MULTI-TEMPORAL SATELLITE IMAGES WITH BATHYMETRY CORRECTION FOR MAPPING AND ASSESSING SEAGRASS BED CHANGES IN DONGSHA ATOLL

Size: px
Start display at page:

Download "MULTI-TEMPORAL SATELLITE IMAGES WITH BATHYMETRY CORRECTION FOR MAPPING AND ASSESSING SEAGRASS BED CHANGES IN DONGSHA ATOLL"

Transcription

1 MULTI-TEMPORAL SATELLITE IMAGES WITH BATHYMETRY CORRECTION FOR MAPPING AND ASSESSING SEAGRASS BED CHANGES IN DONGSHA ATOLL Chih -Yuan Lin and Hsuan Ren Center for Space and Remote Sensing Research, National Central University, Taiwan Keywords: Dongsha Atoll, Multispectral Images, Bathymetry Correction, Seagrass Classification ABSTRACT: The Dongsha Atoll is the first ocean national park in Taiwan. It is a 400 kilometer-square atoll with coral reef ecosystems and high biodiversity. Because it has only one small island in the western of atoll and has not opened to public, there are very few human activities and nature is well preserved. To survey this large area is not an easy task, and remote sensing technique provides an efficient and economic approach to survey this area. The multispectral satellite images are useful for assessing sea bottom materials. With multi-temporal images, the changes can also be tracked. A huge event has been observed in summer 2014, more than 25 kilometer-square of seagrass in northern atoll disappear within three months, and the habitat changes from seagrass to sand and coral reef debris. In this study, satellite images with finer temporal resolution will be analyzed to track the speed of changes. However to classify bottom material directly from spectral information has some difficulties, because spectral information is also mixed with other factors, including water absorption coefficient and water depth. In this research, sun glint and water depth correction will be conducted to remove the effects from atmosphere and bathymetry. And image classification for seagrass is followed with multi-source satellite images to track the disappearance and recovery of the seagrass area. The satellite images for experiments include FORMOSAT-2, SPOT-6 and LandSat Introduction Dongsha atoll national park is located in the South China Sea. It became the seventh national park in 2007 and also the first ocean national park in Taiwan. With 25 kilometers in diameter, the atoll covers over 400 kilometer square area, and it is rich of coral reefs and marine resources. Because this national park is not yet open to public, it has very few human activities there. Start from 2012, our group joined the research team for Marine National Park Headquarters, combine remote sensing images with in situ survey for sea bottom material classification in Dongsha atoll. In the 2014 summer, we observed a huge event for seagrass in DongSha atoll, more than 25 kilometer square of seagrass habitat became sand and coral reef debris, which has never be recorded for the past 20 years. Figure 1. The DongSar Atoll and multi- temporal imagery. 1.1 Objective

2 The benthic species generally are sensitive to the nature hazard, but there was neither typhoon nor earthquake near Dongsha between July and September, This is not seasonally change because it is a single event for the past 20 years. Before establishing the hypothesis why the seagrass disappear, we need to know the speed of its disappearance, and monitoring the changes with multi-temporal remote sensing images can provide some hints. Therefore, the main goal of this research is to collect as many remote sensing images as possible from different sensors between July and September, 2014 and mapping the seagrass area with high classification accuracy. 1.2 Material We have collected 9 images between March 2014 and May 2015 from Formosat-2, SPOT-6 and Landsat-8, as shown in Fig. 2. The images from these three sensors have different resolutions and frequency bands, but they all have visible bands (R, G, B) and near infrared band. Since infrared light will be absorb by 20 cm water, it is used to correct sun glint. The visible bands are used to map the bottom materials. Figure 3 shows the enhanced images. Figure 2. The satellite imagery times. Figure 3. Multi temporal imagery The DongSar Atoll and multi- temporal image. (A) In-situ depth data. (B) FS /03/13. (C)Landsat /06/10. (D)Landsat /08/30. (E) FS /11/02. (F) Spot /2/18. (G) Spot /5/28. (H) FS /05/ Methodology

3 Our proposed method contains three steps: sun glint correction, bathymetry calibration and bottom material classification. The details are discussed in following sections. 2.1 Sun glint correction The coastal environment study often has sun glint effect caused by the wave on water surfaces. It is a serious confounding factor for radiance and reflectance. Generally, infrared band can be used to remove the sun glint effect. We adopted the method of Hedley (2005), to correct sun glint effect. (1) 2.2 Bathymetry calibration Bathymetry calibration is a common technique in the shallow costal area. The water depth can be estimated from the remote sensing data by the exponential relationship of the difference between sea bottom radiance and deep water radiance. Lyzenga equation is the fundamental formula of inversion the water depth. The inversion result is influent by the water attenuation coefficient and substrate type. R R R e R (2) 2 Zg s ( 0 ) where R is the radiance return to sensor, R 0 is the bottom radiance, R is the deep water radiance, g s is water attenuate coefficient and Z is water depth. With bathymetry information, we could calibrate the water depth and derive bottom radiance. 2 Zg s R0 ( R R ) e R (3) 2.3 Maximum likelihood classification After bathymetry calibration, bottom radiance is derived. For assessment the seagrass change and other bottom material, maximum likelihood classification is adopted to classify bottom materials. Each material is modeled by a Gaussian distribution and each sample is classified to the class with highest probability. (4) (5),

4 3. RESULTS AND DISCUSSION Compare the images from Formosat-2 in 2014/03/13 and 2015/5/28 Formosat-2, seagrass disappearance can be easily found. To know the time and speed of the disappearance, a series of images from different sensors are collected. In our experiments, the sun glints are first corrected for those images as shown in Fig. 4, followed by bathymetry calibration in Fig. 5. The classification results by Maximum Likelihood Classifier are shown in Fig.6, and we can observe the seagrass disappearance starts in June 2014 in north-east of atoll, and it continues in northern part before August, and have not recovered since then. Figure 4. The detail scene in the image before sun light correction (Left), after correction (Right). (Top) Reduce the sea surface. (Mid) Raise the sand and seabed contrast. (Bottom) Seagrass and other material r become more clear

5 Figure 5. Use water depth retrieval the bottom spectral from multi-temporal satellite images. (A) FS /03/13 derive depth.(b) Landsat /06/10 derive depth. (C) Landsat /08/30 derive depth. (D) FS /11/02 derive depth.(e) Spot /2/18 derive depth. (F) FS /05/28 derive depth. (G) Spot /05/28 derive depth. Figure 6. (A) Formosat /0313 classification. (B)Landsat /0610 classification. (C)Landsat /08/30 classification. (D) Formosat /11/02 classification. (E)Spot /02/18 classification. (F)Spot /05/28 classification.(g)formosat /05/28 classification. For the statistics assessment, we calculate the area for each class from the classification result as in Table 1. The area of seagrass decreased tremendously between June and August Due to the wave and tidal changes, the boundary

6 of the atoll rock is difficult to be detected. The average of overall accuracy is 77.39% and average Kappa Coefficient is There are still some error and misclassification, which might be caused by the tidal environment usually occur near coastal line. Table 1. Classification Result. Maximum likelihood classification area Satellite Formosat-2 Landsat-8 Landsat-8 Formosat-2 time 2014/03/ /6/ /08/ /11/02 Sea (61.12%) (61.7%) (62%) (63.3%) Seagrass (11.45%) (11.2%) (7%) (4.7%) Mud & Sand sediment Mixture (5.73%) (8.4%) (9.23%) (11.93%) Coral habitat (17.34%) (11.6%) (11.6%) (15.6%) Coral & Rock (1.24%) (2.2%) (1.2%) (5.3%) Other Mixture Sediment (1.8%) (4%) (5) (2.83%) Cloudy none (1.24%) (0.7%) (4.4%) note none none Cloudy day none Unit: square kilometer (area / sum of study area ) Satellite Spot-6 Spot-7 Formosat-2 time 2015/02/ /5/ /05/28 Sea (63.33%) Seagrass 9,00 (4.79%) (61.35%) (4.56%) (62%) (5%) Mud & Sand sediment Mixture (14.48 %) (12.18 %) (8.7%) Coral habitat (14.79%) Coral & Rock 2,581 (1.3%) Other Mixture Sediment (1.18%) (15.6%) 5.18 (2.76%) 7.06 (3.76%) (14.88%) (3.86%) (4.1%)

7 Cloudy none none none note none none none Unit: square kilometer (area / sum of study area ) Table 2. Classification Accuracy All classification accuracy assessment TIME Spot-6 Spot-7 FS /02/ /05/ /05/28 Overall Accuracy 80.04% % 80.11% Kappa Coefficient TIME FS-2 Landsat-8 Landsat-8 FS /03/ /6./ /08/ /11/02 Overall Accuracy % 78.71% % 73.91% Kappa Coefficient Total Area: Km^2 Average Over-all Accuracy: Average Kappa Coefficient: : From the Formosat-2 image in 2014/03/13 to Landsat-8 images in June and August, a large area (about 25 Km^2) of seagrass disappeared within 3 months. Although the resolution of Landsat-8 is 30 meter, relative low compare to Formosat-2 and SPOT-6/7, it can clearly recognize this event. From Figure 6, images after November 2014 indicate that the seagrass area is still not recovered. 4. Conclusion and Future Work In this study, our proposed method can provide good results for seagrass classification and track the changes. It can remove sun glint and calibrate bathymetry to reduce the solar and water depth effects, so the supervised maximum likelihood classifier can extract the seagrass. Although images from Landsat-8 Formosat-2 and Spot-6/7 have different spatial resolutions and spectral frequencies, they are able to detect the change in larger area. Compare with the long term change result we estimate the seagrass habitat lose about 19%. In the future, we would like to include tidal level and atmospheric calibration in further reduce error. We will also develop algorithm for transformation between SPOT-7 and Formosat-2, since they both collect images on May 28, We expect to improve the consistency between the classification results between different sensors.

8 5. Reference Pu, R., Bell, S., & Meyer, C. (2014). Mapping and assessing seagrass bed changes in Central Florida's west coast using multi-temporal Landsat TM imagery. Estuarine, Coastal and Shelf Science, 149, Hedley, J. D., Harborne, A. R., & Mumby, P. J. (2005). Technical note: Simple and robust removal of sun glint for mapping shallow water benthos. International Journal of Remote Sensing, 26(10), Lyons, M., Phinn, S., & Roelfsema, C. (2011). Integrating Quickbird multi-spectral satellite and field data: Mapping bathymetry, seagrass cover, seagrass species and change in Moreton Bay, Australia in 2004 and 2007.Remote Sensing, 3(1), Lyzenga, D. R. (1978). Passive remote sensing techniques for mapping water depth and bottom features. Applied optics, 17(3),

Shallow Water Remote Sensing

Shallow Water Remote Sensing Shallow Water Remote Sensing John Hedley, IOCCG Summer Class 2018 Overview - different methods and applications Physics-based model inversion methods High spatial resolution imagery and Sentinel-2 Bottom

More information

SEA GRASS MAPPING FROM SATELLITE DATA

SEA GRASS MAPPING FROM SATELLITE DATA JSPS National Coordinators Meeting, Coastal Marine Science 19 20 May 2008 Melaka SEA GRASS MAPPING FROM SATELLITE DATA Mohd Ibrahim Seeni Mohd, Nurul Hazrina Idris, Samsudin Ahmad 1. Introduction PRESENTATION

More information

The Study of Sea Bottom Morphology and Bathymetric Mapping Using Worldview-2 Imagery

The Study of Sea Bottom Morphology and Bathymetric Mapping Using Worldview-2 Imagery The Study of Sea Bottom Morphology and Bathymetric Mapping Using Worldview-2 Imagery Iwan E. Setiawan Badan Informasi Geospasial, Cibinong, Indonesia Doddy M. Yuwono Badan Informasi Geospasial, Cibinong,

More information

EUSIPCO Worldview-2 High Resolution Remote Sensing Image Processing for the Monitoring of Coastal Areas

EUSIPCO Worldview-2 High Resolution Remote Sensing Image Processing for the Monitoring of Coastal Areas EUSIPCO 2013 1569741167 Worldview-2 High Resolution Remote Sensing Image Processing for the Monitoring of Coastal Areas Francisco Eugenio 1, Javier Martin 1, Javier Marcello 1 and Juan A. Bermejo 2 1 Instituto

More information

Application of Soft Classification Algorithm In Increasing Per Class Classification Accuracy Of Coral Habitat. Aidy M Muslim

Application of Soft Classification Algorithm In Increasing Per Class Classification Accuracy Of Coral Habitat. Aidy M Muslim Application of Soft Classification Algorithm In Increasing Per Class Classification Accuracy Of Coral Habitat Aidy M Muslim INTRODUCTION Coral reefs play an essential role to our ecosystem and offer the

More information

Coral Reef Remote Sensing

Coral Reef Remote Sensing Coral Reef Remote Sensing Spectral, Spatial, Temporal Scaling Phillip Dustan Sensor Spatial Resolutio n Number of Bands Useful Bands coverage cycle Operation Landsat 80m 2 2 18 1972-97 Thematic 30m 7

More information

Sun glint correction of very high spatial resolution images

Sun glint correction of very high spatial resolution images Sun glint correction of very high spatial resolution images G. Doxani, M. Papadopoulou, P. Lafazani, M. Tsakiri - Strati, E. Mavridou Department of Cadastre, Photogrammetry and Cartography, Aristotle University

More information

Multiplatform Remote Sensing for Coral Reef Community Assessment

Multiplatform Remote Sensing for Coral Reef Community Assessment Multiplatform Remote Sensing for Coral Reef Community Assessment Quinta Reunión Nacional de Percepción Remota y Sistemas de Información Geográfica en Puerto Rico September 27, 2007 Roy A. Armstrong, Ph.

More information

Application of Linear Spectral unmixing to Enrique reef for classification

Application of Linear Spectral unmixing to Enrique reef for classification Application of Linear Spectral unmixing to Enrique reef for classification Carmen C. Zayas-Santiago University of Puerto Rico Mayaguez Marine Sciences Department Stefani 224 Mayaguez, PR 00681 c_castula@hotmail.com

More information

Towards a Management Plan for a Tropical Reef-Lagoon System Using Airborne Multispectral Imaging and GIS

Towards a Management Plan for a Tropical Reef-Lagoon System Using Airborne Multispectral Imaging and GIS Towards a Management Plan for a Tropical Reef-Lagoon System Using Airborne Multispectral Imaging and GIS This paper was presented at the Fourth International Conference on Remote Sensing for Marine and

More information

IDENTIFICATION AND MAPPING OF HAWAIIAN CORAL REEFS USING HYPERSPECTRAL REMOTE SENSING

IDENTIFICATION AND MAPPING OF HAWAIIAN CORAL REEFS USING HYPERSPECTRAL REMOTE SENSING IDENTIFICATION AND MAPPING OF HAWAIIAN CORAL REEFS USING HYPERSPECTRAL REMOTE SENSING Jessica Frances N. Ayau College of Education University of Hawai i at Mānoa Honolulu, HI 96822 ABSTRACT Coral reefs

More information

Airborne Hyperspectral Remote Sensing

Airborne Hyperspectral Remote Sensing Airborne Hyperspectral Remote Sensing Curtiss O. Davis Code 7212 Naval Research Laboratory 4555 Overlook Ave. S.W. Washington, D.C. 20375 phone (202) 767-9296 fax (202) 404-8894 email: davis@rsd.nrl.navy.mil

More information

IMPROVEMENT IN THE DETECTION OF LAND COVER CLASSES USING THE WORLDVIEW-2 IMAGERY

IMPROVEMENT IN THE DETECTION OF LAND COVER CLASSES USING THE WORLDVIEW-2 IMAGERY IMPROVEMENT IN THE DETECTION OF LAND COVER CLASSES USING THE WORLDVIEW-2 IMAGERY Ahmed Elsharkawy 1,2, Mohamed Elhabiby 1,3 & Naser El-Sheimy 1,4 1 Dept. of Geomatics Engineering, University of Calgary

More information

Exploring the Depth Coral Reefs, Mapping and Monitoring

Exploring the Depth Coral Reefs, Mapping and Monitoring Exploring the Depth Coral Reefs, Mapping and Monitoring Dr Chris Roelfsema School Of Geography, Planning and Environmental Management Our Aim To introduce you to the world of coral reef monitoring on the

More information

Remote sensing monitoring of coastline change in Pearl River estuary

Remote sensing monitoring of coastline change in Pearl River estuary Remote sensing monitoring of coastline change in Pearl River estuary Xiaoge Zhu Remote Sensing Geology Department Research Institute of Petroleum Exploration and Development (RIPED) PetroChina Company

More information

Mapping of Eelgrass and Other SAV Using Remote Sensing and GIS Chris Mueller NRS 509 November 30, 2004

Mapping of Eelgrass and Other SAV Using Remote Sensing and GIS Chris Mueller NRS 509 November 30, 2004 Mapping of Eelgrass and Other SAV Using Remote Sensing and GIS Chris Mueller NRS 509 November 30, 2004 Of the 58 species of seagrass that grow worldwide, Zostera marina, commonly called eelgrass, is by

More information

University of Texas at San Antonio EES 5053 Term Project CORRELATION BETWEEN NDVI AND SURFACE TEMPERATURES USING LANDSAT ETM + IMAGERY NEWFEL MAZARI

University of Texas at San Antonio EES 5053 Term Project CORRELATION BETWEEN NDVI AND SURFACE TEMPERATURES USING LANDSAT ETM + IMAGERY NEWFEL MAZARI University of Texas at San Antonio EES 5053 Term Project CORRELATION BETWEEN NDVI AND SURFACE TEMPERATURES USING LANDSAT ETM + IMAGERY NEWFEL MAZARI Introduction and Objectives The present study is a correlation

More information

SATELLITE OCEANOGRAPHY

SATELLITE OCEANOGRAPHY SATELLITE OCEANOGRAPHY An Introduction for Oceanographers and Remote-sensing Scientists I. S. Robinson Lecturer in Physical Oceanography Department of Oceanography University of Southampton JOHN WILEY

More information

Sommersemester Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Fernerkundung und Waldinventur.

Sommersemester Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Fernerkundung und Waldinventur. Basics of Remote Sensing Some literature references Franklin, SE 2001 Remote Sensing for Sustainable Forest Management Lewis Publishers 407p Lillesand, Kiefer 2000 Remote Sensing and Image Interpretation

More information

MAPPING SEAGRASS LEAF AREA INDEX, STANDING CROP, AND ABOVE GROUND CARBON STOCK USING COMPRESSED REMOTE SENSING DATA

MAPPING SEAGRASS LEAF AREA INDEX, STANDING CROP, AND ABOVE GROUND CARBON STOCK USING COMPRESSED REMOTE SENSING DATA PAPER ID F5 MAPPING SEAGRASS LEAF AREA INDEX, STANDING CROP, AND ABOVE GROUND CARBON STOCK USING COMPRESSED REMOTE SENSING DATA Pramaditya Wicaksono Cartography and Remote Sensing, Faculty of Geography,

More information

MAPPING CORAL REEF HABITAT WITH AND WITHOUT WATER COLUMN CORRECTION USING QUICKBIRD IMAGE

MAPPING CORAL REEF HABITAT WITH AND WITHOUT WATER COLUMN CORRECTION USING QUICKBIRD IMAGE MAPPING CORAL REEF HABITAT WITH AND WITHOUT WATER COLUMN CORRECTION USING QUICKBIRD IMAGE MARLINA NURLIDIASARI 1 AND SYARIF BUDHIMAN Abstract Remote sensing from space offers an effective approach to solve

More information

APCAS/10/21 April 2010 ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS TWENTY-THIRD SESSION. Siem Reap, Cambodia, April 2010

APCAS/10/21 April 2010 ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS TWENTY-THIRD SESSION. Siem Reap, Cambodia, April 2010 APCAS/10/21 April 2010 Agenda Item 8 ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS TWENTY-THIRD SESSION Siem Reap, Cambodia, 26-30 April 2010 The Use of Remote Sensing for Area Estimation by Robert

More information

Chapter 8. Remote sensing

Chapter 8. Remote sensing 1. Remote sensing 8.1 Introduction 8.2 Remote sensing 8.3 Resolution 8.4 Landsat 8.5 Geostationary satellites GOES 8.1 Introduction What is remote sensing? One can describe remote sensing in different

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing Spatial, spectral, temporal resolutions Image display alternatives Vegetation Indices Image classifications Image change detections Accuracy assessment Satellites & Air-Photos

More information

MAPPING BATHYMETRY FROM MULTI-SOURCE REMOTE SENSING IMAGES: A CASE STUDY IN THE BEILUN ESTUARY, GUANGXI, CHINA

MAPPING BATHYMETRY FROM MULTI-SOURCE REMOTE SENSING IMAGES: A CASE STUDY IN THE BEILUN ESTUARY, GUANGXI, CHINA MAPPING BATHYMETRY FROM MULTI-SOURCE REMOTE SENSING IMAGES: A CASE STUDY IN THE BEILUN ESTUARY, GUANGXI, CHINA Zhongwei Deng b, Minhe Ji a, b, *, Zhihua Zhang b a Guangxi ASEAN Marine Research Center,

More information

Aim of Lesson. Objectives. Background Information

Aim of Lesson. Objectives. Background Information Lesson 8: Mapping major inshore marine habitats 8: MAPPING THE MAJOR INSHORE MARINE HABITATS OF THE CAICOS BANK BY MULTISPECTRAL CLASSIFICATION USING LANDSAT TM Aim of Lesson To learn how to undertake

More information

MULTI-TEMPORAL IMAGE ANALYSIS OF THE COASTAL WATERSHED, NH INTRODUCTION

MULTI-TEMPORAL IMAGE ANALYSIS OF THE COASTAL WATERSHED, NH INTRODUCTION MULTI-TEMPORAL IMAGE ANALYSIS OF THE COASTAL WATERSHED, NH Meghan Graham MacLean, PhD Student Alexis M. Rudko, MS Student Dr. Russell G. Congalton, Professor Department of Natural Resources and the Environment

More information

Examining the potential of detecting change in HICO-derived bathymetry: a case study of Shark Bay, Western Australia

Examining the potential of detecting change in HICO-derived bathymetry: a case study of Shark Bay, Western Australia Research Report Examining the potential of detecting change in HICO-derived bathymetry: a case study of Shark Bay, Western Australia HICO User s Annual Report II, April 2014 Rodrigo Garcia 1, Peter Fearns

More information

Jeffrey H. Bowles, Wesley J. Moses, Gia M. Lamela, Richard Mied, Karen W. Patterson, and Ellen J. Wagner

Jeffrey H. Bowles, Wesley J. Moses, Gia M. Lamela, Richard Mied, Karen W. Patterson, and Ellen J. Wagner 1 Jeffrey H. Bowles, Wesley J. Moses, Gia M. Lamela, Richard Mied, Karen W. Patterson, and Ellen J. Wagner and, Washington, D.C. from Center for Advanced Land Management Information Technologies (CALMIT),

More information

TRACS A-B-C Acquisition and Processing and LandSat TM Processing

TRACS A-B-C Acquisition and Processing and LandSat TM Processing TRACS A-B-C Acquisition and Processing and LandSat TM Processing Mark Hess, Ocean Imaging Corp. Kevin Hoskins, Marine Spill Response Corp. TRACS: Level A AIRCRAFT Ocean Imaging Corporation Multispectral/TIR

More information

Test, Evaluate, and Characterize a Remote-Sensing Algorithm for Optically-Shallow Waters

Test, Evaluate, and Characterize a Remote-Sensing Algorithm for Optically-Shallow Waters DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Test, Evaluate, and Characterize a Remote-Sensing Algorithm for Optically-Shallow Waters ZhongPing Lee Geosystems Research

More information

An Introduction to Remote Sensing & GIS. Introduction

An Introduction to Remote Sensing & GIS. Introduction An Introduction to Remote Sensing & GIS Introduction Remote sensing is the measurement of object properties on Earth s surface using data acquired from aircraft and satellites. It attempts to measure something

More information

On the use of water color missions for lakes in 2021

On the use of water color missions for lakes in 2021 Lakes and Climate: The Role of Remote Sensing June 01-02, 2017 On the use of water color missions for lakes in 2021 Cédric G. Fichot Department of Earth and Environment 1 Overview 1. Past and still-ongoing

More information

Fighting the sunglint removal in UAV images

Fighting the sunglint removal in UAV images Doukari Michaela, Ph.D. Candidate, Marine Sciences Dep., University of the Aegean m.doukari@marine.aegean.gr Papakonstantinou Apostolos, Post-Doc. Researcher Geography Dep., University of the Aegean apapak@geo.aegean.gr

More information

AT-SATELLITE REFLECTANCE: A FIRST ORDER NORMALIZATION OF LANDSAT 7 ETM+ IMAGES

AT-SATELLITE REFLECTANCE: A FIRST ORDER NORMALIZATION OF LANDSAT 7 ETM+ IMAGES AT-SATELLITE REFLECTANCE: A FIRST ORDER NORMALIZATION OF LANDSAT 7 ETM+ IMAGES Chengquan Huang*, Limin Yang, Collin Homer, Bruce Wylie, James Vogelman and Thomas DeFelice Raytheon ITSS, EROS Data Center

More information

Fugro Worldwide Fugro Environmental

Fugro Worldwide Fugro Environmental 1 2 Fugro Worldwide The Fugro group of companies is an international consulting company that provides measurements and interpretations of data related to the earth's surface and the soils and rocks beneath.

More information

Keywords: Agriculture, Olive Trees, Supervised Classification, Landsat TM, QuickBird, Remote Sensing.

Keywords: Agriculture, Olive Trees, Supervised Classification, Landsat TM, QuickBird, Remote Sensing. Classification of agricultural fields by using Landsat TM and QuickBird sensors. The case study of olive trees in Lesvos island. Christos Vasilakos, University of the Aegean, Department of Environmental

More information

Figure 3: Map showing the extension of the six surveyed areas in Indonesia analysed in this study.

Figure 3: Map showing the extension of the six surveyed areas in Indonesia analysed in this study. 5 2. METHODOLOGY The present study consisted of two phases. First a test study was conducted to evaluate whether Landsat 7 images could be used to identify the habitat of humphead wrasse in Indonesia.

More information

BATHYMETRY DATA EXTRACTION ANALYSIS USING LANDSAT 8 DATA

BATHYMETRY DATA EXTRACTION ANALYSIS USING LANDSAT 8 DATA International Journal of Remote Sensing and Earth Sciences Vol.13 No.2 December 2016: 79 86 BATHYMETRY DATA EXTRACTION ANALYSIS USING LANDSAT 8 DATA Kuncoro Teguh Setiawan *), Syifa Wismayati Adawiah,

More information

Present and future of marine production in Boka Kotorska

Present and future of marine production in Boka Kotorska Present and future of marine production in Boka Kotorska First results from satellite remote sensing for the breeding areas of filter feeders in the Bay of Kotor INTRODUCTION Environmental monitoring is

More information

Light penetration within a clear water body. E z = E 0 e -kz

Light penetration within a clear water body. E z = E 0 e -kz THE BLUE PLANET 1 2 Light penetration within a clear water body E z = E 0 e -kz 3 4 5 Pure Seawater Phytoplankton b w 10-2 m -1 b w 10-2 m -1 b w, Morel (1974) a w, Pope and Fry (1997) b chl,loisel and

More information

IKONOS High Resolution Multispectral Scanner Sensor Characteristics

IKONOS High Resolution Multispectral Scanner Sensor Characteristics High Spatial Resolution and Hyperspectral Scanners IKONOS High Resolution Multispectral Scanner Sensor Characteristics Launch Date View Angle Orbit 24 September 1999 Vandenberg Air Force Base, California,

More information

Evaluation of FLAASH atmospheric correction. Note. Note no SAMBA/10/12. Authors. Øystein Rudjord and Øivind Due Trier

Evaluation of FLAASH atmospheric correction. Note. Note no SAMBA/10/12. Authors. Øystein Rudjord and Øivind Due Trier Evaluation of FLAASH atmospheric correction Note Note no Authors SAMBA/10/12 Øystein Rudjord and Øivind Due Trier Date 16 February 2012 Norsk Regnesentral Norsk Regnesentral (Norwegian Computing Center,

More information

Application of Remote Sensing in the Monitoring of Marine pollution. By Atif Shahzad Institute of Environmental Studies University of Karachi

Application of Remote Sensing in the Monitoring of Marine pollution. By Atif Shahzad Institute of Environmental Studies University of Karachi Application of Remote Sensing in the Monitoring of Marine pollution By Atif Shahzad Institute of Environmental Studies University of Karachi Remote Sensing "Remote sensing is the science (and to some extent,

More information

An Introduction to Geomatics. Prepared by: Dr. Maher A. El-Hallaq خاص بطلبة مساق مقدمة في علم. Associate Professor of Surveying IUG

An Introduction to Geomatics. Prepared by: Dr. Maher A. El-Hallaq خاص بطلبة مساق مقدمة في علم. Associate Professor of Surveying IUG An Introduction to Geomatics خاص بطلبة مساق مقدمة في علم الجيوماتكس Prepared by: Dr. Maher A. El-Hallaq Associate Professor of Surveying IUG 1 Airborne Imagery Dr. Maher A. El-Hallaq Associate Professor

More information

Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS

Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS Time: Max. Marks: Q1. What is remote Sensing? Explain the basic components of a Remote Sensing system. Q2. What is

More information

NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS

NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS PASSIVE ACTIVE DIGITAL

More information

ESTIMATING REEF HABITAT COVERAGE SUITABLE FOR THE HUMPHEAD WRASSE, CHEILINUS UNDULATUS, USING REMOTE SENSING

ESTIMATING REEF HABITAT COVERAGE SUITABLE FOR THE HUMPHEAD WRASSE, CHEILINUS UNDULATUS, USING REMOTE SENSING FAO Fisheries and Aquaculture Circular No. 1057 FIRF/C1057 (En) ISSN 2070-6065 ESTIMATING REEF HABITAT COVERAGE SUITABLE FOR THE HUMPHEAD WRASSE, CHEILINUS UNDULATUS, USING REMOTE SENSING Copies of FAO

More information

Dr. P Shanmugam. Associate Professor Department of Ocean Engineering Indian Institute of Technology (IIT) Madras INDIA

Dr. P Shanmugam. Associate Professor Department of Ocean Engineering Indian Institute of Technology (IIT) Madras INDIA Dr. P Shanmugam Associate Professor Department of Ocean Engineering Indian Institute of Technology (IIT) Madras INDIA Biography Ph.D (Remote Sensing and Image Processing for Coastal Studies) - Anna University,

More information

Remote Sensing Mapping of Turbidity in the Upper San Francisco Estuary. Francine Mejia, Geography 342

Remote Sensing Mapping of Turbidity in the Upper San Francisco Estuary. Francine Mejia, Geography 342 Remote Sensing Mapping of Turbidity in the Upper San Francisco Estuary Francine Mejia, Geography 342 Introduction The sensitivity of reflectance to sediment, chlorophyll a, and colored DOM (CDOM) in the

More information

Bringing Hyperspectral Imaging Into the Mainstream

Bringing Hyperspectral Imaging Into the Mainstream Bringing Hyperspectral Imaging Into the Mainstream Rich Zacaroli Product Line Manager, Commercial Hyperspectral Products Corning August 2018 Founded: 1851 Headquarters: Corning, New York Employees: ~46,000

More information

to Geospatial Technologies

to Geospatial Technologies What s in a Pixel? A Primer for Remote Sensing What s in a Pixel Development UNH Cooperative Extension Geospatial Technologies Training Center Shane Bradt UConn Cooperative Extension Geospatial Technology

More information

At-Satellite Reflectance: A First Order Normalization Of Landsat 7 ETM+ Images

At-Satellite Reflectance: A First Order Normalization Of Landsat 7 ETM+ Images University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications of the US Geological Survey US Geological Survey 21 At-Satellite Reflectance: A First Order Normalization Of

More information

Remote sensing in archaeology from optical to lidar. Krištof Oštir ModeLTER Scientific Research Centre of the Slovenian Academy of Sciences and Arts

Remote sensing in archaeology from optical to lidar. Krištof Oštir ModeLTER Scientific Research Centre of the Slovenian Academy of Sciences and Arts Remote sensing in archaeology from optical to lidar Krištof Oštir ModeLTER Scientific Research Centre of the Slovenian Academy of Sciences and Arts Introduction Optical remote sensing Systems Search for

More information

The studies began when the Tiros satellites (1960) provided man s first synoptic view of the Earth s weather systems.

The studies began when the Tiros satellites (1960) provided man s first synoptic view of the Earth s weather systems. Remote sensing of the Earth from orbital altitudes was recognized in the mid-1960 s as a potential technique for obtaining information important for the effective use and conservation of natural resources.

More information

Journal of Engineering Science and Technology Review 10 (1) (2017) Research Article. Mapping Seagrass Condition Using Google Earth Imagery

Journal of Engineering Science and Technology Review 10 (1) (2017) Research Article. Mapping Seagrass Condition Using Google Earth Imagery Jestr Journal of Engineering Science and Technology Review 10 (1) (2017) 18-23 Research Article Mapping Seagrass Condition Using Google Earth Imagery Muhammad Anshar Amran Department of Marine Sciences,

More information

TEMPORAL ANALYSIS OF MULTI EPOCH LANDSAT GEOCOVER IMAGES IN ZONGULDAK TESTFIELD

TEMPORAL ANALYSIS OF MULTI EPOCH LANDSAT GEOCOVER IMAGES IN ZONGULDAK TESTFIELD TEMPORAL ANALYSIS OF MULTI EPOCH LANDSAT GEOCOVER IMAGES IN ZONGULDAK TESTFIELD Şahin, H. a*, Oruç, M. a, Büyüksalih, G. a a Zonguldak Karaelmas University, Zonguldak, Turkey - (sahin@karaelmas.edu.tr,

More information

VITO - Remote Sensing and Coastal Zone Management 18/02/ , VITO NV

VITO - Remote Sensing and Coastal Zone Management 18/02/ , VITO NV VITO - Remote Sensing and Coastal Zone Management 18/02/2016 1 VITO IN NUMBERS» 750 employees» 26 nationalities» More than 400 patents worldwide» HQ in Mol, België. Offices in Ostend, Berchem, Ghent, Genk»

More information

Ground Truth for Calibrating Optical Imagery to Reflectance

Ground Truth for Calibrating Optical Imagery to Reflectance Visual Information Solutions Ground Truth for Calibrating Optical Imagery to Reflectance The by: Thomas Harris Whitepaper Introduction: Atmospheric Effects on Optical Imagery Remote sensing of the Earth

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing Daniel McInerney Urban Institute Ireland, University College Dublin, Richview Campus, Clonskeagh Drive, Dublin 14. 16th June 2009 Presentation Outline 1 2 Spaceborne Sensors

More information

White Paper. Medium Resolution Images and Clutter From Landsat 7 Sources. Pierre Missud

White Paper. Medium Resolution Images and Clutter From Landsat 7 Sources. Pierre Missud White Paper Medium Resolution Images and Clutter From Landsat 7 Sources Pierre Missud Medium Resolution Images and Clutter From Landsat7 Sources Page 2 of 5 Introduction Space technologies have long been

More information

Remote Sensing. in Agriculture. Dr. Baqer Ramadhan CRP 514 Geographic Information System. Adel M. Al-Rebh G Term Paper.

Remote Sensing. in Agriculture. Dr. Baqer Ramadhan CRP 514 Geographic Information System. Adel M. Al-Rebh G Term Paper. Remote Sensing in Agriculture Term Paper to Dr. Baqer Ramadhan CRP 514 Geographic Information System By Adel M. Al-Rebh G199325390 May 2012 Table of Contents 1.0 Introduction... 4 2.0 Objective... 4 3.0

More information

Land Cover Analysis to Determine Areas of Clear-cut and Forest Cover in Olney, Montana. Geob 373 Remote Sensing. Dr Andreas Varhola, Kathry De Rego

Land Cover Analysis to Determine Areas of Clear-cut and Forest Cover in Olney, Montana. Geob 373 Remote Sensing. Dr Andreas Varhola, Kathry De Rego 1 Land Cover Analysis to Determine Areas of Clear-cut and Forest Cover in Olney, Montana Geob 373 Remote Sensing Dr Andreas Varhola, Kathry De Rego Zhu an Lim (14292149) L2B 17 Apr 2016 2 Abstract Montana

More information

Benthic Photo Survey Documentation

Benthic Photo Survey Documentation Benthic Photo Survey Documentation Release 1.0.1 Jared Kibele December 18, 2014 Contents 1 Contents 3 1.1 Introduction............................................... 3 1.2 Installation................................................

More information

remote sensing? What are the remote sensing principles behind these Definition

remote sensing? What are the remote sensing principles behind these Definition Introduction to remote sensing: Content (1/2) Definition: photogrammetry and remote sensing (PRS) Radiation sources: solar radiation (passive optical RS) earth emission (passive microwave or thermal infrared

More information

Using multi-angle WorldView-2 imagery to determine ocean depth near the island of Oahu, Hawaii

Using multi-angle WorldView-2 imagery to determine ocean depth near the island of Oahu, Hawaii Using multi-angle WorldView-2 imagery to determine ocean depth near the island of Oahu, Hawaii Krista R. Lee*, Richard C. Olsen, Fred A. Kruse Department of Physics and Remote Sensing Center Naval Postgraduate

More information

Aral Sea profile Selection of area 24 February April May 1998

Aral Sea profile Selection of area 24 February April May 1998 250 km Aral Sea profile 1960 1960 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 2010? Selection of area Area of interest Kzyl-Orda Dried seabed 185 km Syrdarya river Aral Sea Salt

More information

Habitat mapping in the Farasan Islands (Saudi Arabia) using CASI and QuickBird imagery

Habitat mapping in the Farasan Islands (Saudi Arabia) using CASI and QuickBird imagery Proceedings of the 11 th International Coral Reef Symposium, Ft Lauderdale, Florida, 7-11 July 2008 Session number 17 Habitat mapping in the Farasan Islands (Saudi Arabia) using CASI and QuickBird imagery

More information

Application of Satellite Image Processing to Earth Resistivity Map

Application of Satellite Image Processing to Earth Resistivity Map Application of Satellite Image Processing to Earth Resistivity Map KWANCHAI NORSANGSRI and THANATCHAI KULWORAWANICHPONG Power System Research Unit School of Electrical Engineering Suranaree University

More information

Evaluation of Underwater Spectral Data for Colour Correction Applications

Evaluation of Underwater Spectral Data for Colour Correction Applications Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-3, 2006 321 Evaluation of Underwater Spectral Data for Colour Correction

More information

The Benefits of the 8 Spectral Bands of WorldView-2

The Benefits of the 8 Spectral Bands of WorldView-2 W H I T E P A P E R The Benefits of the 8 Spectral Bands of WorldView-2 A U G U S T 2 0 0 9 Corporate (U.S.) 303.684.4561 or 800.496.1225 London +44.20.8899.6801 Singapore +65.6389.4851 www.digitalglobe.com

More information

NRL SSC HICO Article for Oceans 09 Conference

NRL SSC HICO Article for Oceans 09 Conference NRL SSC HICO Article for Oceans 09 Conference Title: The Hyperspectral Imager for the Coastal Ocean (HICO): Sensor and Data Processing Overview Abstract M.D. Lewis, R.W. Gould, Jr., R.A. Arnone, P.E. Lyon,

More information

NRS 415 Remote Sensing of Environment

NRS 415 Remote Sensing of Environment NRS 415 Remote Sensing of Environment 1 High Oblique Perspective (Side) Low Oblique Perspective (Relief) 2 Aerial Perspective (See What s Hidden) An example of high spatial resolution true color remote

More information

RECENT DYNAMICS OF SUBMERGED SHOALS AND CHANNELS AROUND THE KERKENNAH ARCHIPELAGO (TUNISIA) FROM LANDSAT TM AND MODIS

RECENT DYNAMICS OF SUBMERGED SHOALS AND CHANNELS AROUND THE KERKENNAH ARCHIPELAGO (TUNISIA) FROM LANDSAT TM AND MODIS 2 nd International Conference - Water resources and wetlands. 11-13 September, 2014 Tulcea (Romania); Available online at http://www.limnology.ro/water2014/proceedings.html Editors: Petre Gâştescu ; Włodzimierz

More information

Int n r t o r d o u d c u ti t on o n to t o Remote Sensing

Int n r t o r d o u d c u ti t on o n to t o Remote Sensing Introduction to Remote Sensing Definition of Remote Sensing Remote sensing refers to the activities of recording/observing/perceiving(sensing)objects or events at far away (remote) places. In remote sensing,

More information

Satellite Observations of Nonlinear Internal Waves and Surface Signatures in the South China Sea

Satellite Observations of Nonlinear Internal Waves and Surface Signatures in the South China Sea DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited Satellite Observations of Nonlinear Internal Waves and Surface Signatures in the South China Sea Hans C. Graber

More information

Observing Dry-Fallen Intertidal Flats in the German Bight Using ALOS PALSAR Together With Other Remote Sensing Sensors

Observing Dry-Fallen Intertidal Flats in the German Bight Using ALOS PALSAR Together With Other Remote Sensing Sensors Observing Dry-Fallen Intertidal Flats in the German Bight Using ALOS PALSAR Together With Other Remote Sensing Sensors Martin Gade, Institut für Meereskunde & Kerstin Stelzer Brockmann Consult Outline

More information

Comparing of Landsat 8 and Sentinel 2A using Water Extraction Indexes over Volta River

Comparing of Landsat 8 and Sentinel 2A using Water Extraction Indexes over Volta River Journal of Geography and Geology; Vol. 10, No. 1; 2018 ISSN 1916-9779 E-ISSN 1916-9787 Published by Canadian Center of Science and Education Comparing of Landsat 8 and Sentinel 2A using Water Extraction

More information

Relationship Between Landsat 8 Spectral Reflectance and Chlorophyll-a in Grand Lake, Oklahoma

Relationship Between Landsat 8 Spectral Reflectance and Chlorophyll-a in Grand Lake, Oklahoma Relationship Between Landsat 8 Spectral Reflectance and Chlorophyll-a in Grand Lake, Oklahoma Presented by: Abu Mansaray Research Team Dr. Andrew Dzialowski (PI), Oklahoma State University Dr. Scott Stoodley

More information

Geo/SAT 2 INTRODUCTION TO REMOTE SENSING

Geo/SAT 2 INTRODUCTION TO REMOTE SENSING Geo/SAT 2 INTRODUCTION TO REMOTE SENSING Paul R. Baumann, Professor Emeritus State University of New York College at Oneonta Oneonta, New York 13820 USA COPYRIGHT 2008 Paul R. Baumann Introduction Remote

More information

Remote Sediment Property From Chirp Data Collected During ASIAEX

Remote Sediment Property From Chirp Data Collected During ASIAEX Remote Sediment Property From Chirp Data Collected During ASIAEX Steven G. Schock Department of Ocean Engineering Florida Atlantic University Boca Raton, Fl. 33431-0991 phone: 561-297-3442 fax: 561-297-3885

More information

Remote Sensing. Odyssey 7 Jun 2012 Benjamin Post

Remote Sensing. Odyssey 7 Jun 2012 Benjamin Post Remote Sensing Odyssey 7 Jun 2012 Benjamin Post Definitions Applications Physics Image Processing Classifiers Ancillary Data Data Sources Related Concepts Outline Big Picture Definitions Remote Sensing

More information

REMOTE SENSING OF RIVERINE WATER BODIES

REMOTE SENSING OF RIVERINE WATER BODIES REMOTE SENSING OF RIVERINE WATER BODIES Bryony Livingston, Paul Frazier and John Louis Farrer Research Centre Charles Sturt University Wagga Wagga, NSW 2678 Ph 02 69332317, Fax 02 69332737 blivingston@csu.edu.au

More information

Introduction. Introduction. Introduction. Introduction. Introduction

Introduction. Introduction. Introduction. Introduction. Introduction Identifying habitat change and conservation threats with satellite imagery Extinction crisis Volker Radeloff Department of Forest Ecology and Management Extinction crisis Extinction crisis Conservationists

More information

MPA Baseline Program. Annual Progress Report

MPA Baseline Program. Annual Progress Report MPA Baseline Program Annual Progress Report Principal Investigators please use this form to submit your MPA Baseline Program project annual report, including an update on activities completed over the

More information

The Hyperspectral Infrared Radiometer (HyspIRI)

The Hyperspectral Infrared Radiometer (HyspIRI) The Hyperspectral Infrared Radiometer (HyspIRI) Simon J Hook and The HyspIRI Team *Jet Propulsion Laboratory, California Institute of Technology **Goddard Space Flight Center NRD Decadal Survey HyspIRI

More information

Remote Sensing and GIS

Remote Sensing and GIS Remote Sensing and GIS Atmosphere Reflected radiation, e.g. Visible Emitted radiation, e.g. Infrared Backscattered radiation, e.g. Radar (λ) Visible TIR Radar & Microwave 11/9/2017 Geo327G/386G, U Texas,

More information

RADIOMETRIC CALIBRATION

RADIOMETRIC CALIBRATION 1 RADIOMETRIC CALIBRATION Lecture 10 Digital Image Data 2 Digital data are matrices of digital numbers (DNs) There is one layer (or matrix) for each satellite band Each DN corresponds to one pixel 3 Digital

More information

746A27 Remote Sensing and GIS. Multi spectral, thermal and hyper spectral sensing and usage

746A27 Remote Sensing and GIS. Multi spectral, thermal and hyper spectral sensing and usage 746A27 Remote Sensing and GIS Lecture 3 Multi spectral, thermal and hyper spectral sensing and usage Chandan Roy Guest Lecturer Department of Computer and Information Science Linköping University Multi

More information

High Resolution Nearshore Substrate Mapping and Persistence Analysis with Multi-spectral Aerial Imagery.

High Resolution Nearshore Substrate Mapping and Persistence Analysis with Multi-spectral Aerial Imagery. High Resolution Nearshore Substrate Mapping and Persistence Analysis with Multi-spectral Aerial Imagery. 1 st Project Year Annual Report Submitted to the California Sea Grant Program Grant no: MPA 09-015

More information

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011 Training Course Remote Sensing Basic Theory & Image Processing Methods 19 23 September 2011 Popular Remote Sensing Sensors & their Selection Michiel Damen (September 2011) damen@itc.nl 1 Overview Low resolution

More information

NORMALIZING ASTER DATA USING MODIS PRODUCTS FOR LAND COVER CLASSIFICATION

NORMALIZING ASTER DATA USING MODIS PRODUCTS FOR LAND COVER CLASSIFICATION NORMALIZING ASTER DATA USING MODIS PRODUCTS FOR LAND COVER CLASSIFICATION F. Gao a, b, *, J. G. Masek a a Biospheric Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA b Earth

More information

Atmospheric Correction (including ATCOR)

Atmospheric Correction (including ATCOR) Technical Specifications Atmospheric Correction (including ATCOR) The data obtained by optical satellite sensors with high spatial resolution has become an invaluable tool for many groups interested in

More information

A Study of the Mississippi River Delta Using Remote Sensing

A Study of the Mississippi River Delta Using Remote Sensing 1 University of Puerto Rico Mayagüez Campus PO BOX 9000 Mayagüez PR 00681-9000 Tel: (787) 832-4040 A Study of the Mississippi River Delta Using Remote Sensing Meganlee Rivera 1, Imaryarie Rivera 1 Department

More information

Malaria Vector in Northeastern Venezuela. Sarah Anne Guagliardo MPH candidate, 2010 Yale University School of Epidemiology and Public Health

Malaria Vector in Northeastern Venezuela. Sarah Anne Guagliardo MPH candidate, 2010 Yale University School of Epidemiology and Public Health Vegetation associated with the An. Aquasalis Malaria Vector in Northeastern Venezuela Sarah Anne Guagliardo g MPH candidate, 2010 Yale University School of Epidemiology and Public Health Outline Problem

More information

Potentials of Landsat TM Image to investigate the Nearshore and Offshore Bars along the Arab s Gulf Shore zone, Western of Alexandria, Egypt.

Potentials of Landsat TM Image to investigate the Nearshore and Offshore Bars along the Arab s Gulf Shore zone, Western of Alexandria, Egypt. Potentials of Landsat TM Image to investigate the Nearshore and Offshore Bars along the Arab s Gulf Shore zone, Western of Alexandria, Egypt. Prof.Dr. Maged Mohammed Shoala Faculty of Arts, University

More information

Costal region of northern Peru, the pacific equatorial dry forest there is recognised for its unique endemic biodiversity

Costal region of northern Peru, the pacific equatorial dry forest there is recognised for its unique endemic biodiversity S.Baena@kew.org http://www.kew.org/gis/ Costal region of northern Peru, the pacific equatorial dry forest there is recognised for its unique endemic biodiversity Highly threatened ecosystem affected by

More information

USE OF DIGITAL AERIAL IMAGES TO DETECT DAMAGES DUE TO EARTHQUAKES

USE OF DIGITAL AERIAL IMAGES TO DETECT DAMAGES DUE TO EARTHQUAKES USE OF DIGITAL AERIAL IMAGES TO DETECT DAMAGES DUE TO EARTHQUAKES Fumio Yamazaki 1, Daisuke Suzuki 2 and Yoshihisa Maruyama 3 ABSTRACT : 1 Professor, Department of Urban Environment Systems, Chiba University,

More information

The Normal Baseline. Dick Gent Law of the Sea Division UK Hydrographic Office

The Normal Baseline. Dick Gent Law of the Sea Division UK Hydrographic Office The Normal Baseline Dick Gent Law of the Sea Division UK Hydrographic Office 2 The normal baseline for measuring the breadth of the territorial sea is the low water line along the coast as marked on large

More information

DETECTION AND MAPPING OF THE DISASTER-STRICKEN AREAS FROM LANDSAT DATA

DETECTION AND MAPPING OF THE DISASTER-STRICKEN AREAS FROM LANDSAT DATA DETECTION AND MAPPING OF THE DISASTER-STRICKEN AREAS FROM LANDSAT DATA Shinkichi Kishi and Hiroshi Ohkura National Research Center for Disaster Prevention, Science and Technology Agency 3-1 Tennodai, Tsukuba-city,

More information