Serial Block Face Imaging

Size: px
Start display at page:

Download "Serial Block Face Imaging"

Transcription

1 3View 2 Serial Block Face Imaging 500 nm 250 nm ANALYTICAL TEM DIGITAL IMAGING SPECIMEN PREPARATION TEM SPECIMEN HOLDERS SEM PRODUCTS SOFTWARE

2 Serial Block Face Imaging EM Resolution to Ultra Resolution The Gatan 3View 2 offers life science researchers the ability to obtain in situ 3D data at remarkably fine depth resolution by operating a high-precision ultramicrotome within a field emission gun scanning electron microscope (FEGSEM). Based on the groundbreaking serial block-face scanning electron microscopy (SBFSEM) work performed by MPI Heidelberg 1, the revolutionary 3View 2 allows automated acquisition of 3D ultrastructure by sequentially imaging a freshly cut, resinembedded block face. Unlike the 3D imaging techniques in light microscopy, the spatial resolution provided by 3View 2 in the Z direction is comparable to its X-Y resolution and does not degrade with depth. Introduction 3View 2 is an automated sectioning and image capture system for the VP-FESEM. The purpose of the 3View 2 is to collect serial images from a embedded sample unattended. The result produces a stack of aligned images which can be viewed in sequence or further processed using 3D reconstruction and measurement software. Sample Preparation A biological sample needs to be prepared similar to the preparation used for the microtome or TEM. The sample must be fixed, stained and embedded. See the sample preparation note for further details. The reason for the preparation is that the sample must hold up to hours of imaging in the FESEM. This is why it must be fixed and embedded in resin or epoxy. Since the specimen block is viewed using Gatan s backscatter detector, the staining is necessary for contrast. Operation The 3View 2 setup and operation is simple. The system is provided on its own chamber door that fits a specific microscope. The standard stage is removed from the FESEM by venting the chamber. 3View 2 replaces the standard stage, and the sample is loaded into the 3View 2. The operator can choose a number of settings in set up of the unattended run. The cut step size can be set from 5 to 200 nanometers. The speed of the diamond knife (cutting speed) can be set from 0.05 to 5.0 mm/sec. The number of images to be collected is set by the operator. This depends on how much material one wants to section through. The 3View 2 can traverse through 600 microns in depth (Z). Imaging The images are acquired from the block-face, not the sections which are discarded. Image capture is done using a Gatan backscatter system that is optimized for high signal collection at low accelerating voltage. Because the sample is embedded in a nonconductive resin or epoxy, sample charging is almost inevitable. This is best handled using variable pressure or charge compensation (such as gas injector) and low accelerating voltage. The operator has a choice of image(s) to be collected after each cut. One can just take one image per cut or many. Those images can be at several magnifications or a series of images such as a montage.

3 Complement Confocal Main image: A 3D reconstruction of a dendrite from a 15,625 μm³ (25 x 25 x 25 μm) volumetric data set containing 500 serial images of mouse cerebellum generated by Gatan 3View 2. Dendrite structure (green), buttons (yellow), and vesicles (red). Inset images, clockwise from top left: Confocal image of a dendrite. Wire frame traces rendered into a volumetric model. Ultra resolution dendritic spine model with synapses. 3View 2 image showing wire frame traces. Sample courtesy of Tom Deerinck and Dr. Mark Ellisman, National Center for Microscopy and Imaging Research, University of California, San Diego. Serial images were segmented using Imaris to create a 3D model of a neuron of interest. 500 nm Image of Hela cells, stably expressing LC-GFP grown on gridded glass bottom coverslips dishes, starved for 2 hours in serum-free medium and cells of interest identified by confocal microscopy. The cells were then processed in-situ for electron microscopy and the coverslips dissolved from the epoxy resin with hydrofluoric acid. The cells were again identified in the resin block and in subsequent serial images generated by Gatan 3View 2. Samples courtesy of David Dinsdale, MRC Toxicology Unit, University of Leicester, UK.

4 Life Science Top left: High resolution, mouse kidney, 8192 x 8192 pixel image acquired with 1.5 nm pixels. Top middle: Large field of view, mouse kidney, 8192 x 8192 pixel image acquired with 80 nm pixels. Right: C. elegans prepared by high pressure freezing; 4096 x 4096 pixel image acquired with 25 nm pixels; sample courtesy of Kent McDonald, University of California, Berkeley. Bottom left: Mouse sciatic nerve, 2048 x 2048 pixel image acquired with 5 nm pixels. Bottom middle: 3D visualization of mouse sciatic nerve axons. 3D data set contains 1, x 2048 serial images collected with 5 nm pixels and segmented using the program Imaris. Sample courtesy of Gabrial Corfas, Harvard University and Children s Hospital Boston. Images generated by Gatan 3View 2. Materials Science Upper and lower left: Images of anodized coating on aluminum surface generated by Gatan 3View 2. Sample and data provided courtesy of Teruo Hashimoto and George Thompson, The University of Manchester, United Kingdom. Middle: 3D visualization of aluminum alloy with manganese particles generated by Gatan 3View 2. 3D dataset contains 1, x 1024 serial images with a pixel size of 15 nm and a cut thickness of 15 nm. 3D model created in DigitalMicrograph using the 3DVisualization plugin. 3View 2

5 3View Features and Capabilities 2 Simplifying EM The 3View 2 setup and operation is intuitive and simple. Removing the most difficult step, cutting and collecting ultrathin sections, 3View 2 can turn an embedded sample into thousands on images overnight. In addition 3View 2 can also cut thinner than a conventional ultramictotome, cutting a sample from <15 nm to 200 nanometers with a total traverse of 600 microns. Cutting Thin 3View 2XP has the ability to cut biological and material samples thinner than 15 nm. This is made possible by precise z stage control, stabilization of the microtome, and a custom diamond knife. The 3View 2XP z movement is controlled by a piezoelectric device, allowing precise movements at the nanometer scale. Adjusting the cutting thickness is controlled by DigitalMicrograph. In addition, the 3View 2XP stage has been stabilized to minimize vibrations reducing cutting discrepancy thickness. Image: Mouse kidney prepared with the National Center for Microscopy and Imaging Research (NCMIR) 3View 2XP specimen preparation protocol embedded with Durcupan resin imaged with 7 nm pixels, and cut with 7 nm cuts creating 7 nm isotropic voxels. 250 nm 0.5 µm Gatan Microscopy Suite 2 3View 2 operates on the new Gatan Microscopy Suite (GMS) 2 64-bit platform with GB of available memory. In addition 3View 2XP now has three imaging modes, single image, montage, and multi ROI. The single image acquisition is the classic 3View mode with an improved interface. The new montage feature sets up an automated volume acquisition of adjacent area allowing the images to be stitched together creating a super-volume. Multi ROI allows the user to image several different areas specifying image size, pixel size, and dwell times for each individual ROI.

6 Specifications, Recommendations and Ordering Specification/ Recommendation 3View 2 3View 2XP Recommended SEM Variable Pressure, Field Emission Gun SEM with a large chamber (Call Gatan for specific SEM compatibility). A FEG or LaB6 is preferred due to long term beam stability and brightness. Field Emission Gun SEM with a large chamber (Call Gatan for specific SEM compatibility). A FEG is preferred due to long term beam stability & brightness, allowing cutting runs on the order of 10 days or more. Charge Neutralization Variable pressure SEM required; 5-40 Pa is typical at 2 kv. Variable pressure SEM is recommended but not required; 5-40 Pa is typical at 2 kv. Accelerating Voltage 1 kv 5 kv <1 kv 5 kv Cutting speed User defined: mm/sec Recommended speed: mm/sec User defined: mm/sec Recommended speed: mm/sec Cut thickness Microtome can cut from 30 to 200 nm. 30 to 50 nm is typical with biological specimens. Microtome can cut from 15 to 200 nm. 25 to 50 nm is typical with biological specimens. Knife Cutting Travel Distance 1.2 mm 1.2 mm Z travel distance Maximum of 600 µm Maximum of 600 µm 3View stage travel distance Traverses approximately +/-700 µm in X and Y. Traverses approximately +/-700 µm in X and Y. SEM stage 3View 2 replaces SEM stage. High Stability Manual x-y- stage (movement sufficient to cover 1 mm x 1 mm specimen block). 3View 2XP replaces SEM stage. High Vacuum Compatible automated x-y- stage (movement sufficient to cover 1 mm x 1 mm specimen block) Working distance Approximately 6 mm when used with Gatan BSED. Approximately 6 mm when used with Gatan BSED. Low magnification field of view Image acquisition Depends on Specific electron optics. Gatan BSED has a 1 mm aperture and FOV is typically 1.2 mm x 1.2 mm. Gatan DigiScan uses SEM external scan control input with Firewire bit analog inputs can work simultaneously. 3View 2 acquisition is typically BSED only. Gatan recommends its own BSE detector optimized for low kv image collection. Depends on Specific electron optics. Gatan BSED has a 1 mm aperture and FOV is typically 1.2 mm x 1.2 mm. Gatan DigiScan uses SEM external scan control input with Firewire bit analog inputs can work simultaneously. 3View 2XP acquisition is typically BSED only. Gatan recommends its own BSE detector optimized for low kv image collection. DigiScan pixel density 3View 2 supports images up to 24k x 32k pixels. Actual image size is SEM dependent. 3View 2XP supports images up to 24k x 32k pixels. Actual image size is SEM dependent. Pixel dwell time Microscope and sample dependant µs is typical. Microscope and sample dependant µs is typical. Image scanning NA Choice of single pass or configurable multiple frames. Image calibration DigiScan calibration is kv and magnification specific. DigiScan calibration is kv and magnification specific. SEM-PC communication 3View setup 3View operation Typical specimen size and requirements Follows SEM protocol. Communication for kv, FOV, Magnification, Vacuum, Beam Blanking. Defined protocol for approach sequence protects diamond knife. Utilizes optical zoom microscope with chamber door at air. Unattended, once setup. May be set up to send notification if collected images show an image collection problem has occurred. Allows confidence that unattended data collection is occurring as desired. Maximum length of experiment determined by specimen thickness, image capture time and number of images collected. Recently acquired data can be viewed without pausing acquisition. Typical block face size: 600 um x 600 um. Embedding resin: Epon, Durcupan, or Araldite Contrast: en-bloc staining (heavy metals) Follows SEM protocol. Communication for kv, FOV, Magnification, Vacuum, Beam Blanking. Defined protocol for approach sequence protects diamond knife. Utilizes optical zoom microscope with chamber door at air. Unattended, once setup. May be set up to send notification if collected images show an image collection problem has occurred. Allows confidence that unattended data collection is occurring as desired. Maximum length of experiment determined by specimen thickness, image capture time and number of images collected. Recently acquired data can be viewed without pausing acquisition. Typical block face size: 600 um x 600 um. Embedding resin: Epon, Durcupan, or Araldite Contrast: en-bloc staining (heavy metals) Imaging Modes Single frame per cut Single frame per cut Multiple fields of view and magnifications per cut Stage Montage for large fields of view Image throughput Theoretical maximum: 316 GB/day or 2.22 TB/week Sustained operation: GB/day or TB/week Theoretical maximum: 316 GB/day or 2.22 TB/week Sustained operation: GB/day or TB/week Sample throughput Isotropic Voxel 1 Day (µm) 1 Week (µm) 1 min Acquisition Cycle x 43 x x 302 x x 72 x x 525 x x 288 x x 600 x 600 (3 Days) Isotropic Voxel 1 Day (µm) 1 Week (µm) 20 sec Acquisition Cycle x 130 x x 600 x 600 (6 Days) x 216 x x 600 x 600 (4 Days) x 864 x x 600 x 600 (1 Day) Isotropic Voxel 1 Day (µm) 1 Week (µm) 1 min Acquisition Cycle x 21 x x 151 x x 72 x x 525 x x 288 x x 600 x 600 (3 Days) Isotropic Voxel 1 Day (µm) 1 Week (µm) 20 sec Acquisition Cycle x 64 x x 453 x x 216 x x 600 x 600 (4 Days) x 864 x x 600 x 600 (1 Day) SEM Port Requirements One small port required for BSED feed through. One small port required for BSED feed through. Ordering Please contact your local Gatan Sales office for price and ordering information. Worldwide Sales contact information is available at Specifications and recommendations are subject to change. info@gatan.com 5794 W. Las Positas Blvd. Pleasanton, CA USA Corporate Office Worldwide Sales Offices: Western USA Sales Eastern USA Sales UK Germany France Japan Singapore Cover Image: Top: Ultra resolution region of a segmented dendrite in green with synapses in yellow, and synaptic vesicles in red. Lower left: Selected serial images with the reconstructed dendrite in green. Lower right: Single SBFSEM image of a dendritic spine, synapse and synaptic vesicles. Images generated by Gatan 3View 2. Sample courtesy of Tom Deerinck and Dr. Mark Ellisman, National Center for Microscopy and Imaging Research, University of California, San Diego. Serial images were segmented using Imaris to create a 3D model of a neuron of interest. 1 3View is a product based on work performed by W. Denk and H. Horstmann, Max-Planck Institute for Medical Research, Heidelberg, Germany. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. Plos Biology, (11):p This publication is the copyright of Gatan, Inc. and contains information that may not be used or reproduced unless agreed by the company in writing. Specifications, recommendations and other technical data are subject to change. Please consult your local Gatan Sales office for current information. 3View, 3View 2, 3View 2XP, DigitalMicrograph, and Gatan Microscopy Suite are trademarks of Gatan, Inc. Gatan, Inc All rights reserved. BR-3View 2-FL1-CA-NOV11

SCIENTIFIC INSTRUMENT NEWS. Introduction. Design of the FlexSEM 1000

SCIENTIFIC INSTRUMENT NEWS. Introduction. Design of the FlexSEM 1000 SCIENTIFIC INSTRUMENT NEWS 2017 Vol. 9 SEPTEMBER Technical magazine of Electron Microscope and Analytical Instruments. Technical Explanation The FlexSEM 1000: A Scanning Electron Microscope Specializing

More information

Introduction of New Products

Introduction of New Products Field Emission Electron Microscope JEM-3100F For evaluation of materials in the fields of nanoscience and nanomaterials science, TEM is required to provide resolution and analytical capabilities that can

More information

contents TABLE OF The SECOM platform Applications - sections Applications - whole cells Features Integrated workflow Automated overlay

contents TABLE OF The SECOM platform Applications - sections Applications - whole cells Features Integrated workflow Automated overlay S E C O M TABLE OF contents The SECOM platform 4 Applications - sections 5 Applications - whole cells 8 Features 9 Integrated workflow 12 Automated overlay ODEMIS - integrated software Specifications 13

More information

Low Voltage Electron Microscope

Low Voltage Electron Microscope LVEM5 Low Voltage Electron Microscope Nanoscale from your benchtop LVEM5 Delong America DELONG INSTRUMENTS COMPACT BUT POWERFUL The LVEM5 is designed to excel across a broad range of applications in material

More information

Opterra II Multipoint Scanning Confocal Microscope. Innovation with Integrity

Opterra II Multipoint Scanning Confocal Microscope. Innovation with Integrity Opterra II Multipoint Scanning Confocal Microscope Enabling 4D Live-Cell Fluorescence Imaging through Speed, Sensitivity, Viability and Simplicity Innovation with Integrity Fluorescence Microscopy The

More information

Low Voltage Electron Microscope

Low Voltage Electron Microscope LVEM 25 Low Voltage Electron Microscope fast compact powerful Delong America FAST, COMPACT AND POWERFUL The LVEM 25 offers a high-contrast, high-throughput, and compact solution with nanometer resolutions.

More information

LVEM 25. Low Voltage Electron Mictoscope. fast compact powerful

LVEM 25. Low Voltage Electron Mictoscope. fast compact powerful LVEM 25 Low Voltage Electron Mictoscope fast compact powerful FAST, COMPACT AND POWERFUL The LVEM 25 offers a high-contrast, high-throughput, and compact solution with nanometer resolutions. All the benefits

More information

2014 HTD-E with options

2014 HTD-E with options with options The HT7700 : a user-friendly, ergonomic digital TEM with options User-Friendly r end Design Ambient light operation. Multiple automated functions for alignment, focus and stigmation as standard

More information

Scanning electron microscope

Scanning electron microscope Scanning electron microscope 5 th CEMM workshop Maja Koblar, Sc. Eng. Physics Outline The basic principle? What is an electron? Parts of the SEM Electron gun Electromagnetic lenses Apertures Detectors

More information

Scanning electron microscope

Scanning electron microscope Scanning electron microscope 6 th CEMM workshop Maja Koblar, Sc. Eng. Physics Outline The basic principle? What is an electron? Parts of the SEM Electron gun Electromagnetic lenses Apertures Chamber and

More information

Schottky Emission VP FE-SEM

Schottky Emission VP FE-SEM Schottky Emission VP FE-SEM Variable Pressure The Scanning Electron Microscope (SEM) has played an important role for many years for research and development of advanced materials in the leading edge of

More information

Indiana University JEM-3200FS

Indiana University JEM-3200FS Indiana University JEM-3200FS Installation Specification Model: JEM 3200FS Serial Number: EM 15000013 Objective Lens Configuration: High Resolution Pole Piece (HRP) JEOL Engineer: Michael P. Van Etten

More information

University of Washington Molecular Analysis Facility

University of Washington Molecular Analysis Facility University of Washington Molecular Analysis Facility Apreo-S (Variable Pressure) is a Schottky Field Emission Scanning Electron Microscope (FESEM) that combines high- and low-voltage ultra-high resolution

More information

JEOL 6500 User Manual

JEOL 6500 User Manual LOG IN to your session on the computer to the left of the microscope. Starting Conditions 1. Press Ctrl-Alt-Del and log on to the microscope computer. Click on JEOL PC SEM 6500 icon. Click yes if message

More information

Scanning Electron Microscopy SEM. Warren Straszheim, PhD MARL, 23 Town Engineering

Scanning Electron Microscopy SEM. Warren Straszheim, PhD MARL, 23 Town Engineering Scanning Electron Microscopy SEM Warren Straszheim, PhD MARL, 23 Town Engineering wesaia@iastate.edu 515-294-8187 How it works Create a focused electron beam Accelerate it Scan it across the sample Map

More information

Bringing Answers to the Surface

Bringing Answers to the Surface 3D Bringing Answers to the Surface 1 Expanding the Boundaries of Laser Microscopy Measurements and images you can count on. Every time. LEXT OLS4100 Widely used in quality control, research, and development

More information

LVEM 25. Low Voltage Electron Microscope Fast Compact Powerful.... your way to electron microscopy

LVEM 25. Low Voltage Electron Microscope Fast Compact Powerful.... your way to electron microscopy LVEM 25 Low Voltage Electron Microscope Fast Compact Powerful... your way to electron microscopy INTRODUCING THE LVEM 25 High Contrast & High Resolution Unmatched contrast of biologic and light material

More information

Model SU3500 Scanning Electron Microscope

Model SU3500 Scanning Electron Microscope Model SU3500 Scanning Electron Microscope Modified and Parts taken from Hitachi Easy Operation Guide. Before using the Model SU3500 SEM, be sure to read the [GENERAL SAFETY GUIDELINES] in the instruction

More information

Low Voltage Electron Microscope. Nanoscale from your benchtop LVEM5. Delong America

Low Voltage Electron Microscope. Nanoscale from your benchtop LVEM5. Delong America LVEM5 Low Voltage Electron Microscope Nanoscale from your benchtop LVEM5 Delong America DELONG INSTRUMENTS COMPACT BUT POWERFUL The LVEM5 is designed to excel across a broad range of applications in material

More information

INTRODUCTION TO MICROSCOPY. Urs Ziegler THE PROBLEM

INTRODUCTION TO MICROSCOPY. Urs Ziegler THE PROBLEM INTRODUCTION TO MICROSCOPY Urs Ziegler ziegler@zmb.uzh.ch THE PROBLEM 1 ORGANISMS ARE LARGE LIGHT AND ELECTRONS: ELECTROMAGNETIC WAVES v = Wavelength ( ) Speed (v) Frequency ( ) Amplitude (A) Propagation

More information

attocfm I for Surface Quality Inspection NANOSCOPY APPLICATION NOTE M01 RELATED PRODUCTS G

attocfm I for Surface Quality Inspection NANOSCOPY APPLICATION NOTE M01 RELATED PRODUCTS G APPLICATION NOTE M01 attocfm I for Surface Quality Inspection Confocal microscopes work by scanning a tiny light spot on a sample and by measuring the scattered light in the illuminated volume. First,

More information

Scanning Electron Microscopy. EMSE-515 F. Ernst

Scanning Electron Microscopy. EMSE-515 F. Ernst Scanning Electron Microscopy EMSE-515 F. Ernst 1 2 Scanning Electron Microscopy Max Knoll Manfred von Ardenne Manfred von Ardenne Principle of Scanning Electron Microscopy 3 Principle of Scanning Electron

More information

Agilent Cary 610/620 FTIR microscopes and imaging systems RESOLUTION FOR EVERY APPLICATION

Agilent Cary 610/620 FTIR microscopes and imaging systems RESOLUTION FOR EVERY APPLICATION Agilent Cary 610/620 FTIR microscopes and imaging systems RESOLUTION FOR EVERY APPLICATION AGILENT CARY 610/620 FTIR MICROSCOPES ADVANCING FTIR MICROSCOPY AND IMAGING Agilent s 610/620 FTIR microscopes

More information

Dynamic Phase-Shifting Microscopy Tracks Living Cells

Dynamic Phase-Shifting Microscopy Tracks Living Cells from photonics.com: 04/01/2012 http://www.photonics.com/article.aspx?aid=50654 Dynamic Phase-Shifting Microscopy Tracks Living Cells Dr. Katherine Creath, Goldie Goldstein and Mike Zecchino, 4D Technology

More information

S200 Course LECTURE 1 TEM

S200 Course LECTURE 1 TEM S200 Course LECTURE 1 TEM Development of Electron Microscopy 1897 Discovery of the electron (J.J. Thompson) 1924 Particle and wave theory (L. de Broglie) 1926 Electromagnetic Lens (H. Busch) 1932 Construction

More information

3. are adherent cells (ie. cells in suspension are too far away from the coverslip)

3. are adherent cells (ie. cells in suspension are too far away from the coverslip) Before you begin, make sure your sample... 1. is seeded on #1.5 coverglass (thickness = 0.17) 2. is an aqueous solution (ie. fixed samples mounted on a slide will not work - not enough difference in refractive

More information

RAITH e-line OPERATING INSTRUCTIONS

RAITH e-line OPERATING INSTRUCTIONS RAITH e-line OPERATING INSTRUCTIONS 1) LOADING A SAMPLE a. Start the system i. On the Column PC (Right side monitor [R]), select the SmartSEM icon to on the desktop to begin the column software. ii. On

More information

Add CLUE to your SEM. High-efficiency CL signal-collection. Designed for your SEM and application. Maintains original SEM functionality

Add CLUE to your SEM. High-efficiency CL signal-collection. Designed for your SEM and application. Maintains original SEM functionality Add CLUE to your SEM Designed for your SEM and application The CLUE family offers dedicated CL systems for imaging and spectroscopic analysis suitable for most SEMs. In addition, when combined with other

More information

LSM 780 Confocal Microscope Standard Operation Protocol

LSM 780 Confocal Microscope Standard Operation Protocol LSM 780 Confocal Microscope Standard Operation Protocol Basic Operation Turning on the system 1. Sign on log sheet according to Actual start time 2. Check Compressed Air supply for the air table 3. Switch

More information

JEM-F200. Multi-purpose Electron Microscope. Scientific / Metrology Instruments Multi-purpose Electron Microscope

JEM-F200. Multi-purpose Electron Microscope. Scientific / Metrology Instruments Multi-purpose Electron Microscope Scientific / Metrology Instruments Multi-purpose Electron Microscope JEM-F200 Multi-purpose Electron Microscope JEM-F200/F2 is a multi-purpose electron microscope of the new generation to meet today's

More information

Material analysis by infrared mapping: A case study using a multilayer

Material analysis by infrared mapping: A case study using a multilayer Material analysis by infrared mapping: A case study using a multilayer paint sample Application Note Author Dr. Jonah Kirkwood, Dr. John Wilson and Dr. Mustafa Kansiz Agilent Technologies, Inc. Introduction

More information

Opterra. Multipoint Scanning Confocal Microscope. Innovation with Integrity. Cell-Friendly, High-Speed, High-Resolution Imaging

Opterra. Multipoint Scanning Confocal Microscope. Innovation with Integrity. Cell-Friendly, High-Speed, High-Resolution Imaging Opterra Multipoint Scanning Confocal Microscope Cell-Friendly, High-Speed, High-Resolution Imaging Innovation with Integrity Fluorescence Microscopy Opterra Multipoint Scanning Confocal Microscope Superior

More information

LSM 710 Confocal Microscope Standard Operation Protocol

LSM 710 Confocal Microscope Standard Operation Protocol LSM 710 Confocal Microscope Standard Operation Protocol Basic Operation Turning on the system 1. Switch on Main power switch 2. Switch on System / PC power button 3. Switch on Components power button 4.

More information

Scanning Electron Microscope FEI INSPECT F50. Step by step operation manual

Scanning Electron Microscope FEI INSPECT F50. Step by step operation manual Scanning Electron Microscope FEI INSPECT F50 Step by step operation manual Scanning Electron Microscope, FEI Inspect F50 FE-SEM-F Observation Flow Saving Data And Analysis Specimen preparation Error check

More information

EUV microscopy - a user s perspective Dimitri Scholz EUV,

EUV microscopy - a user s perspective Dimitri Scholz EUV, EUV microscopy - a user s perspective Dimitri Scholz EUV, 09.11.2011 Imaging technologies: available at UCD now and in the next future Begin ab ovo - Simple approaches direct to the goal - Standard methods

More information

Cryo-Electron Microscopy of Viruses

Cryo-Electron Microscopy of Viruses Blockkurs Biophysic and Structural Biology 2013 Praktikumsversuch at C-CINA Cryo-Electron Microscopy of Viruses In this practical we will compare electron microscopy of negatively stained and frozen-hydrated

More information

MCR Scanning Electron Microscopy Laboratory Portfolio

MCR Scanning Electron Microscopy Laboratory Portfolio SUNY College of Environmental Science and Forestry Digital Commons @ ESF N.C. Brown Center for Ultrastructure Studies Fall 2016 MCR 484 - Scanning Electron Microscopy Laboratory Portfolio Timothy Gervascio

More information

Point Spread Function Estimation Tool, Alpha Version. A Plugin for ImageJ

Point Spread Function Estimation Tool, Alpha Version. A Plugin for ImageJ Tutorial Point Spread Function Estimation Tool, Alpha Version A Plugin for ImageJ Benedikt Baumgartner Jo Helmuth jo.helmuth@inf.ethz.ch MOSAIC Lab, ETH Zurich www.mosaic.ethz.ch This tutorial explains

More information

STEM Spectrum Imaging Tutorial

STEM Spectrum Imaging Tutorial STEM Spectrum Imaging Tutorial Gatan, Inc. 5933 Coronado Lane, Pleasanton, CA 94588 Tel: (925) 463-0200 Fax: (925) 463-0204 April 2001 Contents 1 Introduction 1.1 What is Spectrum Imaging? 2 Hardware 3

More information

Using the Hitachi 3400-N VP-SEM

Using the Hitachi 3400-N VP-SEM Using the Hitachi 3400-N VP-SEM Opening the Chamber to Load Specimens (This may also be done later using the software) 1. Click the AIR button on the front of the machine: 2. Wait a few minutes until you

More information

Technical Benefits of the

Technical Benefits of the innovation in microvascular assessment Technical Benefits of the Moor Instruments moorflpi-2 moorflpi-2 More Info: Measurement Principle laser speckle contrast analysis Measurement 85nm Laser Wavelength

More information

Product Information Version 1.0. ZEISS Xradia 810 Ultra Nanoscale X-ray Imaging at the Speed of Science

Product Information Version 1.0. ZEISS Xradia 810 Ultra Nanoscale X-ray Imaging at the Speed of Science Product Information Version 1.0 ZEISS Nanoscale X-ray Imaging at the Speed of Science Extending the Reach of 3D X-ray Imaging increases the throughput of nanoscale, three-dimensional X-ray imaging by up

More information

Last updated: May 2014 Y.DeGraaf

Last updated: May 2014 Y.DeGraaf FLINDERS MICROSCOPY BIOMEDICAL SERVICES AVAILABLE MICROSCOPES AND SPECIFICATIONS & INFORMATION REGARDING TRAINING FOR NEW USERS Last updated: May 2014 Y.DeGraaf If you have new staff or students (Honours/Masters

More information

ELECTRON MICROSCOPY. 13:10 16:00, Oct. 6, 2008 Institute of Physics, Academia Sinica. Tung Hsu

ELECTRON MICROSCOPY. 13:10 16:00, Oct. 6, 2008 Institute of Physics, Academia Sinica. Tung Hsu ELECTRON MICROSCOPY 13:10 16:00, Oct. 6, 2008 Institute of Physics, Academia Sinica Tung Hsu Department of Materials Science and Engineering National Tsing Hua University Hsinchu 300, TAIWAN Tel. 03-5742564

More information

Swept-Field User Guide

Swept-Field User Guide Swept-Field User Guide Note: for more details see the Prairie user manual at http://www.prairietechnologies.com/resources/software/prairieview.html Please report any problems to Julie Last (jalast@wisc.edu)

More information

Choosing the Right Accelerating Voltage for SEM (An Introduction for Beginners)

Choosing the Right Accelerating Voltage for SEM (An Introduction for Beginners) Microscopy101 Choosing the Right Accelerating Voltage for SEM (An Introduction for Beginners) V.M. Dusevich*, J.H. Purk, and J.D. Eick University of Missouri Kansas City, School of Dentistry, 650 E. 25

More information

Nature Methods: doi: /nmeth Supplementary Figure 1. Schematic of 2P-ISIM AO optical setup.

Nature Methods: doi: /nmeth Supplementary Figure 1. Schematic of 2P-ISIM AO optical setup. Supplementary Figure 1 Schematic of 2P-ISIM AO optical setup. Excitation from a femtosecond laser is passed through intensity control and shuttering optics (1/2 λ wave plate, polarizing beam splitting

More information

Bi/BE 227 Winter Assignment #3. Adding the third dimension: 3D Confocal Imaging

Bi/BE 227 Winter Assignment #3. Adding the third dimension: 3D Confocal Imaging Bi/BE 227 Winter 2016 Assignment #3 Adding the third dimension: 3D Confocal Imaging Schedule: Jan 20: Assignment Jan 20-Feb 8: Work on assignment Feb 10: Student PowerPoint presentations. Goals for this

More information

Appreciating the very little things: Status and future prospects of TEM at NUANCE

Appreciating the very little things: Status and future prospects of TEM at NUANCE Appreciating the very little things: Status and future prospects of TEM at NUANCE Dr. Roberto dos Reis roberto.reis@northwestern.edu 11/28/2018 Nature 542, pages75 79 (2017) TEM Facility Manager: Dr. Xiaobing

More information

Nikon. King s College London. Imaging Centre. N-SIM guide NIKON IMAGING KING S COLLEGE LONDON

Nikon. King s College London. Imaging Centre. N-SIM guide NIKON IMAGING KING S COLLEGE LONDON N-SIM guide NIKON IMAGING CENTRE @ KING S COLLEGE LONDON Starting-up / Shut-down The NSIM hardware is calibrated after system warm-up occurs. It is recommended that you turn-on the system for at least

More information

Spotlight 150 and 200 FT-IR Microscopy Systems

Spotlight 150 and 200 FT-IR Microscopy Systems S P E C I F I C A T I O N S Spotlight 150 and 200 FT-IR Microscopy Systems FT-IR Microscopy Spotlight 200 with Frontier FT-IR Spectrometer Introduction PerkinElmer Spotlight FT-IR Microscopy Systems are

More information

Transmission Electron Microscopy 9. The Instrument. Outline

Transmission Electron Microscopy 9. The Instrument. Outline Transmission Electron Microscopy 9. The Instrument EMA 6518 Spring 2009 02/25/09 Outline The Illumination System The Objective Lens and Stage Forming Diffraction Patterns and Images Alignment and Stigmation

More information

Things to check before start-up.

Things to check before start-up. Byeong Cha Page 1 11/24/2009 Manual for Leica SP2 Confocal Microscope Enter you name, the date, the time, and the account number in the user log book. Things to check before start-up. Make sure that your

More information

Operation Guide for the Leica SP2 Confocal Microscope Bio-Imaging Facility Hunter College October 2009

Operation Guide for the Leica SP2 Confocal Microscope Bio-Imaging Facility Hunter College October 2009 Operation Guide for the Leica SP2 Confocal Microscope Bio-Imaging Facility Hunter College October 2009 Introduction of Fluoresence Confocal Microscopy The first confocal microscope was invented by Princeton

More information

1.1. Log on to the TUMI system (you cannot proceed further until this is done).

1.1. Log on to the TUMI system (you cannot proceed further until this is done). FEI DB235 SEM mode operation Nicholas G. Rudawski ngr@ufl.edu (805) 252-4916 1. Sample loading 1.1. Log on to the TUMI system (you cannot proceed further until this is done). 1.2. The FIB software (xp)

More information

Introduction: Why electrons?

Introduction: Why electrons? Introduction: Why electrons? 1 Radiations Visible light X-rays Electrons Neutrons Advantages Not very damaging Easily focused Eye wonderful detector Small wavelength (Angstroms) Good penetration Small

More information

Fastest high definition Raman imaging. Fastest Laser Raman Microscope RAMAN

Fastest high definition Raman imaging. Fastest Laser Raman Microscope RAMAN Fastest high definition Raman imaging Fastest Laser Raman Microscope RAMAN - 11 www.nanophoton.jp Observation A New Generation in Raman Observation RAMAN-11 developed by Nanophoton was newly created by

More information

Chapter 1. Basic Electron Optics (Lecture 2)

Chapter 1. Basic Electron Optics (Lecture 2) Chapter 1. Basic Electron Optics (Lecture 2) Basic concepts of microscope (Cont ) Fundamental properties of electrons Electron Scattering Instrumentation Basic conceptions of microscope (Cont ) Ray diagram

More information

Light Microscopy. Upon completion of this lecture, the student should be able to:

Light Microscopy. Upon completion of this lecture, the student should be able to: Light Light microscopy is based on the interaction of light and tissue components and can be used to study tissue features. Upon completion of this lecture, the student should be able to: 1- Explain the

More information

Basic Operating Instructions for Strata Dual Beam 235 FIB/SEM

Basic Operating Instructions for Strata Dual Beam 235 FIB/SEM Basic Operating Instructions for Strata Dual Beam 235 FIB/SEM Warning Always adjust your specimen height before closing the chamber door to make sure your specimen will not hit the bottom of the lens;

More information

Leading in Desktop SEM Imaging and Analysis

Leading in Desktop SEM Imaging and Analysis Leading in Desktop SEM Imaging and Analysis Fast. Outstanding. Reliable SEM imaging and analysis. The Phenom: World s Fastest Scanning Electron Microscope With its market-leading Phenom desktop Scanning

More information

Fast Laser Raman Microscope RAMAN

Fast Laser Raman Microscope RAMAN Fast Laser Raman Microscope RAMAN - 11 www.nanophoton.jp Fast Raman Imaging A New Generation of Raman Microscope RAMAN-11 developed by Nanophoton was created by combining confocal laser microscope technology

More information

Practical work no. 3: Confocal Live Cell Microscopy

Practical work no. 3: Confocal Live Cell Microscopy Practical work no. 3: Confocal Live Cell Microscopy Course Instructor: Mikko Liljeström (MIU) 1 Background Confocal microscopy: The main idea behind confocality is that it suppresses the signal outside

More information

TEM Cameras. Digital Cameras for Electron Microscopy

TEM Cameras. Digital Cameras for Electron Microscopy Digital Imaging Solutions TEM Cameras Side- and bottom-mounted TEM cameras Digital Cameras for Electron Microscopy IMAGING SOLUTIONS FOR ELECTRON MICROSCOPY. BASED ON OPTO-DIGITAL KNOW-HOW. DESIGNED BY

More information

Fast Laser Raman Microscope RAMAN

Fast Laser Raman Microscope RAMAN Fast Laser Raman Microscope RAMAN - 11 www.nanophoton.jp Fast Raman Imaging A New Generation of Raman Microscope RAMAN-11 developed by Nanophoton was created by combining confocal laser microscope technology

More information

Working Simultaneously. The Next Level of TIRF Microscopy. cell^tirf Illuminator Motorized Total Internal Reflection Fluorescence

Working Simultaneously. The Next Level of TIRF Microscopy. cell^tirf Illuminator Motorized Total Internal Reflection Fluorescence cell^tirf Illuminator Motorized Total Internal Reflection Fluorescence Four individually aligned illumination beams for simultaneous multi-color TIRF imaging Working Simultaneously The Next Level of TIRF

More information

Introduction. INSTRUCTION MANUAL CAT XL, 6500-XLCORE, 6500-FL Evos-XL, Evos-XL/Core, Evos-FL

Introduction. INSTRUCTION MANUAL CAT XL, 6500-XLCORE, 6500-FL Evos-XL, Evos-XL/Core, Evos-FL 1 INSTRUCTION MANUAL CAT. 6500-XL, 6500-XLCORE, 6500-FL Evos-XL, Evos-XL/Core, Evos-FL Introduction Experience faster results and easier cell imaging with an EVOS imaging system! An EVOS system is the

More information

Quick and simple installation and no maintenance needed. 3 Times More affordable Than a normal SEM. Obtaining results in less than 4 minutes

Quick and simple installation and no maintenance needed. 3 Times More affordable Than a normal SEM. Obtaining results in less than 4 minutes INTRODUCTION We believe that every laboratory working in the field of nanotechnology needs an SEM, therefore we would like to introduce to you our IEM series of SEM. In short space of time, our device

More information

Recent results from the JEOL JEM-3000F FEGTEM in Oxford

Recent results from the JEOL JEM-3000F FEGTEM in Oxford Recent results from the JEOL JEM-3000F FEGTEM in Oxford R.E. Dunin-Borkowski a, J. Sloan b, R.R. Meyer c, A.I. Kirkland c,d and J. L. Hutchison a a b c d Department of Materials, Parks Road, Oxford OX1

More information

Tissue Preparation ORGANISM IMAGE TISSUE PREPARATION. 1) Fixation: halts cell metabolism, preserves cell/tissue structure

Tissue Preparation ORGANISM IMAGE TISSUE PREPARATION. 1) Fixation: halts cell metabolism, preserves cell/tissue structure Lab starts this week! ANNOUNCEMENTS - Tuesday or Wednesday 1:25 ISB 264 - Read Lab 1: Microscopy and Imaging (see Web Page) - Getting started on Lab Group project - Organ for investigation - Lab project

More information

INTRODUCTION We believe that every laboratory working in the field of nanotechnology needs an SEM, therefore we would like to introduce to you our IEM

INTRODUCTION We believe that every laboratory working in the field of nanotechnology needs an SEM, therefore we would like to introduce to you our IEM INTRODUCTION We believe that every laboratory working in the field of nanotechnology needs an SEM, therefore we would like to introduce to you our IEM series of SEM. In short space of time, our device

More information

HoloMonitor M4. For powerful discoveries in your incubator

HoloMonitor M4. For powerful discoveries in your incubator HoloMonitor M4 For powerful discoveries in your incubator HoloMonitor offers unique imaging capabilities that greatly enhance our understanding of cell behavior, previously unachievable by other technologies

More information

ZEISS EVO SOP. May 2017 ELECTRON OPTICS

ZEISS EVO SOP. May 2017 ELECTRON OPTICS ZEISS EVO SOP May 2017 ELECTRON OPTICS The patented EVO column is the area of the SEM, where electrons are emitted, accelerated, deflected, focused, and scanned. Main characteristics of the EVO optics

More information

AxioCam MRc 5 A World of Digital Possibilities

AxioCam MRc 5 A World of Digital Possibilities Microscopy from Carl Zeiss AxioCam MRc 5 A World of Digital Possibilities More flexibility and more performance in microscope camera technology Impressive Performance A trend setter in digital microscopy,

More information

Nikon SIM-E & A1-R System

Nikon SIM-E & A1-R System Nikon SIM-E & A1-R System USER GUIDE LSU Health Sciences Center Shreveport Research Core Facility June 01 2017 Chaowei Shang 1 Table of Content 1. Start Up the System... Page 3 Hardware and microscope

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Optimized Bessel foci for in vivo volume imaging.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Optimized Bessel foci for in vivo volume imaging. Supplementary Figure 1 Optimized Bessel foci for in vivo volume imaging. (a) Images taken by scanning Bessel foci of various NAs, lateral and axial FWHMs: (Left panels) in vivo volume images of YFP + neurites

More information

Multifluorescence The Crosstalk Problem and Its Solution

Multifluorescence The Crosstalk Problem and Its Solution Multifluorescence The Crosstalk Problem and Its Solution If a specimen is labeled with more than one fluorochrome, each image channel should only show the emission signal of one of them. If, in a specimen

More information

This document assumes the user is already familiar with basic operation of the instrument in TEM mode and use of the Microscope Control interface.

This document assumes the user is already familiar with basic operation of the instrument in TEM mode and use of the Microscope Control interface. FEI Tecnai F20 S/TEM: imaging in STEM mode Nicholas G. Rudawski ngr@ufl.edu (805) 252-4916 (352) 392-3077 Last updated: 05/10/18 This document assumes the user is already familiar with basic operation

More information

JEOL 6700 User Manual 05/18/2009

JEOL 6700 User Manual 05/18/2009 JEOL 6700 User Manual 05/18/2009 LOG IN to your session on the computer to the right of the microscope. Starting Conditions 1. Click the button and read the Penning Gauge to ensure that the microscope

More information

Park NX-Hivac The world s most accurate and easy to use high vacuum AFM for failure analysis.

Park NX-Hivac The world s most accurate and easy to use high vacuum AFM for failure analysis. Park NX-Hivac The world s most accurate and easy to use high vacuum AFM for failure analysis www.parkafm.com Park NX-Hivac High vacuum scanning for failure analysis applications 4 x 07 / Cm3 Current (µa)

More information

Advancing EDS Analysis in the SEM Quantitative XRF. International Microscopy Congress, September 5 th, Outline

Advancing EDS Analysis in the SEM Quantitative XRF. International Microscopy Congress, September 5 th, Outline Advancing EDS Analysis in the SEM with in-situ Quantitative XRF Brian J. Cross (1) & Kenny C. Witherspoon (2) 1) CrossRoads Scientific, El Granada, CA 94018, USA 2) ixrf Systems, Inc., Houston, TX 77059,

More information

Fein. High Sensitivity Microscope Camera with Advanced Software 3DCxM20-20 Megapixels

Fein. High Sensitivity Microscope Camera with Advanced Software 3DCxM20-20 Megapixels Fein High Sensitivity Microscope Camera with Advanced Software 3DCxM20-20 Megapixels 3DCxM20 Camera Features High Sensitivity Camera This microscopy camera was designed with high sensitivity and ultra

More information

Product Information Version 1.1. ZEISS Xradia 410 Versa Submicron X-ray Imaging: Bridge the Gap in Lab-based Microscopy

Product Information Version 1.1. ZEISS Xradia 410 Versa Submicron X-ray Imaging: Bridge the Gap in Lab-based Microscopy Product Information Version 1.1 ZEISS Xradia 410 Versa Submicron X-ray Imaging: Bridge the Gap in Lab-based Microscopy A Workhorse Solution for Your 3D Submicron Imaging Xradia 410 Versa bridges the gap

More information

The light microscope

The light microscope What is a microscope? The microscope is an essential tool in modern biology. It allows us to view structural details of organs, tissue, and cells not visible to the naked eye. The microscope should always

More information

Scanning Ion Conductance Microscope ICnano

Scanning Ion Conductance Microscope ICnano Sperm Cell Epithelial Cells I nner Ear Hair Cells I nner Ear Hair Cell Neurons E- Coli Bac teria Scanning Ion Conductance Microscope ICnano About ionscope About ionscope The ionscope scanning ion conductance

More information

SEM Training Notebook

SEM Training Notebook SEM Training Notebook Lab Manager: Dr. Perry Cheung MSE Fee-For-Service Facility Materials Science and Engineering University of California, Riverside December 21, 2017 (rev. 3.4) 1 Before you begin Complete

More information

attosnom I: Topography and Force Images NANOSCOPY APPLICATION NOTE M06 RELATED PRODUCTS G

attosnom I: Topography and Force Images NANOSCOPY APPLICATION NOTE M06 RELATED PRODUCTS G APPLICATION NOTE M06 attosnom I: Topography and Force Images Scanning near-field optical microscopy is the outstanding technique to simultaneously measure the topography and the optical contrast of a sample.

More information

XTEM. --Software for Complex Transmission Electron Microscopy. Version 1.0

XTEM. --Software for Complex Transmission Electron Microscopy. Version 1.0 XTEM --Software for Complex Transmission Electron Microscopy Version 1.0 1. Introduction XTEM is the software for complex microscopy on JEOL 3100 electron microscopes. The XTEM software consists of a suite

More information

FE-SEM SU-8020 Operating manual (Preliminary version)

FE-SEM SU-8020 Operating manual (Preliminary version) FE-SEM SU-8020 Operating manual (Preliminary version) 2016/04/11 Seimitsu Bunseki sitsu lab. Starting up 1.Turn on the Display switch. Windows OS is starting up 2. Select the user SU-8000. 3. Click the

More information

Strata DB235 FESEM FIB

Strata DB235 FESEM FIB Strata DB235 FESEM FIB Standard Operating Procedure Revision: 5.0 Last Updated: August 16/2016, revised by Li Yang Overview This document will provide a detailed operation procedure of the Focused Ion

More information

MODULE I SCANNING ELECTRON MICROSCOPE (SEM)

MODULE I SCANNING ELECTRON MICROSCOPE (SEM) MODULE I SCANNING ELECTRON MICROSCOPE (SEM) Scanning Electron Microscope (SEM) Initially, the plan of SEM was offered by H. Stintzing in 1927 (a German patent application). His suggested procedure was

More information

Leica SP8 TCS Users Manual

Leica SP8 TCS Users Manual Version : 07/08/0 Leica SP8 TCS Users Manual Start up:. Turn the PC Microscope, Scanner Power, Laser Power, and the Laser Emission key to on (bottom right of desk).. Turn on the fluorescent lamp (top left

More information

LSM 800 Confocal Microscope Standard Operation Protocol

LSM 800 Confocal Microscope Standard Operation Protocol LSM 800 Confocal Microscope Standard Operation Protocol Turning on the system 1. Switch on the Main switch (labeled 1 and 2 ) mounted on the wall. 2. Turn the Laser Key (labeled 3 ) 90 clockwise for power

More information

Triple Beam FIB-SEM-Ar(Xe) Combined System NX2000

Triple Beam FIB-SEM-Ar(Xe) Combined System NX2000 SCIENTIFIC INSTRUMENT NEWS 2017 Vol. 8 M A R C H Technical magazine of Electron Microscope and Analytical Instruments. Technical Explanation Triple Beam FIB-SEM-Ar(Xe) Combined System NX2000 Masahiro Kiyohara

More information

Nikon C1si Spectral Laser Scanning Confocal Microscope. User Guide

Nikon C1si Spectral Laser Scanning Confocal Microscope. User Guide Nikon C1si Spectral Laser Scanning Confocal Microscope User Guide Contents: C1Si Turn-On/ShutDown Procedures... 2 Overview... 4 Setup for epi-illumination to view through the eyepieces:... 5 Setup for

More information

Y N C R O S C O P Y A DIVISION OF THE SYNOPTICS GROUP

Y N C R O S C O P Y A DIVISION OF THE SYNOPTICS GROUP S Y N C R O S C O P Y A DIVISION OF THE SYNOPTICS GROUP THE PROBLEM: As a microscopist you often have to work with samples that are difficult to focus. When viewing a 3-D sample using an optical microscope

More information

Nikon Instruments Europe

Nikon Instruments Europe Nikon Instruments Europe Recommendations for N-SIM sample preparation and image reconstruction Dear customer, We hope you find the following guidelines useful in order to get the best performance out of

More information

Leica TCS SP8 Quick Start Guide

Leica TCS SP8 Quick Start Guide Leica TCS SP8 Quick Start Guide Leica TCS SP8 System Overview Start-Up Procedure 1. Turn on the CTR Control Box, Fluorescent Light for the microscope stand. 2. Turn on the Scanner Power (1) on the front

More information

Operating Checklist for using the Scanning Electron. Microscope, JEOL JSM 6400.

Operating Checklist for using the Scanning Electron. Microscope, JEOL JSM 6400. Smith College August 2009 Operating Checklist for using the Scanning Electron Microscope, JEOL JSM 6400. CONTENT, page no. Pre-Check 1 Startup 1 Specimen Insertion 2 Filament Saturation 2 Beam Alignment

More information