Apollo Fiber. Apollo Photonics provides three powerful units that are available individually or as a complete Fiber Suite

Size: px
Start display at page:

Download "Apollo Fiber. Apollo Photonics provides three powerful units that are available individually or as a complete Fiber Suite"

Transcription

1 Apollo Fiber Apollo Photonics provides three powerful units that are available individually or as a complete Fiber Suite FOGS-BG (Fiber Optical Grating Solver for Bragg Gratings) FOGS-LG (Fiber Optical Grating Solver for Long-Period Gratings) FOMS (Fiber Optical Mode Solver)

2 Fiber Optical Grating Simulator for Long-period Gratings (FOGS-LG) FOGS-LG is designed to model and simulate fiber optical devices based on long-period or transmission gratings. It has a powerful fiber mode solver and accurate matrix solutions to provide well-established coupledmode equations. It allows computeraided design and analysis of a variety of long-period or transmission grating-based fiber devices, such as gain equalizers, spontaneous noise filters, wavelength filters/ demultiplexers and sensors. FOGS-LG For an optical fiber with an arbitrary radial index profile, the fiber module can calculate the modal characteristics of the guided and the cladding modes. Also, for a given radial photosensitivity profile, it calculates the normalized field overlap integrals for guided-guided and guided-cladding mode couplings. The effects of asymmetric angular distribution of the photo-induced index change as well as the tilted/slanted gratings on these field overlaps have been taken into account. The modules of chirp, apodization and phase-shift deal with the preset functional distributions or user-provided data of gratingperiod/dc index, coupling coefficient, and phase-shifts along the fiber. FOGS-LG KEY FEATURES: Allows for arbitrary optical fiber calculations including the possibility of arbitrary refractive index profiles, which can include the jacket with a higher refractive index as well as material loss and gain. It can also consider material and waveguide dispersion, which can be defined by a linear function, values at multiple wavelengths, a refractive index, a group index at a given wavelength, or the Sellmeier formula. Provides an accurate numerical method for fiber mode calculations, which can include the following: Calculation of both guided and cladding modes of the optical fiber Calculation of the scalar LP modes and the vector modes and evaluation of the polarization dependence Evaluation of guided-guided and guided-cladding couplings for an arbitrary photosensitivity profile and angular distribution represented by the first three Fourier components Consideration of the effects of tilted/slanted gratings Includes arbitrary chirp including: Grating periods and/or DC index changes along the fiber as defined by either analytical functions or userprovided spreadsheet data Consideration of the chirp-induced peak wavelength shifts Decomposition of the chirp into multisections Allows for arbitrary apodization including: Distribution of the UV-induced periodic AC index change for guided modes as defined by either analytical functions or user-provided spreadsheet data Consideration of apodization-induced chirp of the DC index and the corresponding peak wavelength shifts Decomposition of the apodization function into multi-sections Provides fixed or stochastic phase-shift Calculates equally or unequally spaced arbitrary multiple phase-shifts along the fiber Considers both deterministic and stochastic phase-shifts (e.g. effects of the stitching errors inherent in the phase masks) Includes powerful simulation engine featuring the following: Choice of an efficient analytical method based on two-mode and multi-mode coupling as well as an accurate numerical method for simulation Calculation of transmission spectrum and phase for given fiber parameters, chirp, apodization and phase-shifts Simulation of coupling between guided and cladding modes in regular and slanted gratings Provides for material loss and gain The lossy fiber jacket with higher refractive index can be easily handled by complex refractive indices. Complex mode calculations will be performed and the loss and gain of each mode can be calculated. Offers polarization dependence The polarization dependence due to tilted/slanted gratings due to circularly non-symmetric photosensitivity profiles is considered by calculating the vector mode of optical fiber.

3 Fiber Optical Mode Solver (FOMS) FOMS is an advanced and easy to use computer-aided simulation tool for the design and analysis of optical fibers and fiber devices for a variety of applications. Having a wide range of features, designers can analyze and design devices with complicated refractive index profiles. FOMS software provides a variety of built-in fiber simulations for customers to use as a design reference including standard fibers; dispersion-shifted fibers; dispersionflattened fibers; dispersioncompensating fibers; and large-effective-core-area fibers. The parameter scanning capability enables the designer to scan fiber parameters that vary in defined ranges to find the optimal fiber design. By utilizing the capabilities of FOMS, users are able to perform an array of tasks with great ease, efficiency and accuracy when analyzing and designing of standard fibers and a variety of special optical fibers. FOMS FOMS KEY FEATURES: Simulates common fiber characteristics such as cut-off wavelength, dispersion curves and optical field distribution. Allows for the simulation of fiber characteristics including mode indices, group delays, fiber dispersions and dispersion slopes of guided and cladding modes. Parameter scanning can be performed on all of the above simulations. Material dispersion can be described by pre-defined functions, user-defined functions, tables and data files. Shows mode field patterns and fieldrelated parameters such as spot-sizes and effective core areas. Provides cut-off wavelengths of any chosen guided modes. Calculates Overlap integral between optical field and photosensitivity profile. Calculates the grating period for long and Bragg gratings. Allows for macro/micro-bending losses and splicing loss. Provides easy-to-use graphical user interface (GUI) to describe the fiber parameters and perform simulations. The GUI also provides a wide range of tools to view simulation and parameter scanning results, such as Group Delay, Dispersion (chromatic, material and waveguide), Dispersion slope and Universal dispersion curves for the calculated modes.

4 Fiber Optical Grating Simulator for Bragg Gratings (FOGS-BG) FOGS-BG is a powerful and userfriendly computer-aided simulation and optimization tool for the design and analysis of optical fiber devices based on Bragg gratings. FOGS-BG software can perform simulation to find spectral properties of a grating device; parameter scanning to enable users to optimize the grating performance by varying a parameter in a defined range; parameter extraction, which is the solution of the Gel Fand-Levitan-Marchenko (GLM) equation; and extraction of the grating information and optimization allowing users to vary multiple pre-defined parameters and simultaneously achieve the targeted performance. FOGS-BG FOGS-BG KEY FEATURES: Provides simulation and parameter scanning of grating structures using analytical function, spreadsheet data or data files. Variables include: Chirp or spacing changes within a particular grating (must be customer specified) Apodization or changes in the amplitude or intensity of the gratings (must be customer specified) Phase-shift, which is caused by the difference in spacing between gratings (optional feature) Detuning or the average refractive index change due to strain or thermal effect (optional feature). Allows for parameter extraction of a grating structure given the amplitude and phase of the reflection spectrum by solving GLM coupled equations. Offers simultaneous optimization of multiple grating parameters to achieve the target spectrum performance. Includes a wide range of calculations such as: Fiber performance based on an arbitrary radial index profile (step index, graded index or measured index) and material dispersion described by pre-defined functions, user-defined functions, tables and data files Short-wavelength spectral losses due to coupling between cladding mode Automatic cancellation of apodization induced chirp and impulse response Key fiber characteristics such as cutoff wavelength, dispersion curves, modal size parameters, transmission and reflection spectra, group time delay and dispersion Multiple mode coupling and tilted/slanted gratings Both numerical and analytic calculations of coupled-mode equations Allows for a wide range of structures and applications including: Sensor applications such as temperature/strain induced wavelength tuning/detuning Arbitrary radial photo-sensitivity profile and circular asymmetry of the UV exposure Bragg gratings on planar waveguides Provides three ways to enter fiber/waveguide modal parameters: Input from FOMS, which enables users to use calculated results of FOMS. Input from OWMS, which gives users the access to the modal parameters of our general waveguide mode solver OWMS. User-defined allows users to input their own modal data.

5

6 Apollo Photonics Customer List Apollo s international customer base encompasses some of the best-known commercial and academic names within the photonics industry: 3M ADC Telecommunications Alcatel CRC, France Corning Incorporated Corvis Corporation E-TEK Dynamics, Inc. Fujitsu Components Semiconductor Inc. Hitachi Cables, Ltd. Fujitsu Laboratories Ltd. Furukawa Electric Company Ltd. Georgia Institute of Technology JDS Uniphase Corporation Jet Propulsion Laboratory Kwangju Institute of Science & Technology, Korea Lucent Technologies Inc. MIT Lincoln Lab. Mitel Corporation National Research Council Canada NEC Corporation, Opto-basic Research Laboratory Nortel Networks NTT Opto-Electronics Labs Photonics Research Ontario, Canada POLOTECNICO DI TORINO, Italy Optical Fiber Technology Center, Australia Optoelectronics Research Centre, University of Southampton, United Kingdom Qtera Corporation Sumitomo Electric U.S.A., Inc. Tel Aviv University, Israel Tyco Submarine System Ltd. Universite des Sciences et Techniques de Lille, France University of Hong Kong Wuhan Telecommunications Device Co., China Apollo Photonics Inc Skyview Drive Burlington, ON. L7P 5B1 CANADA Phone: Fax:

Bragg and fiber gratings. Mikko Saarinen

Bragg and fiber gratings. Mikko Saarinen Bragg and fiber gratings Mikko Saarinen 27.10.2009 Bragg grating - Bragg gratings are periodic perturbations in the propagating medium, usually periodic variation of the refractive index - like diffraction

More information

Silicon Photonic Device Based on Bragg Grating Waveguide

Silicon Photonic Device Based on Bragg Grating Waveguide Silicon Photonic Device Based on Bragg Grating Waveguide Hwee-Gee Teo, 1 Ming-Bin Yu, 1 Guo-Qiang Lo, 1 Kazuhiro Goi, 2 Ken Sakuma, 2 Kensuke Ogawa, 2 Ning Guan, 2 and Yong-Tsong Tan 2 Silicon photonics

More information

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index.

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index. absorption, 69 active tuning, 234 alignment, 394 396 apodization, 164 applications, 7 automated optical probe station, 389 397 avalanche detector, 268 back reflection, 164 band structures, 30 bandwidth

More information

Principles of Optics for Engineers

Principles of Optics for Engineers Principles of Optics for Engineers Uniting historically different approaches by presenting optical analyses as solutions of Maxwell s equations, this unique book enables students and practicing engineers

More information

Integrated grating-assisted coarse/dense WDM multiplexers

Integrated grating-assisted coarse/dense WDM multiplexers Integrated grating-assisted coarse/dense WDM multiplexers Linping Shen *a, Chenglin Xu b, and Wei-Ping Huang b a Apollo Inc., 1057 Main Street W., Hamilton, ON, Canada L8S 1B7 * lpshen@apollophotonics.com;

More information

Optimization of Uniform Fiber Bragg Grating Reflection Spectra for Maximum Reflectivity and Narrow Bandwidth

Optimization of Uniform Fiber Bragg Grating Reflection Spectra for Maximum Reflectivity and Narrow Bandwidth ISSN (e): 225 35 Vol, 5 Issue,2 February 25 International Journal of Computational Engineering Research (IJCER) Optimization of Uniform Fiber Bragg Grating Reflection Spectra for Maximum Reflectivity and

More information

SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE) Volume 2 Issue 6 June 2015

SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE) Volume 2 Issue 6 June 2015 SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE) Volume Issue 6 June 15 Designing of a Long Period Fiber Grating (LPFG) using Optigrating Simulation Software Mr. Puneet

More information

Spectral Characteristics of Uniform Fiber Bragg Grating With Different Grating Length and Refractive Index Variation

Spectral Characteristics of Uniform Fiber Bragg Grating With Different Grating Length and Refractive Index Variation Spectral Characteristics of Uniform Fiber Bragg Grating With Different Grating Length and efractive Index Variation Chiranjit Ghosh 1, Quazi Md. Alfred 2, Biswajit Ghosh 3 ME (EIE) Student, University

More information

Elements of Optical Networking

Elements of Optical Networking Bruckner Elements of Optical Networking Basics and practice of optical data communication With 217 Figures, 13 Tables and 93 Exercises Translated by Patricia Joliet VIEWEG+ TEUBNER VII Content Preface

More information

The Effect of Radiation Coupling in Higher Order Fiber Bragg Gratings

The Effect of Radiation Coupling in Higher Order Fiber Bragg Gratings PIERS ONLINE, VOL. 3, NO. 4, 27 462 The Effect of Radiation Coupling in Higher Order Fiber Bragg Gratings Li Yang 1, Wei-Ping Huang 2, and Xi-Jia Gu 3 1 Department EEIS, University of Science and Technology

More information

Realization of Polarization-Insensitive Optical Polymer Waveguide Devices

Realization of Polarization-Insensitive Optical Polymer Waveguide Devices 644 Realization of Polarization-Insensitive Optical Polymer Waveguide Devices Kin Seng Chiang,* Sin Yip Cheng, Hau Ping Chan, Qing Liu, Kar Pong Lor, and Chi Kin Chow Department of Electronic Engineering,

More information

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p. Preface p. xiii Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p. 6 Plastic Optical Fibers p. 9 Microstructure Optical

More information

CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING

CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING Siti Aisyah bt. Ibrahim and Chong Wu Yi Photonics Research Center Department of Physics,

More information

Pulse shaping with a phase-shifted fiber Bragg grating for antisymmetric pulse generation

Pulse shaping with a phase-shifted fiber Bragg grating for antisymmetric pulse generation Pulse shaping with a phase-shifted fiber Bragg grating for antisymmetric pulse generation G. Curatu, S. LaRochelle *, C. Paré **, and P.-A. Bélanger Centre d Optique, Photonique et Lasers, Université Laval,

More information

Optical signal processing for fiber Bragg grating based wear sensors

Optical signal processing for fiber Bragg grating based wear sensors University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 2005 Optical signal processing for fiber Bragg grating based wear sensors

More information

Key Features for OptiSystem 14

Key Features for OptiSystem 14 14.0 New Features Created to address the needs of research scientists, photonic engineers, professors and students; OptiSystem satisfies the demand of users who are searching for a powerful yet easy to

More information

Effective Cutoff Wavelength Measurement of Bend-insensitive Fiber by Longitudinal Misalignment Loss Method. Won-Taek Han

Effective Cutoff Wavelength Measurement of Bend-insensitive Fiber by Longitudinal Misalignment Loss Method. Won-Taek Han Advanced Materials Research Vols. 123-125 (2010) pp 419-422 Online available since 2010/Aug/11 at www.scientific.net (2010) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amr.123-125.419

More information

Ratiometric Wavelength Monitor Based on Singlemode-Multimode-Singlemode Fiber Structure

Ratiometric Wavelength Monitor Based on Singlemode-Multimode-Singlemode Fiber Structure Dublin Institute of Technology ARROW@DIT Articles School of Electrical and Electronic Engineering 8-1-1 Ratiometric Wavelength Monitor Based on Singlemode-Multimode-Singlemode Fiber Structure Agus Hatta

More information

New Design of 1x3 Wavelength Demultiplexer Based on Tilted Grating in Glass Waveguide for First Window Operating Wavelength

New Design of 1x3 Wavelength Demultiplexer Based on Tilted Grating in Glass Waveguide for First Window Operating Wavelength Australian Journal of Basic and Applied Sciences, 3(3): 2607-2613, 2009 ISSN 1991-8178 New Design of 1x3 Wavelength Demultiplexer Based on Tilted Grating in Glass Waveguide for First Window Operating Wavelength

More information

Design & Analysis the parameters of strain based FBG sensors using Optigrating

Design & Analysis the parameters of strain based FBG sensors using Optigrating Design & Analysis the parameters of strain based FBG sensors using Optigrating Azhar Shadab, Nagma Jurel, Priya Sarswat, 1Assistant Professor, Department of ECE, Anand Engineering College-Agra,282007 2

More information

Optical Polarization Filters and Splitters Based on Multimode Interference Structures using Silicon Waveguides

Optical Polarization Filters and Splitters Based on Multimode Interference Structures using Silicon Waveguides International Journal of Engineering and Technology Volume No. 7, July, 01 Optical Polarization Filters and Splitters Based on Multimode Interference Structures using Silicon Waveguides 1 Trung-Thanh Le,

More information

High Performance Dispersion and Dispersion Slope Compensating Fiber Modules for Non-zero Dispersion Shifted Fibers

High Performance Dispersion and Dispersion Slope Compensating Fiber Modules for Non-zero Dispersion Shifted Fibers High Performance Dispersion and Dispersion Slope Compensating Fiber Modules for Non-zero Dispersion Shifted Fibers Kazuhiko Aikawa, Ryuji Suzuki, Shogo Shimizu, Kazunari Suzuki, Masato Kenmotsu, Masakazu

More information

Combining Component Characterization and Simulation to Enable the Next Generation Optical Network

Combining Component Characterization and Simulation to Enable the Next Generation Optical Network Combining Component Characterization and Simulation to Enable the Next Generation Optical Network A Luna Technologies Webinar Cosponsored by RSoft Design Group Luna Technologies: Dr. Brian Soller - Director

More information

Fiber Optic Communication Systems. Unit-05: Types of Fibers. https://sites.google.com/a/faculty.muet.edu.pk/abdullatif

Fiber Optic Communication Systems. Unit-05: Types of Fibers. https://sites.google.com/a/faculty.muet.edu.pk/abdullatif Unit-05: Types of Fibers https://sites.google.com/a/faculty.muet.edu.pk/abdullatif Department of Telecommunication, MUET UET Jamshoro 1 Optical Fiber Department of Telecommunication, MUET UET Jamshoro

More information

Crosstalk Reduction using Cascading Configuration in Multiplexer/Demultiplexer Based Array Waveguide Grating in Dense Wavelength Division Multiplexing

Crosstalk Reduction using Cascading Configuration in Multiplexer/Demultiplexer Based Array Waveguide Grating in Dense Wavelength Division Multiplexing International Journal of Computer Science and Telecommunications [Volume 5, Issue 1, October 214] 2 ISSN 247-3338 Reduction using Cascading Configuration in Multiplexer/Demultiplexer Based Array Waveguide

More information

Simulation of uniform and apodized fiber bragg grating. University of Technology, Department of Laser and Optics Engineering, Baghdad, (IRAQ) 2

Simulation of uniform and apodized fiber bragg grating. University of Technology, Department of Laser and Optics Engineering, Baghdad, (IRAQ) 2 ISSN : 0974-7524 Simulation of uniform and apodized fiber bragg grating Mohamed M.Saleh 1, Riadh K.A.Al-ani 2, Ilham K.Onees 2 * 1 University of Technology, Department of Laser and Optics Engineering,

More information

All-UV written integrated glass devices including planar Bragg gratings and lasers

All-UV written integrated glass devices including planar Bragg gratings and lasers All-UV written integrated glass devices including planar Bragg gratings and lasers Peter G.R. Smith*, Gregory D. Emmerson, Corin B. E. Gawith, Samuel P. Watts, Richard B. Williams, Denis A. Guilhot, Ian

More information

IEEE SENSORS JOURNAL, VOL. 8, NO. 11, NOVEMBER X/$ IEEE

IEEE SENSORS JOURNAL, VOL. 8, NO. 11, NOVEMBER X/$ IEEE IEEE SENSORS JOURNAL, VOL. 8, NO. 11, NOVEMBER 2008 1771 Interrogation of a Long Period Grating Fiber Sensor With an Arrayed-Waveguide-Grating-Based Demultiplexer Through Curve Fitting Honglei Guo, Student

More information

Key Features for OptiSystem 14.2

Key Features for OptiSystem 14.2 14.2 New Features Created to address the needs of research scientists, photonic engineers, professors and students; OptiSystem satisfies the demand of users who are searching for a powerful yet easy to

More information

Design and Modeling of For Optical SDM Transmission Systems Enabling FMF with 14 Spatial and Polarized Modes

Design and Modeling of For Optical SDM Transmission Systems Enabling FMF with 14 Spatial and Polarized Modes American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-6, Issue-1, pp-134-139 www.ajer.org Research Paper Open Access Design and Modeling of For Optical SDM Transmission

More information

Contents. 3 Pulse Propagation in Dispersive Media Maxwell s Equations 1. 4 Propagation in Birefringent Media 132

Contents. 3 Pulse Propagation in Dispersive Media Maxwell s Equations 1. 4 Propagation in Birefringent Media 132 vi 2.13 Propagation in Negative-Index Media, 71 2.14 Problems, 74 3 Pulse Propagation in Dispersive Media 83 Contents Preface xii 1 Maxwell s Equations 1 1.1 Maxwell s Equations, 1 1.2 Lorentz Force, 2

More information

Fiber-Optic Communication Systems

Fiber-Optic Communication Systems Fiber-Optic Communication Systems Second Edition GOVIND P. AGRAWAL The Institute of Optics University of Rochester Rochester, NY A WILEY-iNTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. NEW YORK / CHICHESTER

More information

DISPERSION management is a key technique for design

DISPERSION management is a key technique for design JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 26, NO. 24, DECEMBER 15, 2008 3835 Effectiveness of Nonlinear Optical Loop Mirrors in Dispersion-Managed Fiber Communication Systems Compensated by Chirped Fiber Gratings

More information

Optical Waveguide Types

Optical Waveguide Types 8 Refractive Micro Optics Optical Waveguide Types There are two main types of optical waveguide structures: the step index and the graded index. In a step-index waveguide, the interface between the core

More information

A Novel Vertical Directional Coupler Switch With Switching-Operation-Induced Section and Extinction-Ratio-Enhanced Section

A Novel Vertical Directional Coupler Switch With Switching-Operation-Induced Section and Extinction-Ratio-Enhanced Section JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 20, NO. 9, SEPTEMBER 2002 1773 A Novel Vertical Directional Coupler Switch With Switching-Operation-Induced Section and Extinction-Ratio-Enhanced Section Sung-Chan

More information

The absorption of the light may be intrinsic or extrinsic

The absorption of the light may be intrinsic or extrinsic Attenuation Fiber Attenuation Types 1- Material Absorption losses 2- Intrinsic Absorption 3- Extrinsic Absorption 4- Scattering losses (Linear and nonlinear) 5- Bending Losses (Micro & Macro) Material

More information

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

Introduction Fundamentals of laser Types of lasers Semiconductor lasers ECE 5368 Introduction Fundamentals of laser Types of lasers Semiconductor lasers Introduction Fundamentals of laser Types of lasers Semiconductor lasers How many types of lasers? Many many depending on

More information

Theoretical Analysis of Cladding-Mode Waveguide Dispersion and Its Effects on the Spectra of Long-Period Fiber Grating

Theoretical Analysis of Cladding-Mode Waveguide Dispersion and Its Effects on the Spectra of Long-Period Fiber Grating 1838 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 8, AUGUST 2003 Theoretical Analysis of Cladding-Mode Waveguide Dispersion and Its Effects on the Spectra of Long-Period Fiber Grating H. Jeong and K.

More information

OptoSci Educator Kits an Immediate Solution to Photonics Teaching Laboratories

OptoSci Educator Kits an Immediate Solution to Photonics Teaching Laboratories OptoSci Educator Kits an Immediate Solution to Photonics Teaching Laboratories Douglas Walsh, David Moodie and Iain Mauchline OptoSci Ltd, 141 St. James Rd., Glasgow, G4 0LT, Scotland www.optosci.com T:

More information

Polarization Dependence of an Edge Filter Based on Singlemode-Multimode-Singlemode Fibre

Polarization Dependence of an Edge Filter Based on Singlemode-Multimode-Singlemode Fibre Dublin Institute of Technology ARROW@DIT Articles School of Electrical and Electronic Engineering 21-1-1 Polarization Dependence of an Edge Filter Based on Singlemode-Multimode-Singlemode Fibre Agus Hatta

More information

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University Photonics Group Department of Micro- and Nanosciences Aalto University Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Last Lecture Topics Course introduction Ray optics & optical

More information

Electronically switchable Bragg gratings provide versatility

Electronically switchable Bragg gratings provide versatility Page 1 of 5 Electronically switchable Bragg gratings provide versatility Recent advances in ESBGs make them an optimal technological fabric for WDM components. ALLAN ASHMEAD, DigiLens Inc. The migration

More information

Numerical Examination on Transmission Properties of FBG by FDTD Method

Numerical Examination on Transmission Properties of FBG by FDTD Method Journal of Information Hiding and Multimedia Signal Processing c 2017 ISSN 2073-4212 Ubiquitous International Volume 8, Number 6, November 2017 Numerical Examination on Transmission Properties of FBG by

More information

DC Index Shifted Dual Grating Based Superstructure Fiber Bragg Grating as Multichannel FBG and Multiparameter Sensor

DC Index Shifted Dual Grating Based Superstructure Fiber Bragg Grating as Multichannel FBG and Multiparameter Sensor IJCTA Vol.8, No.1, Jan-June 2015, Pp.208-212 International Sciences Press, India DC Index Shifted Dual Grating Based Superstructure Fiber Bragg Grating as Multichannel FBG and Multiparameter Sensor Somnath

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BYAENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2017 June 11(8): pages 639-644 Open Access Journal Design And Implementation

More information

Photonics and Optical Communication

Photonics and Optical Communication Photonics and Optical Communication (Course Number 300352) Spring 2007 Dr. Dietmar Knipp Assistant Professor of Electrical Engineering http://www.faculty.iu-bremen.de/dknipp/ 1 Photonics and Optical Communication

More information

from the Photonics Dictionary at Photonics.com

from the Photonics Dictionary at Photonics.com Photonics term in listing The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection,

More information

Masters of Engineering in Electrical Engineering Course Syllabi ( ) City University of New York--College of Staten Island

Masters of Engineering in Electrical Engineering Course Syllabi ( ) City University of New York--College of Staten Island City University of New York--College of Staten Island Masters of Engineering in Electrical Engineering Course Syllabi (2017-2018) Required Core Courses ELE 600/ MTH 6XX Probability Theory and Stochastic

More information

Fibre Bragg Grating. Minoli Arumugam Photonics and Optical Communications Instructor: Prof. Dietmar Knipp Jacobs University Bremen Spring 2007

Fibre Bragg Grating. Minoli Arumugam Photonics and Optical Communications Instructor: Prof. Dietmar Knipp Jacobs University Bremen Spring 2007 Fibre Bragg Grating Minoli Arumugam Photonics and Optical Communications Instructor: Prof. Dietmar Knipp Jacobs University Bremen Spring 2007 What is a Fibre Bragg Grating? It is a type of distributed

More information

Lecture 7 Fiber Optical Communication Lecture 7, Slide 1

Lecture 7 Fiber Optical Communication Lecture 7, Slide 1 Dispersion management Lecture 7 Dispersion compensating fibers (DCF) Fiber Bragg gratings (FBG) Dispersion-equalizing filters Optical phase conjugation (OPC) Electronic dispersion compensation (EDC) Fiber

More information

Performance Analysis of Chromatic Dispersion Compensation of a Chirped Fiber Grating on a Differential Phase-shift-keyed Transmission

Performance Analysis of Chromatic Dispersion Compensation of a Chirped Fiber Grating on a Differential Phase-shift-keyed Transmission Journal of the Optical Society of Korea Vol. 13, No. 1, March 2009, pp. 107-111 DOI: 10.3807/JOSK.2009.13.1.107 Performance Analysis of Chromatic Dispersion Compensation of a Chirped Fiber Grating on a

More information

Sensing Principle Analysis of FBG Based Sensors

Sensing Principle Analysis of FBG Based Sensors IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE ISSN: 78-1676 Volume 1, Issue 3 (July-Aug. 01, PP 01-06 Sensing Principle Analysis of FG ased Sensors Imran Khan 1, Istiaq Ahmed 1 Department

More information

Physics of Waveguide Photodetectors with Integrated Amplification

Physics of Waveguide Photodetectors with Integrated Amplification Physics of Waveguide Photodetectors with Integrated Amplification J. Piprek, D. Lasaosa, D. Pasquariello, and J. E. Bowers Electrical and Computer Engineering Department University of California, Santa

More information

Opto-VLSI-based reconfigurable photonic RF filter

Opto-VLSI-based reconfigurable photonic RF filter Research Online ECU Publications 29 Opto-VLSI-based reconfigurable photonic RF filter Feng Xiao Mingya Shen Budi Juswardy Kamal Alameh This article was originally published as: Xiao, F., Shen, M., Juswardy,

More information

UNIT-II : SIGNAL DEGRADATION IN OPTICAL FIBERS

UNIT-II : SIGNAL DEGRADATION IN OPTICAL FIBERS UNIT-II : SIGNAL DEGRADATION IN OPTICAL FIBERS The Signal Transmitting through the fiber is degraded by two mechanisms. i) Attenuation ii) Dispersion Both are important to determine the transmission characteristics

More information

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER As we discussed in chapter 1, silicon photonics has received much attention in the last decade. The main reason is

More information

Multimode Optical Fiber

Multimode Optical Fiber Multimode Optical Fiber 1 OBJECTIVE Determine the optical modes that exist for multimode step index fibers and investigate their performance on optical systems. 2 PRE-LAB The backbone of optical systems

More information

Property improvement of flat-top 50 GHz-88 ch arrayed waveguide grating using phase correction waveguides

Property improvement of flat-top 50 GHz-88 ch arrayed waveguide grating using phase correction waveguides Property improvement of flat-top 50 GHz-88 ch arrayed waveguide grating using phase correction waveguides Kazutaka Nara 1a) and Noritaka Matsubara 2 1 FITEL Photonics Laboratory, Furukawa Electric Co.,

More information

High-Speed Optical Modulators and Photonic Sideband Management

High-Speed Optical Modulators and Photonic Sideband Management 114 High-Speed Optical Modulators and Photonic Sideband Management Tetsuya Kawanishi National Institute of Information and Communications Technology 4-2-1 Nukui-Kita, Koganei, Tokyo, Japan Tel: 81-42-327-7490;

More information

E. A. MENDOZA, J. PROHASKA, C. KEMPEN, S. SUN and Y. ESTERKIN

E. A. MENDOZA, J. PROHASKA, C. KEMPEN, S. SUN and Y. ESTERKIN Fully Integrated Miniature Multi-Point Fiber Bragg Grating Sensor Interrogator (FBG-Transceiver TM ) System for Applications where Size, Weight, and Power are Critical for Operation E. A. MENDOZA, J. PROHASKA,

More information

SPECIFICATION. FOR SINGLE-MODE OPTICAL FIBER (FutureGuide -SR15E)

SPECIFICATION. FOR SINGLE-MODE OPTICAL FIBER (FutureGuide -SR15E) Fujikura DATE Aug. 18, 2008 NO. JFS-00052A Supersedes JFS-00052 Messrs. SPECIFICATION FOR SINGLE-MODE OPTICAL FIBER (FutureGuide -SR15E) Prepared by H. KIKUCHI Manager Optical Fiber and Cable Dept. Global

More information

Degradation analysis in asymmetric sampled grating distributed feedback laser diodes

Degradation analysis in asymmetric sampled grating distributed feedback laser diodes Microelectronics Journal 8 (7) 74 74 www.elsevier.com/locate/mejo Degradation analysis in asymmetric sampled grating distributed feedback laser diodes Han Sung Joo, Sang-Wan Ryu, Jeha Kim, Ilgu Yun Semiconductor

More information

Optics and Lasers. Matt Young. Including Fibers and Optical Waveguides

Optics and Lasers. Matt Young. Including Fibers and Optical Waveguides Matt Young Optics and Lasers Including Fibers and Optical Waveguides Fourth Revised Edition With 188 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents

More information

Guided Propagation Along the Optical Fiber

Guided Propagation Along the Optical Fiber Guided Propagation Along the Optical Fiber The Nature of Light Quantum Theory Light consists of small particles (photons) Wave Theory Light travels as a transverse electromagnetic wave Ray Theory Light

More information

Optical Dispersion Analyzer

Optical Dispersion Analyzer 86038A Accelerating the development of next generation optical networks Optical Dispersion Analyzer Agilent 86038A Optical dispersion analyzer Introduction Simultaneous measurements in the C- and L-Bands

More information

Dispersion Measurements of High-Speed Lightwave Systems

Dispersion Measurements of High-Speed Lightwave Systems Lightwave Symposium Dispersion Measurements of Presented by Johann L. Fernando, Product Manager 3-1 Topics Chromatic dispersion concepts Agilent 86037C Chromatic Dispersion Measurement System Polarization

More information

Intensity-modulated and temperature-insensitive fiber Bragg grating vibration sensor

Intensity-modulated and temperature-insensitive fiber Bragg grating vibration sensor Intensity-modulated and temperature-insensitive fiber Bragg grating vibration sensor Lan Li, Xinyong Dong, Yangqing Qiu, Chunliu Zhao and Yiling Sun Institute of Optoelectronic Technology, China Jiliang

More information

SIGNAL DEGRADATION IN OPTICAL FIBERS

SIGNAL DEGRADATION IN OPTICAL FIBERS Volume Issue January 04, ISSN 348 8050 SIGNAL DEGRADATION IN OPTICAL FIBERS Gyan Prakash Pal, Manishankar Gupta,,, Assistant Professor, Electronics & Communication Engineering Department, Shanti Institute

More information

Introduction Fundamental of optical amplifiers Types of optical amplifiers

Introduction Fundamental of optical amplifiers Types of optical amplifiers ECE 6323 Introduction Fundamental of optical amplifiers Types of optical amplifiers Erbium-doped fiber amplifiers Semiconductor optical amplifier Others: stimulated Raman, optical parametric Advanced application:

More information

Lectureo5 FIBRE OPTICS. Unit-03

Lectureo5 FIBRE OPTICS. Unit-03 Lectureo5 FIBRE OPTICS Unit-03 INTRODUCTION FUNDAMENTAL IDEAS ABOUT OPTICAL FIBRE Multimode Fibres Multimode Step Index Fibres Multimode Graded Index Fibres INTRODUCTION In communication systems, there

More information

Novel multi-core fibers for mode division multiplexing: proposal and design principle

Novel multi-core fibers for mode division multiplexing: proposal and design principle Novel multi-core fibers for mode division multiplexing: proposal and design principle Yasuo Kokubun 1a) and Masanori Koshiba 2 1 Graduate School of Engineering, Yokohama National University, 79 5 Tokiwadai,

More information

UTILITY APPLICATIONS OF FIBER-OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS

UTILITY APPLICATIONS OF FIBER-OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS UTILITY APPLICATIONS OF FIBER-OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS WHITE PAPER T. Landolsi, L. Zou, O. Sezerman OZ Optics Limited OZ Optics Limited, 219 Westbrook Road, Ottawa, ON, Canada,

More information

Basics of INTERFEROMETRY

Basics of INTERFEROMETRY Basics of INTERFEROMETRY P Hariharan CSIRO Division of Applied Sydney, Australia Physics ACADEMIC PRESS, INC. Harcourt Brace Jovanovich, Publishers Boston San Diego New York London Sydney Tokyo Toronto

More information

Dispersion Pre-Compensation for a Multi-wavelength Erbium Doped Fiber Laser Using Cascaded Fiber Bragg Gratings

Dispersion Pre-Compensation for a Multi-wavelength Erbium Doped Fiber Laser Using Cascaded Fiber Bragg Gratings Journal of Applied Sciences Research, 5(10): 1744749, 009 009, INSInet Publication Dispersion Pre-Compensation for a Multi-wavelength Erbium Doped Fiber Laser Using Cascaded Fiber Bragg Gratings 1 1 1

More information

The Beam Characteristics of High Power Diode Laser Stack

The Beam Characteristics of High Power Diode Laser Stack IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS The Beam Characteristics of High Power Diode Laser Stack To cite this article: Yuanyuan Gu et al 2018 IOP Conf. Ser.: Mater. Sci.

More information

HP 8509B Lightwave Polarization Analyzer. Product Overview. Optical polarization measurements of signal and components nm to 1600 nm

HP 8509B Lightwave Polarization Analyzer. Product Overview. Optical polarization measurements of signal and components nm to 1600 nm HP 8509B Lightwave Polarization Analyzer Product Overview polarization measurements of signal and components 1200 nm to 1600 nm 2 The HP 8509B Lightwave Polarization Analyzer The HP 8509B lightwave polarization

More information

Single Mode Optical Fiber - Dispersion

Single Mode Optical Fiber - Dispersion Single Mode Optical Fiber - Dispersion 1 OBJECTIVE Characterize analytically and through simulation the effects of dispersion on optical systems. 2 PRE-LAB A single mode fiber, as the name implies, supports

More information

Silicon nitride based TriPleX Photonic Integrated Circuits for sensing applications

Silicon nitride based TriPleX Photonic Integrated Circuits for sensing applications Silicon nitride based TriPleX Photonic Integrated Circuits for sensing applications Arne Leinse a.leinse@lionix-int.com 2 Our chips drive your business 2 What are Photonic ICs (PICs)? Photonic Integrated

More information

APSS Apollo Application Note on Array Waveguide Grating (AWG)

APSS Apollo Application Note on Array Waveguide Grating (AWG) APSS Apollo Application Note on Array Waveguide Grating (AWG) Design, simulation and layout APN-APSS-AWG Apollo Inc. 1057 Main Street West Hamilton, Ontario L8S 1B7 Canada Tel: (905)-524-3030 Fax: (905)-524-3050

More information

Analysis of the Tunable Asymmetric Fiber F-P Cavity for Fiber Strain Sensor Edge-Filter Demodulation

Analysis of the Tunable Asymmetric Fiber F-P Cavity for Fiber Strain Sensor Edge-Filter Demodulation PHOTONIC SENSORS / Vol. 4, No. 4, 014: 338 343 Analysis of the Tunable Asymmetric Fiber F-P Cavity for Fiber Strain Sensor Edge-Filter Demodulation Haotao CHEN and Youcheng LIANG * Guangzhou Ivia Aviation

More information

Review of Semiconductor Physics

Review of Semiconductor Physics Review of Semiconductor Physics k B 1.38 u 10 23 JK -1 a) Energy level diagrams showing the excitation of an electron from the valence band to the conduction band. The resultant free electron can freely

More information

The Fiber-Optic Gyroscope

The Fiber-Optic Gyroscope The Fiber-Optic Gyroscope Second Edition Herve C. Lefevre ARTECH HOUSE BOSTON LONDON artechhouse.com Contents Preface to the First Edition Preface to the Second Edition xvii xix Introduction 1 References

More information

Fiber Optics IV - Testing

Fiber Optics IV - Testing PDHonline Course E311 (3 PDH) Fiber Optics IV - Testing Instructor: Lee Layton, PE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org

More information

AC : FIBER OPTICS COURSE FOR UNDERGRADUATE ELECTRICAL ENGINEERING STUDENTS

AC : FIBER OPTICS COURSE FOR UNDERGRADUATE ELECTRICAL ENGINEERING STUDENTS AC 2009-385: FIBER OPTICS COURSE FOR UNDERGRADUATE ELECTRICAL ENGINEERING STUDENTS Lihong (Heidi) Jiao, Grand Valley State University American Society for Engineering Education, 2009 Page 14.630.1 Fiber

More information

WDM Transmitter Based on Spectral Slicing of Similariton Spectrum

WDM Transmitter Based on Spectral Slicing of Similariton Spectrum WDM Transmitter Based on Spectral Slicing of Similariton Spectrum Leila Graini and Kaddour Saouchi Laboratory of Study and Research in Instrumentation and Communication of Annaba (LERICA), Department of

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Student Name Date MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.161 Modern Optics Project Laboratory Laboratory Exercise No. 6 Fall 2010 Solid-State

More information

ETK Kablo SPECIFICATION. FOR SINGLE-MODE OPTICAL FIBER (FutureGuide -LWP)

ETK Kablo SPECIFICATION. FOR SINGLE-MODE OPTICAL FIBER (FutureGuide -LWP) JFT-02857A 1/7 DATE Feb. 22, 2013 NO. JFT-02857A Supersedes JFT-02857 Messrs. ETK Kablo SPECIFICATION FOR SINGLE-MODE OPTICAL FIBER (FutureGuide -LWP) Prepared by H. KIKUCHI Manager Optical Fiber and Cable

More information

Fiber Optic Communications Communication Systems

Fiber Optic Communications Communication Systems INTRODUCTION TO FIBER-OPTIC COMMUNICATIONS A fiber-optic system is similar to the copper wire system in many respects. The difference is that fiber-optics use light pulses to transmit information down

More information

Novel fiber Bragg grating fabrication system for long gratings with independent apodization and with local phase and wavelength control

Novel fiber Bragg grating fabrication system for long gratings with independent apodization and with local phase and wavelength control Novel fiber Bragg grating fabrication system for long gratings with independent apodization and with local phase and wavelength control K. M. Chung, 1,* L. Dong, 2 C. Lu, 3 and H.Y. Tam 1 1 Photonics Research

More information

Add Drop Multiplexing By Dispersion Inverted Interference Coupling

Add Drop Multiplexing By Dispersion Inverted Interference Coupling JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 20, NO. 8, AUGUST 2002 1585 Add Drop Multiplexing By Dispersion Inverted Interference Coupling Mattias Åslund, Leon Poladian, John Canning, and C. Martijn de Sterke

More information

21. (i) Briefly explain the evolution of fiber optic system (ii) Compare the configuration of different types of fibers. or 22. (b)(i) Derive modal eq

21. (i) Briefly explain the evolution of fiber optic system (ii) Compare the configuration of different types of fibers. or 22. (b)(i) Derive modal eq Unit-1 Part-A FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai - 625 020. [An ISO 9001:2008 Certified Institution] DEPARTMENT OF ELECTRONICS AND

More information

Fang-Wen Sheu *, Yi-Syuan Lu Department of Electrophysics, National Chiayi University, Chiayi 60004, Taiwan ABSTRACT

Fang-Wen Sheu *, Yi-Syuan Lu Department of Electrophysics, National Chiayi University, Chiayi 60004, Taiwan ABSTRACT Determining the relationship between the refractive-index difference of a coiled single-mode optical fiber and its bending radius by a mode-image analysis method Fang-Wen Sheu *, Yi-Syuan Lu Department

More information

SIGNAL processing in the optical domain is considered

SIGNAL processing in the optical domain is considered 1410 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 23, NO. 3, MARCH 2005 All-Optical Microwave Filters Using Uniform Fiber Bragg Gratings With Identical Reflectivities Fei Zeng, Student Member, IEEE, Student Member,

More information

Single-mode lasing in PT-symmetric microring resonators

Single-mode lasing in PT-symmetric microring resonators CREOL The College of Optics & Photonics Single-mode lasing in PT-symmetric microring resonators Matthias Heinrich 1, Hossein Hodaei 2, Mohammad-Ali Miri 2, Demetrios N. Christodoulides 2 & Mercedeh Khajavikhan

More information

DWDM FILTERS; DESIGN AND IMPLEMENTATION

DWDM FILTERS; DESIGN AND IMPLEMENTATION DWDM FILTERS; DESIGN AND IMPLEMENTATION 1 OSI REFERENCE MODEL PHYSICAL OPTICAL FILTERS FOR DWDM SYSTEMS 2 AGENDA POINTS NEED CHARACTERISTICS CHARACTERISTICS CLASSIFICATION TYPES PRINCIPLES BRAGG GRATINGS

More information

Company synopsis. MSU series

Company synopsis. MSU series MSU series 1 2 Company synopsis Majantys, part of Pleiades Group along with Pleiades Instruments, is an optoelectronic system maker, designing and manufacturing for specific systems such as photometric

More information

Receiver Performance and Comparison of Incoherent (bolometer) and Coherent (receiver) detection

Receiver Performance and Comparison of Incoherent (bolometer) and Coherent (receiver) detection At ev gap /h the photons have sufficient energy to break the Cooper pairs and the SIS performance degrades. Receiver Performance and Comparison of Incoherent (bolometer) and Coherent (receiver) detection

More information

Spectral Characteristics of Mechanically Induced of Ultralong Period Fiber Gratings (UPFG) as a Pressure Sensor.

Spectral Characteristics of Mechanically Induced of Ultralong Period Fiber Gratings (UPFG) as a Pressure Sensor. Spectral Characteristics of Mechanically Induced of Ultralong Period Fiber Gratings (UPFG) as a Pressure Sensor. V. Mishra, V V Dwivedi C.U shah University, Surendranagar, Gujrat Abstract. We report here

More information

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad.

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. DEPARTMENT OF PHYSICS QUESTION BANK FOR SEMESTER III PAPER III OPTICS UNIT I: 1. MATRIX METHODS IN PARAXIAL OPTICS 2. ABERATIONS UNIT II

More information

OPTICAL GUIDED WAVES AND DEVICES

OPTICAL GUIDED WAVES AND DEVICES OPTICAL GUIDED WAVES AND DEVICES Richard Syms John Cozens Department of Electrical and Electronic Engineering Imperial College of Science, Technology and Medicine McGRAW-HILL BOOK COMPANY London New York

More information