Applied GIS & Remote Sensing for Disaster Mitigation #4

Size: px
Start display at page:

Download "Applied GIS & Remote Sensing for Disaster Mitigation #4"

Transcription

1 Applied GIS & Remote Sensing for Disaster Mitigation #4 By Koki IWAO Senior Program Specialist Asian Center for Research on Remote Sensing (ACRoRS), AIT How to utilize these satellite information for your research (or disaster mitigation)? 2 Flow of research/projects (General) What is the goal of Research? (projects?) Try to find new idea (algorithm/methodology) Using new instruments and find something new Why we need it? To get new idea for your interests To compare your idea with other researcher s idea Major Existing Journals for Remote Sensing Researchers International journal of remote sensing. Improving the existing Check existing idea/ techniques Check existing researches. IEEE transactions on geoscience and remote sensing. PE&RS : Photogrammetric engineering & remote sensing. Remote sensing of environment. Canadian journal of remote sensing. Find out your originalities Journal of geophysical research Make a research plan Obtain satellite data 3 How to do it? Use the Internet 4

2 Ingenta : Search Results Key words(exp) remote sensing, coastal zone management 5 6 Article Summary Satellite Data Search & Order 7 8

3 Pre-knowledge Data Format: Why data format is important? We cannot see satellite data without knowing the format CEOS HDF NLAPS Data Format: Landsat See, supplement NASA EOS-HDF Landsat: FORMAT The Landsat data are provided in NDF for radiometrically and geometrically corrected (level-g) products. Data may be represented in both binary and American Standard Code for Information Interchange (ASCII) formats. Bit and byte ordering follow conventions set by the Institute of Electrical and Electronics Engineers (IEEE) with the term "byte" being synonymous with octet as used by the International Organization for Standardization. For more information on the National Land Processing System, see the following Web site: NDF info at: HDF Native HDF-EOS The December 999 launch of Terra, the first of the Earth Observing System (EOS) series of satellites, commenced a period in NASA's history during which unprecedented amounts of data will be available. The overall goal has been to study our global environment and obtain sustained and continuous observati-ons of the Earth's atmosphere, oceans, land surfaces, ice coverage, and land uses. Twenty-four distinct measurement areas are having significant data collected, processed, analyzed and used to improve our understanding of the Earth. We have initiated a period of greatly enhanced observational capability for understanding the planet and how it is changing, both naturally and as the result of human interaction. The successful launch of the second satellite, Aqua on May 4, 2002, will result in even more valuable information. The volume of data which will be produced is without precedent. Over one terabyte (0 2 bytes) of data will be produced by the EOS project each day. The number of users of this data now exceeds 0,000 and includes representation from all user domains. NASA has built the EOS Data and Information System (EOSDIS) to handle this immense influx of information, and is using the Hierarchial Data Format for EOS (HDF-EOS), developed as an extension to NCSA's HDF. This website is designed and maintained to facilitate and broaden the use and utility of HDF-EOS. Satellite data for disaster monitoring Typhoon Ozon Depretion El Nino Forest fire Flood Volcano Earthquake Global km Global km Global km Global to Moderate (High) km 250m 30m Global to Moderate (High) km 250m 30m Global to Moderate (High) km 250m 30m Global to Moderate (High) km 250m 30m Every 30min Daily Daily Daily Daily Daily Daily Optical Sensor Visible-Thermal Optical Sensor UV Optical Sensor Visible-Thermal Optical Sensor Visible-Thermal Optical Sensor Visible-Thermal + Microwave Optical Sensor Visible-Thermal + Microwave Optical Sensor Visible-Thermal + Microwave, DEM Meteological satellites GMS METEOSAT (AVHRR) TOMS(ADEOS) TRMM MODIS AVHRR AVHRR, DMSP MODIS TM,ASTER, IRS etc AVHRR MODIS TM, IRS, ASTER etc Microwave AVHRR, DMSP MODIS TM, IRS, ASTER, etc Microwave AVHRR, DMSP MODIS TM, IRS, ASTER, etc 2 Microwave

4 Change of Antarctic Ozone Hole These data were recorded in November 996 by NASA s Total Ozone Mapping Spectrometer(TOMS) instruments on board ADEOS and processed by NASDA. Location of geostationary satellites 3 4 What is an El Niño? (Reference:NASA homepage) 5 6

5 7 8 Forest Fire Detection from DMSP 9 20

6 Requirements to monitor Forest fire, Flood, Volcano, Earthquake, etc. Relatively High spatial & temporal observations are required. Moderate resolution?? Are there any other??? Orbits & Swath Landsat (ETM) TERRA (MODIS) TERRA & Landsat Orbits & Swath Both satellite orbit are same Altitude: about 705km Local time: 0:00(Landsat), 0:30 (TERRA) Orbital Period: about 00min Length of the equator: 2R Earth Radius (R) : 6,370km km: 2km Temporal 23 We need high spatial & temporal observation. How to solve? 24 Spatial

7 Kepler's laws LAW : The orbit of a planet/comet about the Sun is an ellipse with the Sun's center of mass at one focus This is the equation for an ellipse: LAW 2: A line joining a planet/comet and the Sun sweeps out equal areas in equal intervals of time ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer The purpose of the ASTER Project is to make contributions to extend the understanding of LOCAL and REGIONAL phenomena on the Earth surface and its atmosphere. LAW 3: The squares of the periods of the planets are proportional to the cubes of their semimajor axes: T a2 / T b2 = R a3 / R b 3 Square of any planet's orbital period (sidereal) is proportional to cube of its mean distance (semi-major axis) from Sun Mathematical statement: T = kr 3/2, where T = sideral period, and R = semi-major axis Example - If a is measured in astronomical units (AU = semi-major axis of Earth's orbit) and sidereal period in years (Earth's sidereal period), then the constant k in mathematical expression for Kepler's third law is equal to, and the mathematical relation becomes T 2 = R 3 Terra Satellite ASTER VNIR SWIR SWIR ASTER Sensor TIR TIR VNIR Visible Near Infrared Radiometer VNIR3B Spectral Range 3 Bands µm Spatial Resolution5 m Cross Track Pointing24 24 VNIR SWIR Short Wave Infrared Radiometer Spectral Range 6 Bands µm Spatial Resolution30 m Cross Track Pointing TIR Thermal Infrared Radiometer Spectral Range 5 Bands µm Spatial Resolution90 90 m Cross Track Pointing Subs y ste m AS T ER J ERS - Band Spe ctr al Spati al Band Spe ctr al No. R a n g e ( µ m ) re s l.( m ) No. Range (µm) V N I R & Spati al re s l.( m ) x S W IR T IR Spectral & Spatial RESOLUTION (ASTER with relation to JERS-) S te r eo B / H 0.6 ( A l o n g -T r ac k ) 0.3 ( A l o n g -T r ac k ) 28

8 Enhanced Capability 4 Bands VNIR: 3 Bands SWIR: 6 Bands TIR: 5 Bands Higher Spectral Resolution Higher Spatial Resolution ASTER VNIR: 5m SWIR: 30m TIR : 90m Spectrum Composition Of An Optical Sensor JERS- (OPS) Cross Track Pointing Ability In Urgency, ASTER can observe it within 2 to 5 days! LANDSAT JERS- SPOT Others VNIR 3bands SWIR 6bands TIR 5bands 30 VNIR (Visible Near Infrared) along track 3 32

9 SWIR (Short Wavelength Infrared) TIR (Thermal Infrared) ASTER Vs. Landsat-ETM+ ASTER PRODUCTS - Characteristics - A wider spectral range and a higher spectral resolution are offered by covering the spectral range of 0.52 to.65 microns with 4 bands. Resolution:5m5m Resolution:30m30m 35 5m, 30m, and 90m spatial resolutions are offered in the visible and near infrared spectral region, the shortwave infrared spectral region, and the thermal infrared spectral region, respectively. image 60km For band 3 (0.76 microns to 0.86 microns), both the usual nadir-looking telescope and a backward-looking telescope are used to produce stereoscopic images acquired in the 36 same orbit. 60km

10 Purpose of the ASTER Project () To promote research into geological phenomena of tectonic surfaces and geological history through detailed mapping of the Earth s topography and geological formations. (This goal includes contributions to applied research in remote sensing.) (2) To understand distribution and changes of vegetation. (3) To further understand interactions between the Earth s surface and atmosphere by surface temperature mapping. (4) To evaluate impact of volcanic gas emission to the atmosphere through monitoring of volcanic activities. (5) To contribute to understanding of aerosol characteristics in the atmosphere and of cloud classification. (6) To contribute to understanding of the role coral reefs play in the carbon cycle through coral classification and global distribution mapping of corals. 37 ERSDAC Japan 38 Flexible Observation E D S ASTER:60km LANDSAT85km 72km Emargency Observation 39 P4 P3 P2 Emargency Observation Mode P 40 ERSDAC Japan

11 Useful Web sites for satellite data searching

12

13 49 50 VNIR SWIR TIR 5 52

14 ARO Announcement of Research Opportunity on ASTER Data Use ERSDAC Earth Remote Sensing Data Analysis Center 53 Objectives of ASTER ARO ASTER ARO on ASTER data use is announced by ERSDAC to begin accepting proposals for verification and utilization of ASTER data use in related various fields, as a part of research and development of remote sensing technology for non-renewable resources. 54 Users of ASTER ARO Acquisition request area ASTER ARO is open to all investigators and organizations both home and abroad desiring to use ASTER for peaceful and non-commercial purposes. Maximum : 40,000km 2 One Scene is approximately 3,600km 2 (One Scene:60km60km) If one request area is smaller than 3,600km 2, it is round up to 3,600km

15 ADVANTAGES of the ASTER AO (from Users Viewpoint) If your proposal is approved as ARO Office,. You can submit Data Acquisition Request(DAR) and Data Product Request(DPR). 2. You will get ASTER data FREE OF CHARGE within given limits. 57 Difference of User type You have to register before using ASTER image. ARO User You can submit DAR.(You can get image of area that interests you.) You can study using ASTER image for science purpose. Image is free of charge. Only Shipping cost payable to FedEx. General User Scene(60km60km) : 9,800 Japanese Yen. Remit a cash(japanese Yen) to GDS. 58 ARO PROPOSAL Detail Information How to submit proposal to ARO Office (in ERSDAC) - Accepted any time until the end of ASTER mission. WWW Post-mail 4. Fax ASTER ARO Web Site to ASTER ARO office aodesk@ersdac.or.jp Guide book 59 60

16 ARO Office ASTER SCIENCE ARO Web Site Earth Remote Sensing Data Analysis Center(ERSDAC) ASTER ARO Office Forefront Tower 4F 3-2-, Kachidoki, Chuo-ku, Tokyo zip , JAPAN Tel: +8(3) Fax +8(3) aodesk@ersdac.or.jp URL : 6 Click ARO Start ARO Proposal 62 # of ARO Proposal # of ARO Proposal Japan USA P.R.China UK Brazil Argentina Russia Germany Canada Thailand Spain Sweden Taiwan Austria Korea Vietnam Australia Poland Bangladesh Switzerland Israel Myanmar India Belgium Italy Portugal Singapore Saudi Arabia Malaysia Philippines )Validation 5) Geology 6) Soils 8) Topography & Cartography 9) Volcanology 0) Ecology & Vegetation ) Lakes&Rivers 3) Glaciers,& Icesheets 4) Natural hazards 5) Agriculture 6) Hydrology 8) Use & Plan 20) Other land observation 22) Marine ecosystem 23) Coastal processes 24) Sea ice 26) Human activities 27) Other ocean observation 28) Clouds 30) Eco-system 3) Air-sea 34) Public 35) Education 36) Others 64

17 ASTER search and download From US (USGS)

18

19 73 74 ASTER search and download continued ASTER search and download continued 75 76

20 Japanese Satellite(NASDA) Japanese satellite data search ---continued Japanese satellite data search ---continued Japanese satellite data search ---continued (SAR data, BKK area) 79 80

21 Japanese satellite data search ---continued Contact point in charge: Attention Order Desk Planning Section Earth Observation Department Earth Observation Division Remote Sensing Technology Center Address Earth Observation Center RESTEC TEL: FAX: data@restec.or.jp 40 Numanoue, Ohashi, Hatoyama-machi, Hiki-gun, Saitama-ken Japan TEL FAX eusadmin@eoc.nasda.go.jp 8 Contact point a in charge of the joint research project and PI: Attention Order Handling Team Earth Observation Reseach Center National Space Development Agency of Japan Address Harumi island Triton Square, Office Tower X 2F -8-0, Harumi, Chuo-ku, TEL FAX orderdesk@eorc.nasda.go.jp 82 Landsat data search from USGS USGS registration 83 84

22 Landsat data search from USGS continued Landsat data search from USGS Thailand, WRSII, (80's & 90's Epochs) Landsat data search result 87 88

23 IRS data search IRS data search IRS: IRS data Price information (at May 2002) PRODUCT TYPE PRICE IN US$(FOR IRS-C/D Data) MODIS/AIT LISS-III Full scene digital (4 x 4km) 470 LISS-III Quadrant digital (70.5 x 70.5 km) 300 PAN subscene photo/digital (23 x 23 km) 240 PAN stereo subscene digital ( 23 x 23 km) 440 PAN Full scene digital ( 70 x 70 km) 890 WiFS Full scene (IRS-C/D/P3) (80 x 80 km ) 300 L5 TM Full scene digital, 7 bands 600 L5 TM Quadrant digital, 7bands

24 System Flow Development of AVHRR Processing System on WWW 93 High accuracy products using PaNDA Announcement though transfer via FTP Linux based high cost performance system 94 Coverage of the data source User Interface Can search data using mouse!! (984~) (997~) Communication though automatically

25 Sample of the Processed data If you interest in Low to Moderate resolution data ACCESS to SIDaB SIDaB Satellite Image Database System in AFF The Homepage is 4th, March :23am (UTC) NOAA6 Tokyo st, March :5am (UTC) NOAA6 Bangkok 97 98

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011 Training Course Remote Sensing Basic Theory & Image Processing Methods 19 23 September 2011 Popular Remote Sensing Sensors & their Selection Michiel Damen (September 2011) damen@itc.nl 1 Overview Low resolution

More information

Lecture 6: Multispectral Earth Resource Satellites. The University at Albany Fall 2018 Geography and Planning

Lecture 6: Multispectral Earth Resource Satellites. The University at Albany Fall 2018 Geography and Planning Lecture 6: Multispectral Earth Resource Satellites The University at Albany Fall 2018 Geography and Planning Outline SPOT program and other moderate resolution systems High resolution satellite systems

More information

NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS

NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS PASSIVE ACTIVE DIGITAL

More information

The studies began when the Tiros satellites (1960) provided man s first synoptic view of the Earth s weather systems.

The studies began when the Tiros satellites (1960) provided man s first synoptic view of the Earth s weather systems. Remote sensing of the Earth from orbital altitudes was recognized in the mid-1960 s as a potential technique for obtaining information important for the effective use and conservation of natural resources.

More information

Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing. Mads Olander Rasmussen

Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing. Mads Olander Rasmussen Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing Mads Olander Rasmussen (mora@dhi-gras.com) 01. Introduction to Remote Sensing DHI What is remote sensing? the art, science, and technology

More information

REMOTE SENSING FOR FLOOD HAZARD STUDIES.

REMOTE SENSING FOR FLOOD HAZARD STUDIES. REMOTE SENSING FOR FLOOD HAZARD STUDIES. OPTICAL SENSORS. 1 DRS. NANETTE C. KINGMA 1 Optical Remote Sensing for flood hazard studies. 2 2 Floods & use of remote sensing. Floods often leaves its imprint

More information

NORMALIZING ASTER DATA USING MODIS PRODUCTS FOR LAND COVER CLASSIFICATION

NORMALIZING ASTER DATA USING MODIS PRODUCTS FOR LAND COVER CLASSIFICATION NORMALIZING ASTER DATA USING MODIS PRODUCTS FOR LAND COVER CLASSIFICATION F. Gao a, b, *, J. G. Masek a a Biospheric Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA b Earth

More information

NEC s EO Sensors and Data Applications

NEC s EO Sensors and Data Applications NEC s EO Sensors and Data Applications Second Singapore Space Symposium 30 September, 2015 Nanyang Technological University, Singapore Shimpei Kondo Space Technologies Department, Space System Division,

More information

remote sensing? What are the remote sensing principles behind these Definition

remote sensing? What are the remote sensing principles behind these Definition Introduction to remote sensing: Content (1/2) Definition: photogrammetry and remote sensing (PRS) Radiation sources: solar radiation (passive optical RS) earth emission (passive microwave or thermal infrared

More information

Introduction of Satellite Remote Sensing

Introduction of Satellite Remote Sensing Introduction of Satellite Remote Sensing Spatial Resolution (Pixel size) Spectral Resolution (Bands) Resolutions of Remote Sensing 1. Spatial (what area and how detailed) 2. Spectral (what colors bands)

More information

3/31/03. ESM 266: Introduction 1. Observations from space. Remote Sensing: The Major Source for Large-Scale Environmental Information

3/31/03. ESM 266: Introduction 1. Observations from space. Remote Sensing: The Major Source for Large-Scale Environmental Information Remote Sensing: The Major Source for Large-Scale Environmental Information Jeff Dozier Observations from space Sun-synchronous polar orbits Global coverage, fixed crossing, repeat sampling Typical altitude

More information

An Introduction to Remote Sensing & GIS. Introduction

An Introduction to Remote Sensing & GIS. Introduction An Introduction to Remote Sensing & GIS Introduction Remote sensing is the measurement of object properties on Earth s surface using data acquired from aircraft and satellites. It attempts to measure something

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing Spatial, spectral, temporal resolutions Image display alternatives Vegetation Indices Image classifications Image change detections Accuracy assessment Satellites & Air-Photos

More information

ASTER ADVANCED SPACEBORNE THERMAL EMISSION AND REFLECTION RADIOMETER

ASTER ADVANCED SPACEBORNE THERMAL EMISSION AND REFLECTION RADIOMETER ASTER ADVANCED SPACEBORNE THERMAL EMISSION AND REFLECTION RADIOMETER Front Cover image: Simulated ASTER images of Death Valley, California. The visible image (left) shows vegetation in red, salt deposits

More information

Defence Meteorological Satellite Program Japan Fisheries Information Service Center

Defence Meteorological Satellite Program Japan Fisheries Information Service Center Abbreviations ADEOS- : Advanced Earth Observing Satellite EOS : Earth Observing System AMSR : AMSR-E : ASSH : AVHRR : AWS : Advanced Microwave Scanning Radiometer Advanced Microwave Scanning Radiometer

More information

Copernicus Introduction Lisbon, Portugal 13 th & 14 th February 2014

Copernicus Introduction Lisbon, Portugal 13 th & 14 th February 2014 Copernicus Introduction Lisbon, Portugal 13 th & 14 th February 2014 Contents Introduction GMES Copernicus Six thematic areas Infrastructure Space data An introduction to Remote Sensing In-situ data Applications

More information

Remote Sensing and GIS

Remote Sensing and GIS Remote Sensing and GIS Atmosphere Reflected radiation, e.g. Visible Emitted radiation, e.g. Infrared Backscattered radiation, e.g. Radar (λ) Visible TIR Radar & Microwave 11/9/2017 Geo327G/386G, U Texas,

More information

ASTER and USGS EROS Emergency Imaging for Hurricane Disasters

ASTER and USGS EROS Emergency Imaging for Hurricane Disasters ASTER and USGS EROS Emergency Imaging for Hurricane Disasters By Kenneth A. Duda and Michael Abrams Satellite images have been extremely useful in a variety of emergency response activities, including

More information

Remote Sensing Exam 2 Study Guide

Remote Sensing Exam 2 Study Guide Remote Sensing Exam 2 Study Guide Resolution Analog to digital Instantaneous field of view (IFOV) f ( cone angle of optical system ) Everything in that area contributes to spectral response mixels Sampling

More information

The studies began when the Tiros satellites (1960) provided man s first synoptic view of the Earth s weather systems.

The studies began when the Tiros satellites (1960) provided man s first synoptic view of the Earth s weather systems. Remote sensing of the Earth from orbital altitudes was recognized in the mid-1960 s as a potential technique for obtaining information important for the effective use and conservation of natural resources.

More information

Earth s Gravitational Pull

Earth s Gravitational Pull Satellite & Sensors Space Countries Earth s Gravitational Pull The Earth's gravity pulls everything toward the Earth. In order to orbit the Earth, the velocity of a body must be great enough to overcome

More information

An Introduction to Geomatics. Prepared by: Dr. Maher A. El-Hallaq خاص بطلبة مساق مقدمة في علم. Associate Professor of Surveying IUG

An Introduction to Geomatics. Prepared by: Dr. Maher A. El-Hallaq خاص بطلبة مساق مقدمة في علم. Associate Professor of Surveying IUG An Introduction to Geomatics خاص بطلبة مساق مقدمة في علم الجيوماتكس Prepared by: Dr. Maher A. El-Hallaq Associate Professor of Surveying IUG 1 Airborne Imagery Dr. Maher A. El-Hallaq Associate Professor

More information

Using Freely Available. Remote Sensing to Create a More Powerful GIS

Using Freely Available. Remote Sensing to Create a More Powerful GIS Using Freely Available Government Data and Remote Sensing to Create a More Powerful GIS All rights reserved. ENVI, E3De, IAS, and IDL are trademarks of Exelis, Inc. All other marks are the property of

More information

Fundamentals of Remote Sensing

Fundamentals of Remote Sensing Climate Variability, Hydrology, and Flooding Fundamentals of Remote Sensing May 19-22, 2015 GEO-Latin American & Caribbean Water Cycle Capacity Building Workshop Cartagena, Colombia 1 Objective To provide

More information

Lecture 13: Remotely Sensed Geospatial Data

Lecture 13: Remotely Sensed Geospatial Data Lecture 13: Remotely Sensed Geospatial Data A. The Electromagnetic Spectrum: The electromagnetic spectrum (Figure 1) indicates the different forms of radiation (or simply stated light) emitted by nature.

More information

Geostationary satellites

Geostationary satellites Polar satellites 800 km. 99 relative to the Equator S-N during ascending leg & N-S during descending leg Each orbit 100 minutes 14 orbits a day. Sun-Synchronous provides consistent lighting of Earth-scan

More information

Some Basic Concepts of Remote Sensing. Lecture 2 August 31, 2005

Some Basic Concepts of Remote Sensing. Lecture 2 August 31, 2005 Some Basic Concepts of Remote Sensing Lecture 2 August 31, 2005 What is remote sensing Remote Sensing: remote sensing is science of acquiring, processing, and interpreting images and related data that

More information

Remote Sensing Platforms

Remote Sensing Platforms Types of Platforms Lighter-than-air Remote Sensing Platforms Free floating balloons Restricted by atmospheric conditions Used to acquire meteorological/atmospheric data Blimps/dirigibles Major role - news

More information

Remote Sensing. Division C. Written Exam

Remote Sensing. Division C. Written Exam Remote Sensing Division C Written Exam Team Name: Team #: Team Members: _ Score: /132 A. Matching (10 points) 1. Nadir 2. Albedo 3. Diffraction 4. Refraction 5. Spatial Resolution 6. Temporal Resolution

More information

746A27 Remote Sensing and GIS. Multi spectral, thermal and hyper spectral sensing and usage

746A27 Remote Sensing and GIS. Multi spectral, thermal and hyper spectral sensing and usage 746A27 Remote Sensing and GIS Lecture 3 Multi spectral, thermal and hyper spectral sensing and usage Chandan Roy Guest Lecturer Department of Computer and Information Science Linköping University Multi

More information

Indian Remote Sensing Satellites

Indian Remote Sensing Satellites Resourcesat-1 Indian Remote Sensing Satellites -Current & Future Resourcesat Missions - Presented by: Timothy J. Puckorius Chairman & CEO EOTec 1 Presentation Topics India s Earth Observation Heritage

More information

GIS Data Collection. Remote Sensing

GIS Data Collection. Remote Sensing GIS Data Collection Remote Sensing Data Collection Remote sensing Introduction Concepts Spectral signatures Resolutions: spectral, spatial, temporal Digital image processing (classification) Other systems

More information

Aral Sea profile Selection of area 24 February April May 1998

Aral Sea profile Selection of area 24 February April May 1998 250 km Aral Sea profile 1960 1960 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 2010? Selection of area Area of interest Kzyl-Orda Dried seabed 185 km Syrdarya river Aral Sea Salt

More information

Multispectral Scanners for Wildland Fire Assessment NASA Ames Research Center Earth Science Division. Bruce Coffland U.C.

Multispectral Scanners for Wildland Fire Assessment NASA Ames Research Center Earth Science Division. Bruce Coffland U.C. Multispectral Scanners for Wildland Fire Assessment NASA Earth Science Division Bruce Coffland U.C. Santa Cruz Slide Fire Burn Area (MASTER/B200) R 2.2um G 0.87um B 0.65um Airborne Science & Technology

More information

Remote Sensing Platforms

Remote Sensing Platforms Remote Sensing Platforms Remote Sensing Platforms - Introduction Allow observer and/or sensor to be above the target/phenomena of interest Two primary categories Aircraft Spacecraft Each type offers different

More information

Spectral Signatures. Vegetation. 40 Soil. Water WAVELENGTH (microns)

Spectral Signatures. Vegetation. 40 Soil. Water WAVELENGTH (microns) Spectral Signatures % REFLECTANCE VISIBLE NEAR INFRARED Vegetation Soil Water.5. WAVELENGTH (microns). Spectral Reflectance of Urban Materials 5 Parking Lot 5 (5=5%) Reflectance 5 5 5 5 5 Wavelength (nm)

More information

Introduction. Introduction. Introduction. Introduction. Introduction

Introduction. Introduction. Introduction. Introduction. Introduction Identifying habitat change and conservation threats with satellite imagery Extinction crisis Volker Radeloff Department of Forest Ecology and Management Extinction crisis Extinction crisis Conservationists

More information

The Global Imager (GLI)

The Global Imager (GLI) The Global Imager (GLI) Launch : Dec.14, 2002 Initial check out : to Apr.14, 2003 (~L+4) First image: Jan.25, 2003 Second image: Feb.6 and 7, 2003 Calibration and validation : to Dec.14, 2003(~L+4) for

More information

NASA Missions and Products: Update. Garik Gutman, LCLUC Program Manager NASA Headquarters Washington, DC

NASA Missions and Products: Update. Garik Gutman, LCLUC Program Manager NASA Headquarters Washington, DC NASA Missions and Products: Update Garik Gutman, LCLUC Program Manager NASA Headquarters Washington, DC 1 JPSS-2 (NOAA) SLI-TBD Formulation in 2015 RBI OMPS-Limb [[TSIS-2]] [[TCTE]] Land Monitoring at

More information

Remote Sensing for Rangeland Applications

Remote Sensing for Rangeland Applications Remote Sensing for Rangeland Applications Jay Angerer Ecological Training June 16, 2012 Remote Sensing The term "remote sensing," first used in the United States in the 1950s by Ms. Evelyn Pruitt of the

More information

EnMAP Environmental Mapping and Analysis Program

EnMAP Environmental Mapping and Analysis Program EnMAP Environmental Mapping and Analysis Program www.enmap.org Mathias Schneider Mission Objectives Regular provision of high-quality calibrated hyperspectral data Precise measurement of ecosystem parameters

More information

366 Glossary. Popular method for scale drawings in a computer similar to GIS but without the necessity for spatial referencing CEP

366 Glossary. Popular method for scale drawings in a computer similar to GIS but without the necessity for spatial referencing CEP 366 Glossary GISci Glossary ASCII ASTER American Standard Code for Information Interchange Advanced Spaceborne Thermal Emission and Reflection Radiometer Computer Aided Design Circular Error Probability

More information

Final Examination Introduction to Remote Sensing. Time: 1.5 hrs Max. Marks: 50. Section-I (50 x 1 = 50 Marks)

Final Examination Introduction to Remote Sensing. Time: 1.5 hrs Max. Marks: 50. Section-I (50 x 1 = 50 Marks) Final Examination Introduction to Remote Sensing Time: 1.5 hrs Max. Marks: 50 Note: Attempt all questions. Section-I (50 x 1 = 50 Marks) 1... is the technology of acquiring information about the Earth's

More information

IKONOS High Resolution Multispectral Scanner Sensor Characteristics

IKONOS High Resolution Multispectral Scanner Sensor Characteristics High Spatial Resolution and Hyperspectral Scanners IKONOS High Resolution Multispectral Scanner Sensor Characteristics Launch Date View Angle Orbit 24 September 1999 Vandenberg Air Force Base, California,

More information

Satellite Imagery and Remote Sensing. DeeDee Whitaker SW Guilford High EES & Chemistry

Satellite Imagery and Remote Sensing. DeeDee Whitaker SW Guilford High EES & Chemistry Satellite Imagery and Remote Sensing DeeDee Whitaker SW Guilford High EES & Chemistry whitakd@gcsnc.com Outline What is remote sensing? How does remote sensing work? What role does the electromagnetic

More information

Downloading and formatting remote sensing imagery using GLOVIS

Downloading and formatting remote sensing imagery using GLOVIS Downloading and formatting remote sensing imagery using GLOVIS Students will become familiarized with the characteristics of LandSat, Aerial Photos, and ASTER medium resolution imagery through the USGS

More information

Satellite Remote Sensing: Earth System Observations

Satellite Remote Sensing: Earth System Observations Satellite Remote Sensing: Earth System Observations Land surface Water Atmosphere Climate Ecosystems 1 EOS (Earth Observing System) Develop an understanding of the total Earth system, and the effects of

More information

Geo/SAT 2 INTRODUCTION TO REMOTE SENSING

Geo/SAT 2 INTRODUCTION TO REMOTE SENSING Geo/SAT 2 INTRODUCTION TO REMOTE SENSING Paul R. Baumann, Professor Emeritus State University of New York College at Oneonta Oneonta, New York 13820 USA COPYRIGHT 2008 Paul R. Baumann Introduction Remote

More information

1. Theory of remote sensing and spectrum

1. Theory of remote sensing and spectrum 1. Theory of remote sensing and spectrum 7 August 2014 ONUMA Takumi Outline of Presentation Electromagnetic wave and wavelength Sensor type Spectrum Spatial resolution Spectral resolution Mineral mapping

More information

Sensor resolutions from space: the tension between temporal, spectral, spatial and swath. David Bruce UniSA and ISU

Sensor resolutions from space: the tension between temporal, spectral, spatial and swath. David Bruce UniSA and ISU Sensor resolutions from space: the tension between temporal, spectral, spatial and swath David Bruce UniSA and ISU 1 Presentation aims 1. Briefly summarize the different types of satellite image resolutions

More information

Solid Earth Timeline with a smattering of cryosphere technology

Solid Earth Timeline with a smattering of cryosphere technology Solid Earth Timeline with a smattering of cryosphere technology Muhammed Kabiru Hassan * Rebecca Boon Image from http://www.clipartheaven.com/show/clipart/technology_&_communication/satellites/satellite_23-gif.html

More information

Remote Sensing 1 Principles of visible and radar remote sensing & sensors

Remote Sensing 1 Principles of visible and radar remote sensing & sensors Remote Sensing 1 Principles of visible and radar remote sensing & sensors Nick Barrand School of Geography, Earth & Environmental Sciences University of Birmingham, UK Field glaciologist collecting data

More information

Int n r t o r d o u d c u ti t on o n to t o Remote Sensing

Int n r t o r d o u d c u ti t on o n to t o Remote Sensing Introduction to Remote Sensing Definition of Remote Sensing Remote sensing refers to the activities of recording/observing/perceiving(sensing)objects or events at far away (remote) places. In remote sensing,

More information

XSAT Ground Segment at CRISP

XSAT Ground Segment at CRISP XSAT Ground Segment at CRISP LIEW Soo Chin Head of Research, CRISP http://www.crisp.nus.edu.sg 5 th JPTM for Sentinel Asia Step-2, 14-16 Nov 2012, Daejeon, Korea Centre for Remote Imaging, Sensing and

More information

SEA GRASS MAPPING FROM SATELLITE DATA

SEA GRASS MAPPING FROM SATELLITE DATA JSPS National Coordinators Meeting, Coastal Marine Science 19 20 May 2008 Melaka SEA GRASS MAPPING FROM SATELLITE DATA Mohd Ibrahim Seeni Mohd, Nurul Hazrina Idris, Samsudin Ahmad 1. Introduction PRESENTATION

More information

Data Sharing Issues in SE Asia

Data Sharing Issues in SE Asia Data Sharing Issues in SE Asia Kandasri Limpakom User Service and Business Development Office About GISTDA THEOS & Its Applications GISTDA s Data Sharing Geo-Informatics and Space Technology Development

More information

John P. Stevens HS: Remote Sensing Test

John P. Stevens HS: Remote Sensing Test Name(s): Date: Team name: John P. Stevens HS: Remote Sensing Test 1 Scoring: Part I - /18 Part II - /40 Part III - /16 Part IV - /14 Part V - /93 Total: /181 2 I. History (3 pts. each) 1. What is the name

More information

Tools for Monitoring the Environmental Processes of Earth: Satellites

Tools for Monitoring the Environmental Processes of Earth: Satellites ES6: Environmental Science and Technology Tools for Monitoring the Environmental Processes of Earth: Satellites Akiyuki KAWASAKI Visiting Scholar at Harvard University's School of Engineering and Applied

More information

Data acquisition and access for the Congo Basin

Data acquisition and access for the Congo Basin MRV Joint Workshop 22-24 June 2010, Guadalajara, Jalisco Mexico Data acquisition and access for the Congo Basin Landing Mané 1, Michael Brady 2, Chris Justice 3 and Alice Altstatt 3 1) Satellite Observatory

More information

On the use of water color missions for lakes in 2021

On the use of water color missions for lakes in 2021 Lakes and Climate: The Role of Remote Sensing June 01-02, 2017 On the use of water color missions for lakes in 2021 Cédric G. Fichot Department of Earth and Environment 1 Overview 1. Past and still-ongoing

More information

ALOS and PALSAR. Masanobu Shimada

ALOS and PALSAR. Masanobu Shimada ALOS and PALSAR Masanobu Shimada Earth Observation Research Center, National Space Development Agency of Japan, Harumi 1-8-10, Harumi island triton square office tower X 22, Chuo-Ku, Tokyo-To, Japan, 104-6023,

More information

Lesson 3: Working with Landsat Data

Lesson 3: Working with Landsat Data Lesson 3: Working with Landsat Data Lesson Description The Landsat Program is the longest-running and most extensive collection of satellite imagery for Earth. These datasets are global in scale, continuously

More information

CHAPTER 7: Multispectral Remote Sensing

CHAPTER 7: Multispectral Remote Sensing CHAPTER 7: Multispectral Remote Sensing REFERENCE: Remote Sensing of the Environment John R. Jensen (2007) Second Edition Pearson Prentice Hall Overview of How Digital Remotely Sensed Data are Transformed

More information

ISRO s EARTH OBSERVATION SYSTEM (updates from last Plenary) AS Kiran Kumar ISRO, INDIA

ISRO s EARTH OBSERVATION SYSTEM (updates from last Plenary) AS Kiran Kumar ISRO, INDIA ISRO s EARTH OBSERVATION SYSTEM (updates from last Plenary) AS Kiran Kumar ISRO, INDIA The 24 th CEOS Plenary Rio de Janeiro, Brazil 12-15 October, 2010 1 Four Decades of Indian Space Programme 30LV Missions

More information

Geospatial Vision and Policies Korean Industry View 26 November, 2014 SI Imaging Services

Geospatial Vision and Policies Korean Industry View 26 November, 2014 SI Imaging Services Geospatial Vision and Policies Korean Industry View 26 November, 2014 SI Imaging Services Distribution Limitation, SI Imaging Services Proprietary Data : The data contained in this document, without the

More information

High Resolution Sensor Test Comparison with SPOT, KFA1000, KVR1000, IRS-1C and DPA in Lower Saxony

High Resolution Sensor Test Comparison with SPOT, KFA1000, KVR1000, IRS-1C and DPA in Lower Saxony High Resolution Sensor Test Comparison with SPOT, KFA1000, KVR1000, IRS-1C and DPA in Lower Saxony K. Jacobsen, G. Konecny, H. Wegmann Abstract The Institute for Photogrammetry and Engineering Surveys

More information

Processing Aster Data for Atmospheric Correction Geomatica 2014 Tutorial

Processing Aster Data for Atmospheric Correction Geomatica 2014 Tutorial The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor is part of five sensor systems on board Terra. Terra is a satellite that was launched on December 18, 1999 at Vandenberg

More information

Part I. The Importance of Image Registration for Remote Sensing

Part I. The Importance of Image Registration for Remote Sensing Part I The Importance of Image Registration for Remote Sensing 1 Introduction jacqueline le moigne, nathan s. netanyahu, and roger d. eastman Despite the importance of image registration to data integration

More information

Development of normalized vegetation, soil and water indices derived from satellite remote sensing data

Development of normalized vegetation, soil and water indices derived from satellite remote sensing data Development of normalized vegetation, soil and water indices derived from satellite remote sensing data Takeuchi, W. & Yasuoka, Y. IIS/UT, Japan E-mail: wataru@iis.u-tokyo.ac.jp Nov. 25th, 2004 ACRS2004

More information

DIGITAL EARTH: BRIDGING THE SCALES FROM GLOBAL TO LOCAL FOR SUSTAINABLE DEVELOPMENT

DIGITAL EARTH: BRIDGING THE SCALES FROM GLOBAL TO LOCAL FOR SUSTAINABLE DEVELOPMENT DIGITAL EARTH: BRIDGING THE SCALES FROM GLOBAL TO LOCAL FOR SUSTAINABLE DEVELOPMENT GUO Huadong WANG Changlin Institute of Remote Sensing Applications Chinese Academy of Sciences P.O. Box 9718, Beijing

More information

REMOTE SENSING INTERPRETATION

REMOTE SENSING INTERPRETATION REMOTE SENSING INTERPRETATION Jan Clevers Centre for Geo-Information - WU Remote Sensing --> RS Sensor at a distance EARTH OBSERVATION EM energy Earth RS is a tool; one of the sources of information! 1

More information

Chapter 8. Remote sensing

Chapter 8. Remote sensing 1. Remote sensing 8.1 Introduction 8.2 Remote sensing 8.3 Resolution 8.4 Landsat 8.5 Geostationary satellites GOES 8.1 Introduction What is remote sensing? One can describe remote sensing in different

More information

APCAS/10/21 April 2010 ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS TWENTY-THIRD SESSION. Siem Reap, Cambodia, April 2010

APCAS/10/21 April 2010 ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS TWENTY-THIRD SESSION. Siem Reap, Cambodia, April 2010 APCAS/10/21 April 2010 Agenda Item 8 ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS TWENTY-THIRD SESSION Siem Reap, Cambodia, 26-30 April 2010 The Use of Remote Sensing for Area Estimation by Robert

More information

Light penetration within a clear water body. E z = E 0 e -kz

Light penetration within a clear water body. E z = E 0 e -kz THE BLUE PLANET 1 2 Light penetration within a clear water body E z = E 0 e -kz 3 4 5 Pure Seawater Phytoplankton b w 10-2 m -1 b w 10-2 m -1 b w, Morel (1974) a w, Pope and Fry (1997) b chl,loisel and

More information

Recent developments in Deep Blue satellite aerosol data products from NASA GSFC

Recent developments in Deep Blue satellite aerosol data products from NASA GSFC Recent developments in Deep Blue satellite aerosol data products from NASA GSFC Andrew M. Sayer, N. Christina Hsu (PI), Corey Bettenhausen, Myeong-Jae Jeong Climate & Radiation Laboratory, NASA Goddard

More information

Lecture 7 Earth observation missions

Lecture 7 Earth observation missions Remote sensing for agricultural applications: principles and methods (2013-2014) Instructor: Prof. Tao Cheng (tcheng@njau.edu.cn). Nanjing Agricultural University Lecture 7 Earth observation missions May

More information

COMPARISON OF INFORMATION CONTENTS OF HIGH RESOLUTION SPACE IMAGES

COMPARISON OF INFORMATION CONTENTS OF HIGH RESOLUTION SPACE IMAGES COMPARISON OF INFORMATION CONTENTS OF HIGH RESOLUTION SPACE IMAGES H. Topan*, G. Büyüksalih*, K. Jacobsen ** * Karaelmas University Zonguldak, Turkey ** University of Hannover, Germany htopan@karaelmas.edu.tr,

More information

CHARACTERISTICS OF REMOTELY SENSED IMAGERY. Radiometric Resolution

CHARACTERISTICS OF REMOTELY SENSED IMAGERY. Radiometric Resolution CHARACTERISTICS OF REMOTELY SENSED IMAGERY Radiometric Resolution There are a number of ways in which images can differ. One set of important differences relate to the various resolutions that images express.

More information

(updates from last Plenary) AS Kiran Kumar ISRO, INDIA

(updates from last Plenary) AS Kiran Kumar ISRO, INDIA ISRO s EARTH OBSERVATION SYSTEM (updates from last Plenary) AS Kiran Kumar ISRO, INDIA The 24 th CEOS Plenary Rio de Janeiro, Brazil 12 15 October, 2010 1 Four Decades of Indian Space Programme 30 LV Missions

More information

Role of Landsat in Revolutionizing the Management of Natural Resources. Prof. UR Rao Former Chairman, ISRO, India

Role of Landsat in Revolutionizing the Management of Natural Resources. Prof. UR Rao Former Chairman, ISRO, India Role of Landsat in Revolutionizing the Management of Natural Resources Prof. UR Rao Former Chairman, ISRO, India 40 Years of Landsat, June 6, 2012 Evolution of Remote Sensing Satellites TIROS Aerial Survey

More information

Introduction to KOMPSAT

Introduction to KOMPSAT Introduction to KOMPSAT September, 2016 1 CONTENTS 01 Introduction of SIIS 02 KOMPSAT Constellation 03 New : KOMPSAT-3 50 cm 04 New : KOMPSAT-3A 2 KOMPSAT Constellation KOMPSAT series National space program

More information

Update on Landsat Program and Landsat Data Continuity Mission

Update on Landsat Program and Landsat Data Continuity Mission Update on Landsat Program and Landsat Data Continuity Mission Dr. Jeffrey Masek LDCM Deputy Project Scientist NASA GSFC, Code 923 November 21, 2002 Draft LDCM Implementation Phase RFP Overview Page 1 Celebrate!

More information

Earth Observations from Space U.S. Geological Survey

Earth Observations from Space U.S. Geological Survey Earth Observations from Space U.S. Geological Survey Geography Land Remote Sensing Program Dr. Bryant Cramer April 1, 2009 U.S. Department of the Interior U.S. Geological Survey USGS Landsat Historical

More information

EXAMPLES OF TOPOGRAPHIC MAPS PRODUCED FROM SPACE AND ACHIEVED ACCURACY CARAVAN Workshop on Mapping from Space, Phnom Penh, June 2000

EXAMPLES OF TOPOGRAPHIC MAPS PRODUCED FROM SPACE AND ACHIEVED ACCURACY CARAVAN Workshop on Mapping from Space, Phnom Penh, June 2000 EXAMPLES OF TOPOGRAPHIC MAPS PRODUCED FROM SPACE AND ACHIEVED ACCURACY CARAVAN Workshop on Mapping from Space, Phnom Penh, June 2000 Jacobsen, Karsten University of Hannover Email: karsten@ipi.uni-hannover.de

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing Outline Remote Sensing Defined Resolution Electromagnetic Energy (EMR) Types Interpretation Applications Remote Sensing Defined Remote Sensing is: The art and science of

More information

The Landsat Legacy: Monitoring a Changing Earth. U.S. Department of the Interior U.S. Geological Survey

The Landsat Legacy: Monitoring a Changing Earth. U.S. Department of the Interior U.S. Geological Survey The Landsat Legacy: Monitoring a Changing Earth U.S. Department of the Interior U.S. Geological Survey Tom Loveland March 17, 2001 Landsat Science Mission Change is occurring at rates unprecedented in

More information

1. INTRODUCTION. GOCI : Geostationary Ocean Color Imager

1. INTRODUCTION. GOCI : Geostationary Ocean Color Imager 1. INTRODUCTION The Korea Ocean Research and Development Institute (KORDI) releases an announcement of opportunity (AO) to carry out scientific research for the utilization of GOCI data. GOCI is the world

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing Daniel McInerney Urban Institute Ireland, University College Dublin, Richview Campus, Clonskeagh Drive, Dublin 14. 16th June 2009 Presentation Outline 1 2 Spaceborne Sensors

More information

ISU Symposium The Public Face of Space Strasbourg, France February A quiet and sustainable success story.

ISU Symposium The Public Face of Space Strasbourg, France February A quiet and sustainable success story. ISU Symposium The Public Face of Space Strasbourg, France 16 18 February 2010 The International Cospas-Sarsat Programme: A quiet and sustainable success story Dany St-Pierre Cospas-Sarsat Secretariat ISU

More information

International Charter Space and Major Disasters

International Charter Space and Major Disasters International Charter Space and Major Disasters Sentinel Asia Joint Project Team Meeting July 7, 2010 Brenda Jones U.S. Geological Survey Charter Executive Secretariat Purpose An International agreement

More information

Introduction to Satellite Remote Sensing

Introduction to Satellite Remote Sensing Introduction to Satellite Remote Sensing Remote sensing of the Earth from orbital altitudes was recognized in the mid-1960 s as a potential technique for obtaining information important for the effective

More information

ASTER GDEM Readme File ASTER GDEM Version 1

ASTER GDEM Readme File ASTER GDEM Version 1 I. Introduction ASTER GDEM Readme File ASTER GDEM Version 1 The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) was developed jointly by the

More information

Multi-Resolution Analysis of MODIS and ASTER Satellite Data for Water Classification

Multi-Resolution Analysis of MODIS and ASTER Satellite Data for Water Classification Corina Alecu, Simona Oancea National Meteorological Administration 97 Soseaua Bucuresti-Ploiesti, 013686, Sector 1, Bucharest Romania corina.alecu@meteo.inmh.ro Emily Bryant Dartmouth Flood Observatory,

More information

(Presented by Jeppesen) Summary

(Presented by Jeppesen) Summary International Civil Aviation Organization SAM/IG/6-IP/06 South American Regional Office 24/09/10 Sixth Workshop/Meeting of the SAM Implementation Group (SAM/IG/6) - Regional Project RLA/06/901 Lima, Peru,

More information

Lecture Notes Prepared by Prof. J. Francis Spring Remote Sensing Instruments

Lecture Notes Prepared by Prof. J. Francis Spring Remote Sensing Instruments Lecture Notes Prepared by Prof. J. Francis Spring 2005 Remote Sensing Instruments Material from Remote Sensing Instrumentation in Weather Satellites: Systems, Data, and Environmental Applications by Rao,

More information

Blacksburg, VA July 24 th 30 th, 2010 Remote Sensing Page 1. A condensed overview. For our purposes

Blacksburg, VA July 24 th 30 th, 2010 Remote Sensing Page 1. A condensed overview. For our purposes A condensed overview George McLeod Prepared by: With support from: NSF DUE-0903270 in partnership with: Geospatial Technician Education Through Virginia s Community Colleges (GTEVCC) The art and science

More information

EO Data Today and Application Fields. Denise Petala

EO Data Today and Application Fields. Denise Petala EO Data Today and Application Fields Denise Petala ! IGD GROUP AE "Infotop SA, Geomet Ltd., Dynatools Ltd. "Equipment and know how in many application fields, from surveying till EO data and RS. # Leica,

More information

A map says to you, 'Read me carefully, follow me closely, doubt me not.' It says, 'I am the Earth in the palm of your hand. Without me, you are alone

A map says to you, 'Read me carefully, follow me closely, doubt me not.' It says, 'I am the Earth in the palm of your hand. Without me, you are alone A map says to you, 'Read me carefully, follow me closely, doubt me not.' It says, 'I am the Earth in the palm of your hand. Without me, you are alone and lost. Beryl Markham (West With the Night, 1946

More information

ANALYSIS OF LAND COVER AND LAND USE CHANGES USING SENTINEL-2 IMAGES

ANALYSIS OF LAND COVER AND LAND USE CHANGES USING SENTINEL-2 IMAGES DOI 10.1515/pesd-2016-0034 PESD, VOL. 10, no. 2, 2016 ANALYSIS OF LAND COVER AND LAND USE CHANGES USING SENTINEL-2 IMAGES Nicoleta Iurist (Dumitrașcu) 1,, Florian Stătescu 2, Iustina Lateș 3 Key words,

More information

Coral Reef Remote Sensing

Coral Reef Remote Sensing Coral Reef Remote Sensing Spectral, Spatial, Temporal Scaling Phillip Dustan Sensor Spatial Resolutio n Number of Bands Useful Bands coverage cycle Operation Landsat 80m 2 2 18 1972-97 Thematic 30m 7

More information