determine the network is symmetric or not. Velammal College of Engineering and Technology, Madurai Department of Electronics and Communication Engineering Question Bank Subject Name: EC2353 Antennas And Wave Propagation Faculty: Mrs G VShirley

More information

QUESTION BANK SUB. NAME: RF & MICROWAVE ENGINEERING SUB. CODE: EC 2403 BRANCH/YEAR/: ECE/IV UNIT 1 TWO PORT RF NETWORKS- CIRCUIT REPRESENTATION

QUESTION BANK SUB. NAME: RF & MICROWAVE ENGINEERING SUB. CODE: EC 2403 BRANCH/YEAR/: ECE/IV UNIT 1 TWO PORT RF NETWORKS- CIRCUIT REPRESENTATION QUESTION BANK SUB. NAME: RF & MICROWAVE ENGINEERING SUB. CODE: EC 2403 SEM: VII BRANCH/YEAR/: ECE/IV UNIT 1 TWO PORT RF NETWORKS- CIRCUIT REPRESENTATION 1. What is RF? 2. What is an RF tuner? 3. Define

More information

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT NAME & CODE: EC2403 & RF AND MICROWAVE ENGINEERING UNIT I

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT NAME & CODE: EC2403 & RF AND MICROWAVE ENGINEERING UNIT I FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai -625 020 An ISO 9001:2008 Certified Institution DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

More information

MICROWAVE ENGINEERING LAB VIVA QUESTIONS AND ANSWERS

MICROWAVE ENGINEERING LAB VIVA QUESTIONS AND ANSWERS MICROWAVE ENGINEERING LAB VIVA QUESTIONS AND ANSWERS. Why can t conventional tubes be used at microwave frequencies? Conventional tubes can t be used at microwave frequencies because of transit time effect.

More information

MICROWAVE ENGINEERING-II. Unit- I MICROWAVE MEASUREMENTS

MICROWAVE ENGINEERING-II. Unit- I MICROWAVE MEASUREMENTS MICROWAVE ENGINEERING-II Unit- I MICROWAVE MEASUREMENTS 1. Explain microwave power measurement. 2. Why we can not use ordinary diode and transistor in microwave detection and microwave amplification? 3.

More information

SHORT QUESTIONS MICROWAVE ENGINEERING UNIT I

SHORT QUESTIONS MICROWAVE ENGINEERING UNIT I SHORT QUESTIONS MICROWAVE ENGINEERING UNIT I 1. Define Microwave. Microwaves are generally described as electromagnetic waves with frequencies that range from approximately 1GHz to 300 GHz. Therefore,

More information

EC6503 Transmission Lines and WaveguidesV Semester Question Bank

EC6503 Transmission Lines and WaveguidesV Semester Question Bank UNIT I TRANSMISSION LINE THEORY A line of cascaded T sections & Transmission lines General Solution, Physicasignificance of the equations 1. Derive the two useful forms of equations for voltage and current

More information

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM COURSE TITLE: MICROWAVE & RADAR ENGINEERING (COURSE CODE: )

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM COURSE TITLE: MICROWAVE & RADAR ENGINEERING (COURSE CODE: ) GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM COURSE TITLE: MICROWAVE & RADAR ENGINEERING (COURSE CODE: 3351103) Diploma Programme in which this course is offered Electronics and

More information

MICROWAVE AND RADAR LAB (EE-322-F) LAB MANUAL VI SEMESTER

MICROWAVE AND RADAR LAB (EE-322-F) LAB MANUAL VI SEMESTER 1 MICROWAVE AND RADAR LAB (EE-322-F) MICROWAVE AND RADAR LAB (EE-322-F) LAB MANUAL VI SEMESTER RAO PAHALD SINGH GROUP OF INSTITUTIONS BALANA(MOHINDERGARH)123029 Department Of Electronics and Communication

More information

MAHAVEER INSTITUTE OF SCIENCE & TECHNOLOGY. Microwave and Digital Communications Lab. Department Of Electronics and Communication Engineering

MAHAVEER INSTITUTE OF SCIENCE & TECHNOLOGY. Microwave and Digital Communications Lab. Department Of Electronics and Communication Engineering MAHAVEER INSTITUTE OF SCIENCE & TECHNOLOGY Microwave and Digital Communications Lab Department Of Electronics and Communication Engineering MICROWAVE ENGINEERING LAB List of Experiments: 1.Reflex Klystron

More information

Microwave Devices and Circuit Design

Microwave Devices and Circuit Design Microwave Devices and Circuit Design Ganesh Prasad Srivastava Vijay Laxmi Gupta MICROWAVE DEVICES and CIRCUIT DESIGN GANESH PRASAD SRIVASTAVA Professor (Retired) Department of Electronic Science University

More information

MICROWAVE MICROWAVE TRAINING BENCH COMPONENT SPECIFICATIONS:

MICROWAVE MICROWAVE TRAINING BENCH COMPONENT SPECIFICATIONS: Microwave section consists of Basic Microwave Training Bench, Advance Microwave Training Bench and Microwave Communication Training System. Microwave Training System is used to study all the concepts of

More information

Time: 3 hours Max Marks: 70 Answer any FIVE questions All questions carry equal marks *****

Time: 3 hours Max Marks: 70 Answer any FIVE questions All questions carry equal marks ***** Code: 9A04601 DIGITAL COMMUNICATIONS (Electronics and Communication Engineering) 1 (a) Explain in detail about non-uniform quantization. (b) What is the disadvantage of uniform quantization over the non-uniform

More information

(i) Determine the admittance parameters of the network of Fig 1 (f) and draw its - equivalent circuit.

(i) Determine the admittance parameters of the network of Fig 1 (f) and draw its - equivalent circuit. I.E.S-(Conv.)-1995 ELECTRONICS AND TELECOMMUNICATION ENGINEERING PAPER - I Some useful data: Electron charge: 1.6 10 19 Coulomb Free space permeability: 4 10 7 H/m Free space permittivity: 8.85 pf/m Velocity

More information

MULTIMEDIA UNIVERSITY FACULTY OF ENGINEERING LAB SHEET

MULTIMEDIA UNIVERSITY FACULTY OF ENGINEERING LAB SHEET MULTIMEDIA UNIVERSITY FACULTY OF ENGINEERING LAB SHEET ELECTROMAGNETIC THEORY EMF016 MW1 MICROWAVE FREQUENCY AND SWR MEASUREMENTS EM Theory Faculty of Engineering, Multimedia University 1 EXPERIMENT MW1:

More information

Waveguides. Metal Waveguides. Dielectric Waveguides

Waveguides. Metal Waveguides. Dielectric Waveguides Waveguides Waveguides, like transmission lines, are structures used to guide electromagnetic waves from point to point. However, the fundamental characteristics of waveguide and transmission line waves

More information

RAJIV GANDHI COLLEGE OF ENGINEERING AND TECHNOLOGY Kirumampakkam,Puducherry DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

RAJIV GANDHI COLLEGE OF ENGINEERING AND TECHNOLOGY Kirumampakkam,Puducherry DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING RAJIV GANDHI COLLEGE OF ENGINEERING AND TECHNOLOGY Kirumampakkam,Puducherry-607402 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK FOR EC T55 - TRANSMISSION LINES AND WAVEGUIDES G.LAXMINARAYANAN,

More information

LESSON PLAN. LESSON PLAN DURATION : - 15 weeks (from JULY 2018 to NOVEMBER 2018)

LESSON PLAN. LESSON PLAN DURATION : - 15 weeks (from JULY 2018 to NOVEMBER 2018) LESSON PLAN NAME OF THE FACULTY DISCIPLINE SEMESTER SUBJECT : - HIMANSHU YADAV : - ECE : - FIFTH : - MICROWAVE ENGG LESSON PLAN DURATION : - 15 weeks (from JULY 2018 to NOVEMBER 2018) WORK LOAD (LECTURE/PRACTICAL)

More information

PANIMALAR ENGINEERING COLLEGE

PANIMALAR ENGINEERING COLLEGE S.NO DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SUBJECT CODE 1 EC6701 2 EC6702 3 EC6703 4 IT6005 5 EC6011 QUESTION BANK SEVENTH SEMESTER (2017-2018) SUBJECT NAME RF & MICROWAVE ENGINEERING

More information

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur-603 203 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6503 TRANSMISSION LINES AND WAVEGUIDES YEAR / SEMESTER: III / V ACADEMIC YEAR:

More information

Dhanalakshmi College of Engineering Department of ECE EC6701 RF and Microwave Engineering Unit 4 Part A

Dhanalakshmi College of Engineering Department of ECE EC6701 RF and Microwave Engineering Unit 4 Part A Dhanalakshmi College of Engineering Department of ECE EC6701 RF and Microwave Engineering Unit 4 Part A 1. What is magnetron? [N/D-16] an electron tube for amplifying or generating microwaves, with the

More information

Hours / 100 Marks Seat No.

Hours / 100 Marks Seat No. 17656 16117 3 Hours / 100 Seat No. Instructions (1) All Questions are Compulsory. (2) Answer each next main Question on a new page. (3) Assume suitable data, if necessary. (4) Use of Non-programmable Electronic

More information

ELEC4604. RF Electronics. Experiment 2

ELEC4604. RF Electronics. Experiment 2 ELEC4604 RF Electronics Experiment MICROWAVE MEASUREMENT TECHNIQUES 1. Introduction and Objectives In designing the RF front end of a microwave communication system it is important to appreciate that the

More information

I.E.S-(Conv.)-1996 Some useful data:

I.E.S-(Conv.)-1996 Some useful data: I.E.S-(Conv.)-1996 ELECTRONICS AND TELECOMMUNICATION ENGINEERING PAPER - I Time allowed: 3 Hours Maximum Marks : 200 Candidates should attempt question ONE which is compulsory and any FOUR of the remaining

More information

7. Experiment K: Wave Propagation

7. Experiment K: Wave Propagation 7. Experiment K: Wave Propagation This laboratory will be based upon observing standing waves in three different ways, through coaxial cables, in free space and in a waveguide. You will also observe some

More information

VIVA-VOCE QUESTIONS MICROWAVE LAB

VIVA-VOCE QUESTIONS MICROWAVE LAB VIVA-VOCE QUESTIONS MICROWAVE LAB DAWAR PARUL EXPERIMENT NO.-2 1) How are wavelength measured? 2) How do you measure wavelength in a compression wave? 3) What is the units of measure for wavelength? 4)

More information

MICROWAVE ENGINEERING

MICROWAVE ENGINEERING MICROWAVE ENGINEERING (Including Measurement Techniques and Lab. Mannual) PROF. P.K. CHATURVEDI M.Tech., Ph.D; M.B.A.(U.K.) Dean Skyline Institute of Engg. & Tech. Greater Noida (U.P.) Formerly Director

More information

Γ L = Γ S =

Γ L = Γ S = TOPIC: Microwave Circuits Q.1 Determine the S parameters of two port network consisting of a series resistance R terminated at its input and output ports by the characteristic impedance Zo. Q.2 Input matching

More information

APPLIED ELECTROMAGNETICS: EARLY TRANSMISSION LINES APPROACH

APPLIED ELECTROMAGNETICS: EARLY TRANSMISSION LINES APPROACH APPLIED ELECTROMAGNETICS: EARLY TRANSMISSION LINES APPROACH STUART M. WENTWORTH Auburn University IICENTBN Nlfll 1807; WILEY 2 OO 7 ; Ttt^TlLtftiTTu CONTENTS CHAPTER1 Introduction 1 1.1 1.2 1.3 1.4 1.5

More information

PRINCIPLES OF RADAR. By Members of the Staff of the Radar School Massachusetts Institute of Technology. Third Edition by J.

PRINCIPLES OF RADAR. By Members of the Staff of the Radar School Massachusetts Institute of Technology. Third Edition by J. PRINCIPLES OF RADAR By Members of the Staff of the Radar School Massachusetts Institute of Technology Third Edition by J. Francis Reintjes ASSISTANT PBOFESSOR OF COMMUNICATIONS MASSACHUSETTS INSTITUTE

More information

Chapter 13: Microwave Communication Systems

Chapter 13: Microwave Communication Systems Chapter 13: Microwave Communication Systems Chapter 13 Objectives At the conclusion of this chapter, the reader will be able to: Describe the differences between microwave and lower-frequency communications

More information

Microwaves and Radar MICROWAVES AND RADAR

Microwaves and Radar MICROWAVES AND RADAR MICROWAVES AND RADAR SYLLABUS Subject Code : IA Marks : 25 No. of Lecture Hrs/Week : 04 Exam Hours: 03 Total no. of Lecture Hrs : 52 Exam Marks: 100 UNIT - 1 PART - A MICROWAVE TRANSMISSION LINES: Introduction,

More information

UNIT I MICROWAVE NETWORK THEORY

UNIT I MICROWAVE NETWORK THEORY UNIT I MICROWAVE NETWORK THEORY Introduction Microwave frequency range, applications of microwaves Scattering matrix representation of multi port network properties of S-parameters S matrix of a two port

More information

MICROWAVE AND RADAR ENGINEERING (EE 322 F) LIST OF EXPERIMENTS. S.NO. NAME OF THE EXPERIMENT Page No.

MICROWAVE AND RADAR ENGINEERING (EE 322 F) LIST OF EXPERIMENTS. S.NO. NAME OF THE EXPERIMENT Page No. LIST OF EXPERIMENTS S.NO. NAME OF THE EXPERIMENT Page No. 1 To study wave guide components. 1-3 2 To study the characteristics of Gunn oscillator &Gun diode as 4-6 modulated source. 3 Study of wave guide

More information

Navy Electricity and Electronics Training Series

Navy Electricity and Electronics Training Series NONRESIDENT TRAINING COURSE Navy Electricity and Electronics Training Series Module 11 Microwave Principles NAVEDTRA 14183 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

More information

Microwave Engineering Third Edition

Microwave Engineering Third Edition Microwave Engineering Third Edition David M. Pozar University of Massachusetts at Amherst WILEY John Wiley & Sons, Inc. ELECTROMAGNETIC THEORY 1 1.1 Introduction to Microwave Engineering 1 Applications

More information

Microwave Fundamentals A Survey of Microwave Systems and Devices p. 3 The Relationship of Microwaves to Other Electronic Equipment p.

Microwave Fundamentals A Survey of Microwave Systems and Devices p. 3 The Relationship of Microwaves to Other Electronic Equipment p. Microwave Fundamentals A Survey of Microwave Systems and Devices p. 3 The Relationship of Microwaves to Other Electronic Equipment p. 3 Microwave Systems p. 5 The Microwave Spectrum p. 6 Why Microwave

More information

Power Dividers and Directional Couplers (7)

Power Dividers and Directional Couplers (7) Microwave Circuits 1 Power Dividers and Directional Couplers (7) The T-Junction Power Divider(7.2) Lossless Divider 1. Lossless 2. Match at the input port. 3. Mismatch at the output ports. 4. No isolation

More information

Module IV, Lecture 2 DNP experiments and hardware

Module IV, Lecture 2 DNP experiments and hardware Module IV, Lecture 2 DNP experiments and hardware tunnel diodes, Gunn diodes, magnetrons, traveling-wave tubes, klystrons, gyrotrons Dr Ilya Kuprov, University of Southampton, 2013 (for all lecture notes

More information

Waveguides GATE Problems

Waveguides GATE Problems Waveguides GATE Problems One Mark Questions. The interior of a 20 20 cm cm rectangular waveguide is completely 3 4 filled with a dielectric of r 4. Waves of free space wave length shorter than..can be

More information

VELAMMAL ENGINEERING COLLEGE, CHENNAI-66 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

VELAMMAL ENGINEERING COLLEGE, CHENNAI-66 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING VELAMMAL ENGINEERING COLLEGE, CHENNAI-66 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING TUTORIAL SHEET- 1, 2, 3, 4 & 5 UNIT 1 TRANSMISSION LINE THEORY 1. A transmission line has a characteristic

More information

The cross directional coupler

The cross directional coupler Fundamentals General properties of waveguide (directional) couplers is a special type of directional coupler. Thus, it makes sense to follow with a general explanation applicable to the function of all

More information

Academic Course Description. EC1022 Microwave and Optical Communications Sixth Semester, (even semester)

Academic Course Description. EC1022 Microwave and Optical Communications Sixth Semester, (even semester) Academic Course Description EC1022 Microwave and Optical Communications SRM University Faculty of Engineering and Technology Department of Electronics and Communication Engineering EC1022 Microwave and

More information

DESIGN AND FABRICATION OF CAVITY RESONATORS

DESIGN AND FABRICATION OF CAVITY RESONATORS &2@?%3 DESIGN AND FABRICATION OF CAVITY RESONATORS CHAPTER 3 DESIGN AND FABRICATION OFCAVITY RESONATORS 3.1 Introduction In the cavity perturbation techniques, generally rectangular or cylindrical waveguide

More information

Fundamentals of Electromagnetics With Engineering Applications by Stuart M. Wentworth Copyright 2005 by John Wiley & Sons. All rights reserved.

Fundamentals of Electromagnetics With Engineering Applications by Stuart M. Wentworth Copyright 2005 by John Wiley & Sons. All rights reserved. Figure 7-1 (p. 339) Non-TEM mmode waveguide structures include (a) rectangular waveguide, (b) circular waveguide., (c) dielectric slab waveguide, and (d) fiber optic waveguide. Figure 7-2 (p. 340) Cross

More information

High Power, Magnet-free, Waveguide Based Circulator Using Angular-Momentum Biasing of a Resonant Ring

High Power, Magnet-free, Waveguide Based Circulator Using Angular-Momentum Biasing of a Resonant Ring SLAC-R-1080 High Power, Magnet-free, Waveguide Based Circulator Using Angular-Momentum Biasing of a Resonant Ring Jeffrey Neilson and Emilio Nanni August 18, 2017 Prepared for Calabazas Creek Research,

More information

TOPIC 2 WAVEGUIDE AND COMPONENTS

TOPIC 2 WAVEGUIDE AND COMPONENTS TOPIC 2 WAVEGUIDE AND COMPONENTS COURSE LEARNING OUTCOME (CLO) CLO1 Explain clearly the generation of microwave, the effects of microwave radiation and the propagation of electromagnetic in a waveguide

More information

UNIT I TWO PORT NETWORK THEORY PART A- C401.1

UNIT I TWO PORT NETWORK THEORY PART A- C401.1 EC6701- RF and Microwave Engineering UNIT I TWO PORT NETWORK THEORY PART A- C401.1 1. What are the limitations in measuring Z,Y and ABCD parameters at microwave frequencies. (NOV 2017) (i) Equipment is

More information

For the mechanical system of figure shown above:

For the mechanical system of figure shown above: I.E.S-(Conv.)-00 ELECTRONICS AND TELECOMMUNICATION ENGINEERING PAPER - I Time Allowed: Three Hours Maximum Marks : 0 Candidates should attempt any FIVE questions. Some useful data: Electron charge : 1.6

More information

MICROWAVE ENGINEERING

MICROWAVE ENGINEERING MICROWAVE ENGINEERING SANJEEVA GUPTA B.Sc. (Electrical) Electronics Engineering DINESH ARORA B.Sc. (Electrical) Electronics Engineering SATYA BHUSHAN SARNA B.Sec. (Electrical)Electronics Engineering PRASHANT

More information

Dhanalakshmi College of Engineering Department of ECE EC6701 RF and Microwave Engineering Unit 5 Microwave Measurements Part A

Dhanalakshmi College of Engineering Department of ECE EC6701 RF and Microwave Engineering Unit 5 Microwave Measurements Part A Dhanalakshmi College of Engineering Department of ECE EC6701 RF and Microwave Engineering Unit 5 Microwave Measurements Part A 1. What is the principle by which high power measurements could be done by

More information

EC Transmission Lines And Waveguides

EC Transmission Lines And Waveguides EC6503 - Transmission Lines And Waveguides UNIT I - TRANSMISSION LINE THEORY A line of cascaded T sections & Transmission lines - General Solution, Physical Significance of the Equations 1. Define Characteristic

More information

Experiment-4 Study of the characteristics of the Klystron tube

Experiment-4 Study of the characteristics of the Klystron tube Experiment-4 Study of the characteristics of the Klystron tube OBJECTIVE To study the characteristics of the reflex Klystron tube and to determine the its electronic tuning range EQUIPMENTS Klystron power

More information

EC TRANSMISSION LINES AND WAVEGUIDES TRANSMISSION LINES AND WAVEGUIDES

EC TRANSMISSION LINES AND WAVEGUIDES TRANSMISSION LINES AND WAVEGUIDES TRANSMISSION LINES AND WAVEGUIDES UNIT I - TRANSMISSION LINE THEORY 1. Define Characteristic Impedance [M/J 2006, N/D 2006] Characteristic impedance is defined as the impedance of a transmission line measured

More information

ECEN 4634/5634, MICROWAVE AND RF LABORATORY

ECEN 4634/5634, MICROWAVE AND RF LABORATORY ECEN 4634/5634, MICROWAVE AND RF LABORATORY Final Exam December 18, 2017 7:30-10:00pm 150 minutes, closed book, 1 sheet allowed, no calculators (estimates need to be within 3dB) Part 1 (60%). Briefly answer

More information

Microwave Circuit Analysis and Amplifier Design

Microwave Circuit Analysis and Amplifier Design Microwave Circuit Analysis and Amplifier Design SAMUEL Y. LIAO Professor of Electrical Engineering California State University, Fresno PRENTICE-HALL, INC., Englewood Cliffs, New Jersey 07632 Contents PREFACE

More information

RF AND MICROWAVE ENGINEERING

RF AND MICROWAVE ENGINEERING RF AND MICROWAVE ENGINEERING FUNDAMENTALS OF WIRELESS COMMUNICATIONS Frank Gustrau Dortmund University of Applied Sciences and Arts, Germany WILEY A John Wiley & Sons, Ltd., Publication Preface List of

More information

SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY SCHOOL OF ELECTRONICS AND ELECTRICAL ENGINEERING DEPARTMENT OF TCE COURSE PLAN

SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY SCHOOL OF ELECTRONICS AND ELECTRICAL ENGINEERING DEPARTMENT OF TCE COURSE PLAN SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY SCHOOL OF ELECTRONICS AND ELECTRICAL ENGINEERING DEPARTMENT OF TCE COURSE PLAN Course Code : TE1018 Course Title : Microwave Radio And Optical Fiber

More information

I.E.S-(Conv.)-1992 Time Allowed : Three Hours

I.E.S-(Conv.)-1992 Time Allowed : Three Hours I.E.S-(Conv.)-1992 ELECTRONICS AND TELECOMMUNICATION ENGINEERING PAPER - I Time Allowed : Three Hours Maximum Marks: 0 Candidates should attempt question No. 1 which is compulsory and any FOUR of the remaining

More information

Loop and Slot Antennas

Loop and Slot Antennas Loop and Slot Antennas Prof. Girish Kumar Electrical Engineering Department, IIT Bombay gkumar@ee.iitb.ac.in (022) 2576 7436 Loop Antenna Loop antennas can have circular, rectangular, triangular or any

More information

Photograph of the rectangular waveguide components

Photograph of the rectangular waveguide components Waveguides Photograph of the rectangular waveguide components BACKGROUND A transmission line can be used to guide EM energy from one point (generator) to another (load). A transmission line can support

More information

RF Transport. Stefan Choroba, DESY, Hamburg, Germany

RF Transport. Stefan Choroba, DESY, Hamburg, Germany RF Transport Stefan Choroba, DESY, Hamburg, Germany Overview Introduction Electromagnetic Waves in Waveguides TE 10 -Mode Waveguide Elements Waveguide Distributions Limitations, Problems and Countermeasures

More information

Microwave Engineering

Microwave Engineering Microwave Circuits 1 Microwave Engineering 1. Microwave: 300MHz ~ 300 GHz, 1 m ~ 1mm. a. Not only apply in this frequency range. The real issue is wavelength. Historically, as early as WWII, this is the

More information

Dinesh Micro Waves & Electronics

Dinesh Micro Waves & Electronics Wave Guide Components RECTANGULAR WAVE GUDES Dinesh Microwaves and Electronics manufacturers of high power waveguide in the microwaves industry, this experience had resulted in designing, manufacturing

More information

Microwave and optical systems Introduction p. 1 Characteristics of waves p. 1 The electromagnetic spectrum p. 3 History and uses of microwaves and

Microwave and optical systems Introduction p. 1 Characteristics of waves p. 1 The electromagnetic spectrum p. 3 History and uses of microwaves and Microwave and optical systems Introduction p. 1 Characteristics of waves p. 1 The electromagnetic spectrum p. 3 History and uses of microwaves and optics p. 4 Communication systems p. 6 Radar systems p.

More information

Christo Ananth, Assistant Professor, Department of ECE, Francis Xavier Engineering College, Tirunelveli, India

Christo Ananth, Assistant Professor, Department of ECE, Francis Xavier Engineering College, Tirunelveli, India SSN 2394-3777 (Print) SSN 2394-3785 (Online) Available online at www.ijartet.com nternational Journal of Advanced Research Trends in Engineering and Technology (JARTET) Vol., ssue V, July 205 Monograph

More information

Projects in microwave theory 2017

Projects in microwave theory 2017 Electrical and information technology Projects in microwave theory 2017 Write a short report on the project that includes a short abstract, an introduction, a theory section, a section on the results and

More information

MULTIMEDIA UNIVERSITY FACULTY OF ENGINEERING LAB SHEET

MULTIMEDIA UNIVERSITY FACULTY OF ENGINEERING LAB SHEET MULTIMEDIA UNIVERSITY FACULTY OF ENGINEERING LAB SHEET ELECTROMAGNETIC THEORY EMF2016 MW2 IMPEDANCE MEASUREMENT AND MATCHING EM Theory Faculty of Engineering, Multimedia University 2 EXPERIMENT MW2: IMPEDANCE

More information

LRL Model 550B-SS Microwave Training Kit

LRL Model 550B-SS Microwave Training Kit MICROWAVES FOR EVERYONE LRL Model 550B-SS Microwave Training Kit Microwave Training Kit 5 Experiments I-95 Industrial Park 651 Winks Lane Bensalem, PA 1900 800.53.399 15.638.1100 3rd edition INITIAL SET-UP

More information

SRI VENKATESWARA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Date : UNIVERSITY QUESTIONS AND ANSWERS

SRI VENKATESWARA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Date : UNIVERSITY QUESTIONS AND ANSWERS SRI VENKATESWARA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Date : 02.07.2015 UNIVERSITY QUESTIONS AND ANSWERS Subject : Transmission lines & Wave Guides Sub Code :

More information

MICROWAVE COMMUNICATION LAB

MICROWAVE COMMUNICATION LAB SRI SUKHMANI INSTITUTE OF ENGINEERING AND TECHNOLOGY, DERA BASSI (MOHALI) MICROWAVE COMMUNICATION LAB Laboratory Manual SRI SUKHMANI INSTITUTE OF ENGINEERING & TECHNOLOGY DERA BASSI DEPARTMENT: ELECTRONICS

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK V SEMESTER EC6503 TRANSMISSION LINES AND WAVEGUIDES Regulation 2013

More information

EC ANTENNA AND WAVE PROPAGATION

EC ANTENNA AND WAVE PROPAGATION EC6602 - ANTENNA AND WAVE PROPAGATION FUNDAMENTALS PART-B QUESTION BANK UNIT 1 1. Define the following parameters w.r.t antenna: i. Radiation resistance. ii. Beam area. iii. Radiation intensity. iv. Directivity.

More information

Magnetron. Physical construction of a magnetron

Magnetron. Physical construction of a magnetron anode block interaction space cathode filament leads Magnetron The magnetron is a high-powered vacuum tube that works as self-excited microwave oscillator. Crossed electron and magnetic fields are used

More information

UNIT - V WAVEGUIDES. Part A (2 marks)

UNIT - V WAVEGUIDES. Part A (2 marks) Part A (2 marks) UNIT - V WAVEGUIDES 1. What is the need for guide termination? (Nov / Dec 2011) To avoid reflection loss. The termination should provide a wave impedance equal to that of the transmission

More information

SMT Hybrid Couplers, RF Parameters and Applications

SMT Hybrid Couplers, RF Parameters and Applications SMT Hybrid Couplers, RF Parameters and Applications A 90 degree hybrid coupler is a four-port device used to equally split an input signal into two signals with a 90 degree phase shift between them. The

More information

NEW OPPORTUNITIES IN VACUUM ELECTRONICS USING PHOTONIC BAND GAP STRUCTURES

NEW OPPORTUNITIES IN VACUUM ELECTRONICS USING PHOTONIC BAND GAP STRUCTURES NEW OPPORTUNITIES IN VACUUM ELECTRONICS USING PHOTONIC BAND GAP STRUCTURES J. R. Sirigiri, C. Chen, M. A. Shapiro, E. I. Smirnova, and R. J. Temkin Plasma Science and Fusion Center Massachusetts Institute

More information

Second-Harmonic Fundamental Mode Slotted Peniotron

Second-Harmonic Fundamental Mode Slotted Peniotron Second-Harmonic Fundamental Mode Slotted Peniotron L.J. Dressman*, D.B. McDermott, and N.C. Luhmann, Jr. University of California, Davis *Also NAVSEA, Crane D.A. Gallagher Northrop Grumman Corp. T.A. Spencer

More information

FINAL EXAM 12/12/03 EECS FALL 2003

FINAL EXAM 12/12/03 EECS FALL 2003 EECS 412 - FALL 2003 FINAL EXAM 12/12/03 NAME: CWRUnet e-mail address: IMPORTANT INFORMATION: 1. All questions are worth the same. 2. Exam is due December 12 th at 12 noon in Glennan 518. Possible 1. 10

More information

2/18/ Transmission Lines and Waveguides 1/3. and Waveguides. Transmission Line A two conductor structure that can support a TEM wave.

2/18/ Transmission Lines and Waveguides 1/3. and Waveguides. Transmission Line A two conductor structure that can support a TEM wave. 2/18/2009 3 Transmission Lines and Waveguides 1/3 Chapter 3 Transmission Lines and Waveguides First, some definitions: Transmission Line A two conductor structure that can support a TEM wave. Waveguide

More information

ENE324. Microwave experiments

ENE324. Microwave experiments ENE324 Microwave experiments Gunn diodes are fabricated from a single piece of n-type semiconductor. The most common materials are gallium Arsenide, GaAs and Indium Phosphide,InP. However other materials

More information

Experimental Study on W-Band ( GHz) Oversized Surface Wave Oscillator Driven by Weakly Relativistic Electron Beams )

Experimental Study on W-Band ( GHz) Oversized Surface Wave Oscillator Driven by Weakly Relativistic Electron Beams ) Experimental Study on W-Band (75-110 GHz) Oversized Surface Wave Oscillator Driven by Weakly Relativistic Electron Beams ) Min Thu SAN, Kazuo OGURA, Kiyoyuki YAMBE, Yuta ANNAKA, Shaoyan GONG, Jun KAWAMURA,

More information

Lecture - 19 Microwave Solid State Diode Oscillator and Amplifier

Lecture - 19 Microwave Solid State Diode Oscillator and Amplifier Basic Building Blocks of Microwave Engineering Prof. Amitabha Bhattacharya Department of Electronics and Communication Engineering Indian Institute of Technology, Kharagpur Lecture - 19 Microwave Solid

More information

Lecture - 14 Microwave Resonator

Lecture - 14 Microwave Resonator Basic Building Blocks of Microwave Engineering Prof Amitabha Bhattacharya Department of Electronics and Communication Engineering Indian Institute of Technology, Kharagpur Lecture - 14 Microwave Resonator

More information

Normal-conducting high-gradient rf systems

Normal-conducting high-gradient rf systems Normal-conducting high-gradient rf systems Introduction Motivation for high gradient Order of 100 GeV/km Operational and state-of-the-art SwissFEL C-band linac: Just under 30 MV/m CLIC prototypes: Over

More information

I.E.S-(Conv.)-2005 ELECTRONICS AND TELECOMMUNICATION ENGINEERING PAPER - II Time Allowed: 3 hours Maximum Marks : 200 Candidates should attempt Question No. 1 which is compulsory and FOUR more questions

More information

Dinesh Micro Waves & Electronics

Dinesh Micro Waves & Electronics MICROWAVE TRAINING KITS Dinesh Microwaves and Electronics manufacturers of three centimeter waveguidetraining system to provide users an in depth training on microwave waveguide device. The training kit

More information

TECHNICAL INFORMATION

TECHNICAL INFORMATION TECHNICAL INFORMATION TECHNOLOGY Y-Junction circulator PORT 1 PORT 2 PORT 3 FIG. 1 The Y-junction circulator uses spinel ferrites or garnet ferrites in the presence of a magnetic bias field, to provide

More information

COAXIAL / CIRCULAR HORN ANTENNA FOR A STANDARD

COAXIAL / CIRCULAR HORN ANTENNA FOR A STANDARD COAXIAL / CIRCULAR HORN ANTENNA FOR 802.11A STANDARD Petr Všetula Doctoral Degree Programme (1), FEEC BUT E-mail: xvsetu00@stud.feec.vutbr.cz Supervised by: Zbyněk Raida E-mail: raida@feec.vutbr.cz Abstract:

More information

free Online GATE coaching www.egate.ws Online IES coaching for free I.E.S-(Conv.)-2000 ELECTRONICS AND TELECOMMUNICATION ENGINEERING PAPER - II Candidates should attempt question no. 1 which is compulsory

More information

Practical Measurements of Dielectric Constant and Loss for PCB Materials at High Frequency

Practical Measurements of Dielectric Constant and Loss for PCB Materials at High Frequency 8 th Annual Symposium on Signal Integrity PENN STATE, Harrisburg Center for Signal Integrity Practical Measurements of Dielectric Constant and Loss for PCB Materials at High Frequency Practical Measurements

More information

Welcome to AntennaSelect Volume 1 August 2013

Welcome to AntennaSelect Volume 1 August 2013 Welcome to AntennaSelect Volume 1 August 2013 This is the first issue of our new periodic newsletter, AntennaSelect. AntennaSelect will feature informative articles about antennas and antenna technology,

More information

NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL

NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL NH-67, TRICHY MAIN ROAD, PULIYUR, C.F. 639 114, KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL Subject Name: Microwave Engineering Class / Sem: BE (ECE) / VII Subject

More information

EE 3324 Electromagnetics Laboratory

EE 3324 Electromagnetics Laboratory EE 3324 Electromagnetics Laboratory Experiment #10 Microstrip Circuits and Measurements 1. Objective The objective of Experiment #8 is to investigate the application of microstrip technology. A precision

More information

RF and Microwave Power Standards: Extending beyond 110 GHz

RF and Microwave Power Standards: Extending beyond 110 GHz RF and Microwave Power Standards: Extending beyond 110 GHz John Howes National Physical Laboratory April 2008 We now wish to extend above 110 GHz Why now? Previous indecisions about transmission lines,

More information

Department of Electrical Engineering University of North Texas

Department of Electrical Engineering University of North Texas Name: Shabuktagin Photon Khan UNT ID: 10900555 Instructor s Name: Professor Hualiang Zhang Course Name: Antenna Theory and Design Course ID: EENG 5420 Email: khan.photon@gmail.com Department of Electrical

More information