RF LDMOS Wideband Integrated Power Amplifier MHVIC2115R2. Freescale Semiconductor, I. The Wideband IC Line SEMICONDUCTOR TECHNICAL DATA

Size: px
Start display at page:

Download "RF LDMOS Wideband Integrated Power Amplifier MHVIC2115R2. Freescale Semiconductor, I. The Wideband IC Line SEMICONDUCTOR TECHNICAL DATA"

Transcription

1 MOTOROLA nc. SEMICONDUCTOR TECHNICAL DATA Order this document by /D The Wideband IC Line RF LDMOS Wideband Integrated Power Amplifier The wideband integrated circuit is designed for base station applications. It uses Motorola s newest High Voltage (26 to 28 Volts) LDMOS IC technology and integrates a multi-stage structure. Its wideband On-Chip matching design makes it usable from 600 to 2600 MHz. The linearity performances cover W- CDMA modulation formats. Final Application Typical W-CDMA Performance: -45 dbc ACPR, MHz, V DD = 27 Volts, I DQ = 56 ma, I DQ2 = 6 ma, I DQ3 = 7 ma, P out = 34 dbm, 3GPP Test Model, Measured in a.0 MHz 4 MHz offset, 64 DTCH Power Gain 30 db PAE = 6% Driver Application Typical W-CDMA Performance: -53 dbc ACPR, MHz, V DD = 26 Volts,, P out = 23 dbm, 3GPP Test Model, Measured in a 3.84 MHz 5 MHz offset, 64 DTCH Power Gain 34 db Gain Flatness = 0.3 db from MHz PdB = 5 Watts, Gain Flatness = 0.2 db from MHz Capable of Handling 3: 26 Vdc, 240 MHz, 5 Watts CW Output Power Characterized with Series Equivalent Large- Signal Impedance Parameters On-Chip Matching (50 Ohm Input, DC Blocked, >5 Ohm Output) Integrated Temperature Compensation with Enable/Disable Function Integrated ESD Protection In Tape and Reel. R2 Suffix =,500 Units per 6 mm, 3 inch Reel. MAXIMUM RATINGS 270 MHz, 26 V, 23/34 dbm W- CDMA RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIER CASE PFP -6 Rating Symbol Value Unit Drain-Source Voltage V DSS 65 Vdc Gate-Source Voltage V GS -0.5, 5 Vdc Storage Temperature Range T stg - 65 to 50 C Operating Junction Temperature T J 50 C V GS3 V GS2 V GS RF in I C V DS V DS2 Quiescent Current Temperature Compensation 3 Stages I C N.C. V GS3 V GS2 V GS RF in RF in V DS V DS2 PIN CONNECTIONS N.C. N.C. (Top View) NOTE: Exposed backside flag is source terminal for transistors. () Refer to AN987/D, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to Select Documentation/Application Notes - AN987. Rev. Motorola, MOTOROLA Inc RF DEVICE DATA

2 nc. THERMAL CHARACTERISTICS Characteristic Symbol Value Unit Thermal Resistance, Junction to Case R θjc C/W Driver Application Stage, 26 Vdc, I DQ = 96 ma (P out = 0.2 W CW) Stage 2, 26 Vdc, I DQ = 204 ma Stage 3, 26 Vdc, I DQ = ma 3.5 Output Application Stage, 27 Vdc, I DQ = 56 ma (P out = 2.5 W CW) Stage 2, 27 Vdc, I DQ = 6 ma Stage 3, 27 Vdc, I DQ = 7 ma ESD PROTECTION CHARACTERISTICS Human Body Model Machine Model Charge Device Model MOISTURE SENSITIVITY LEVEL Test Conditions Test Methodology 2.7 Class (Minimum) M (Minimum) C2 (Minimum) Per JESD 22-A3 3 Rating ELECTRICAL CHARACTERISTICS (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit W-CDMA CHARACTERISTICS (In Motorola Test Fixture, 50 ohm system) V DD = 26 Vdc,, P out = 23 dbm, MHz Power Gain G ps 3 34 db Gain Flatness G F db Input Return Loss IRL -2-0 db Group Delay.7 ns Phase Linearity 0.2 -Carrier W-CDMA Conditions: Adjacent Channel Power P out = 23 dbm, 5 MHz Offset -Carrier W-CDMA Conditions: Adjacent Channel Power P out = 28 dbm, 5 MHz Offset ACPR dbc ACPR -50 dbc W-CDMA CHARACTERISTICS (In Motorola Test Fixture, 50 ohm system) V DD = 27 Vdc, I DQ = 56 ma, I DQ2 = 6 ma, I DQ3 = 7 ma, P out = 34 dbm, MHz Power Gain G ps 30 db Gain Flatness G F 0.2 db Input Return Loss IRL -2 db Power Added Efficiency PAE 6 % -Carrier W-CDMA Conditions: Adjacent Channel Power P out = 34 dbm, 4 MHz Offset ACPR -45 dbc 2

3 nc. 6 V bias3 V bias2 V bias RF INPUT R3 R2 R C C5 C4 C2 C3 C C5 C6 C9 RF OUTPUT V D V D2 6 V D3 7 0 C2 C3 C8 C2 C7 C C6 C0 8 Quiescent Current Temperature Compensation 9 C7 C8 C9 C20 C, C5, C8, C2, C4, C9 µf SMT Tantalum Chip Capacitors C2, C3, C4, C7, C, C8 0.0 µf Chip Capacitors (0805C03K5RACTR) C6, C0, C7 6.8 pf Chip Capacitors, ACCU P (AVX 0805J6R8BBT) C9, C5, C6.8 pf Chip Capacitors, ACCU P (AVX 0805JR8BBT) C4 C4 V G C6 Figure. Demo Board Schematic V bias V bias2 V bias3 R R2 R3 C5 V G2 V G3 C3 C2 C5 C6 C9 C C3, C20, C2 330 µf Electrolytic Capacitors (MCR35V337M0X6) R, R2, R3 kω Chip Resistors (0805) PCB Arlon, 0.020, ε r = 2.55 V GS Rev C0 C7 C7 C8 C8 C C2 C9 C2 V DD C3 V DD2 C20 V DD3 Figure 2. Demo Board Component Layout 3

4 nc. TYPICAL CHARACTERISTICS S2 (db) 40 S S V DD = 27 Vdc, P out = 23 dbm CW f, FEQUENCY (MHz) Figure 3. Broadband Frequency Response S (db) DELAY, (nsec) T C = 85 C 25 C 30 C V DD = 27 Vdc, P out = 23 dbm CW f, FREQUENCY (MHz) Figure 4. Delay versus Frequency G ps, POWER GAIN (db) G ps, POWER GAIN (db) T C = 30 C C C V DD = 27 Vdc, P out = 23 dbm CW f, FREQUENCY (MHz) Figure 5. Power Gain versus Frequency T C = 30 C C C V DD = 27 Vdc, f = 240 MHz P out, OUTPUT POWER (dbm) INPUT RETURN LOSS (db) IRL, S2 PHASE( ) T C = 85 C 25 C 30 C V DD = 27 Vdc, P out = 23 dbm CW f, FREQUENCY, (MHz) Figure 6. Input Return Loss versus Frequency T C = 25 C 30 C C 45 V DD = 27 Vdc, f = 240 MHz P out, OUTPUT POWER (dbm) Figure 7. Power Gain versus Output Power Figure 8. S2 Phase versus Output Power 4

5 nc. TYPICAL CHARACTERISTICS ACPR, ADJACENT CHANNEL POWER RATIO (dbc) V DD = 27 Vdc 3GPP Test Model 64 DPCH 270 MHz 20 MHz P out, OUTPUT POWER (dbm) 240 MHz IMR (dbc) V DD = 27 Vdc P out = 23 dbm Two Tone Avg. Tone Spacing = 00 khz 3rd Order 5th Order ma ma f, FREQUENCY (MHz) 2200 I DQ3 = 00 ma ma 00 ma 2300 Figure 9. W-CDMA ACPR versus Output Power Figure 0. Two- Tone IMR versus Frequency INTERMODULATION DISTORTION (dbc) IMD, V BIAS rd Order 5.25 V BIAS V DD = 27 Vdc 4.75 V DD = 27 Vdc, f = 240 R = R2 = R3 = 000 Ohms P out = 23 dbm, Two Tone Avg. V BIAS th Order TONE SPACING (MHz) Figure. Two- Tone Broadband Performance T, TEMPERATURE (C) Figure 2. Fixture Bias versus Temperature V gs, IC GATE BIAS VOLTAGE (V) V gs & V gs2 I gs & I gs V DD = 27 Vdc 3.70 R = R2 = R3 = 000 Ohms.00 V 3.60 gs I gs T, TEMPERATURE (C) Figure 3. Gate Bias versus Temperature V bias, FIXTURE BIAS VOLTAGE (V) 2.00 I gs, GATE BIAS CURRENT (ma) 5

6 nc. f = 270 MHz Z load f = 20 MHz f MHz Z o = 50 Ω V DD = 27 Vdc, I DQ = 4 ma, P out = 5 W Avg. Z in Ω j j j7. Z load Ω 4.25 j j j.46 Z in = Device input impedance as measured from gate to ground. Z load = Test circuit impedance as measured from drain to ground. Z in f = 20 MHz f = 270 MHz Device Under Test Output Matching Network Z in Z load Figure 4. Series Equivalent Input and Load Impedance 6

7 nc. NOTES 7

8 nc. PACKAGE DIMENSIONS h X 45 A E2 4 x e A e/2 A2 Y 8 E 8X E bbb M ccc C C B S 6 9 L B C D DATUM H PLANE SEATING PLANE L W W DETAIL Y A BOTTOM VIEW GAUGE PLANE c b ÇÇ ÇÇ b aaa M C SECT W-W CASE ISSUE B PFP- 6 A c S D NOTES:. CONTROLLING DIMENSION: MILLIMETER. 2. DIMENSIONS AND TOLERANCES PER ASME Y4.5M, DATUM PLANE H IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS PER SIDE. DIMENSIONS D AND E DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H. 5. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION IS 0.27 TOTAL IN EXCESS OF THE b DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. DATUMS A AND B TO BE DETERMINED AT DATUM PLANE H. MILLIMETERS DIM MIN MAX A A A D D E E E L L BSC b b c c e BSC h aaa bbb ccc 0.00 Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters that may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including Typicals, must be validated for each customer application by customer s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. Motorola Inc HOW TO REACH US: USA/EUROPE/LOCATIONS NOT LISTED: JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, Motorola Literature Distribution 3-20-, Minami-Azabu, Minato-ku, Tokyo , Japan P.O. Box 5405, Denver, Colorado or ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong HOME PAGE: 8 /D

Characteristic Symbol Value Unit Thermal Resistance, Junction to Case. Test Conditions

Characteristic Symbol Value Unit Thermal Resistance, Junction to Case. Test Conditions Technical Data Document Number: Rev. 5, 5/2006 RF LDMOS Wideband Integrated Power Amplifier The wideband integrated circuit is designed for base station applications. It uses Freescale s newest High Voltage

More information

RF LDMOS Wideband Integrated Power Amplifiers. Freescale Semiconductor, I MW5IC2030MBR1 MW5IC2030GMBR1. The Wideband IC Line

RF LDMOS Wideband Integrated Power Amplifiers. Freescale Semiconductor, I MW5IC2030MBR1 MW5IC2030GMBR1. The Wideband IC Line MOTOROLA nc. SEMICONDUCTOR TECHNICAL DATA Order this document by MW5IC23M/D The Wideband IC Line RF LDMOS Wideband Integrated Power Amplifiers The MW5IC23 wideband integrated circuit is designed for base

More information

921 MHz-960 MHz SiFET RF Integrated Power Amplifier

921 MHz-960 MHz SiFET RF Integrated Power Amplifier Technical Data 9 MHz-96 MHz SiFET RF Integrated Power Amplifier The MHVIC9HNR integrated circuit is designed for GSM base stations, uses Freescale s newest High Voltage (6 Volts) LDMOS IC technology, and

More information

RF LDMOS Wideband 2-Stage Power Amplifiers

RF LDMOS Wideband 2-Stage Power Amplifiers Technical Data RF LDMOS Wideband 2-Stage Power Amplifiers Designed for broadband commercial and industrial applications with frequencies from 132 MHz to 960 MHz. The high gain and broadband performance

More information

Watts W/ C Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C. Test Conditions MRF9085SR3/MRF9085LSR3

Watts W/ C Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C. Test Conditions MRF9085SR3/MRF9085LSR3 SEMICONDUCTOR TECHNICAL DATA Order this document by MRF9085/D The RF Sub Micron MOSFET Line N Channel Enhancement Mode Lateral MOSFETs Designed for broadband commercial and industrial applications with

More information

RF Power Field Effect Transistor Array N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor Array N-Channel Enhancement-Mode Lateral MOSFET Technical Data Document Number: Rev. 6, 7/2005 Will be replaced by MRF9002NR2 in Q305. N suffix indicates 260 C reflow capable. The PFP-16 package has had lead-free terminations from its initial release.

More information

LIFETIME BUY LAST ORDER 1 JUL 11 LAST SHIP 30 JUN MHz -960 MHz SiFET RF Integrated Power Amplifier MHVIC910HNR2. Freescale Semiconductor

LIFETIME BUY LAST ORDER 1 JUL 11 LAST SHIP 30 JUN MHz -960 MHz SiFET RF Integrated Power Amplifier MHVIC910HNR2. Freescale Semiconductor LIFETIME BUY Technical Data 9 MHz -96 MHz SiFET RF Integrated Power Amplifier The MHVIC9HNR integrated circuit is designed for GSM base stations, uses Freescale s newest High Voltage (6 Volts) LDMOS IC

More information

Watts W/ C Storage Temperature Range T stg 65 to +200 C Operating Junction Temperature T J 200 C. Test Conditions

Watts W/ C Storage Temperature Range T stg 65 to +200 C Operating Junction Temperature T J 200 C. Test Conditions SEMICONDUCTOR TECHNICAL DATA Order this document by MRF19125/D The RF Sub Micron MOSFET Line N Channel Enhancement Mode Lateral MOSFETs Designed for PCN and PCS base station applications with frequencies

More information

ELECTRICAL CHARACTERISTICS (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS (1) Drain Source Breakdown V

ELECTRICAL CHARACTERISTICS (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS (1) Drain Source Breakdown V SEMICONDUCTOR TECHNICAL DATA Order this document by /D The RF MOSFET Line N Channel Enhancement Mode Lateral MOSFET Designed for broadband commercial and industrial applications with frequencies from 800

More information

Watts W/ C Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C. Test Conditions

Watts W/ C Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C. Test Conditions SEMICONDUCTOR TECHNICAL DATA Order this document by MRF21125/D The RF Sub Micron MOSFET Line N Channel Enhancement Mode Lateral MOSFETs Designed for W CDMA base station applications with frequencies from

More information

ELECTRICAL CHARACTERISTICS continued (T C = 25 C unless otherwise noted) ON CHARACTERISTICS Gate Threshold Voltage (V DS = 10 Vdc, I D = 100 µa) Chara

ELECTRICAL CHARACTERISTICS continued (T C = 25 C unless otherwise noted) ON CHARACTERISTICS Gate Threshold Voltage (V DS = 10 Vdc, I D = 100 µa) Chara SEMICONDUCTOR TECHNICAL DATA Order this document by MRF182/D The RF MOSFET Line N Channel Enhancement Mode Lateral MOSFETs High Gain, Rugged Device Broadband Performance from HF to 1 GHz Bottom Side Source

More information

Gallium Arsenide PHEMT RF Power Field Effect Transistor

Gallium Arsenide PHEMT RF Power Field Effect Transistor Technical Data Gallium Arsenide PHEMT RF Power Field Effect Transistor Designed for WLL base station applications with frequencies from 3400 to 3600 MHz. Suitable for TDMA and CDMA amplifier applications.

More information

ARCHIVE INFORMATION MW4IC2230MBR1 MW4IC2230GMBR1. Freescale Semiconductor. Technical Data. Document Number: MW4IC2230 Rev.

ARCHIVE INFORMATION MW4IC2230MBR1 MW4IC2230GMBR1. Freescale Semiconductor. Technical Data. Document Number: MW4IC2230 Rev. Technical Data Replaced by MW4IC2230NBR1(GNBR1). There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate transition to lead- free terminations.

More information

RF LDMOS Wideband 2-Stage Power Amplifiers

RF LDMOS Wideband 2-Stage Power Amplifiers Technical Data RF LDMOS Wideband 2-Stage Power Amplifiers Designed for broadband commercial and industrial applications with frequencies from 132 MHz to 960 MHz. The high gain and broadband performance

More information

RF LDMOS Wideband Integrated Power Amplifiers

RF LDMOS Wideband Integrated Power Amplifiers Technical Data RF LDMOS Wideband Integrated Power Amplifiers The MW4IC2230N wideband integrated circuit is designed for W-CDMA base station applications. It uses Freescale s newest High Voltage (26 to

More information

ELECTRICAL CHARACTERISTICS (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS Collector Emitter Breakdown

ELECTRICAL CHARACTERISTICS (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS Collector Emitter Breakdown SEMICONDUCTOR TECHNICAL DATA Order this document by MRF20060R/D The RF Sub Micron Bipolar Line The MRF20060R and MRF20060RS are designed for class AB broadband commercial and industrial applications at

More information

LAST ORDER 19SEP02 LAST SHIP 19MAR03 DEVICE ON LIFETIME BUY. Freescale Semiconductor, I. DUAL BAND/DUAL MODE GaAs INTEGRATED POWER AMPLIFIER

LAST ORDER 19SEP02 LAST SHIP 19MAR03 DEVICE ON LIFETIME BUY. Freescale Semiconductor, I. DUAL BAND/DUAL MODE GaAs INTEGRATED POWER AMPLIFIER nc. Order this document by MRFIC856/D The MRFIC856 is designed for dual band subscriber equipment applications at in the cellular (800 MHz) and PCS (900 MHz) bands. The device incorporates two phemt GaAs

More information

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9838. Freescale Semiconductor. Technical Data MHL9838. Rev.

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9838. Freescale Semiconductor. Technical Data MHL9838. Rev. Technical Data Rev. 4, 1/2005 Replaced by N. There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate transition to lead-free terminations. Cellular

More information

ARCHIVE INFORMATION. PCS Band RF Linear LDMOS Amplifier MHL Freescale Semiconductor. Technical Data MHL Rev. 4, 1/2005

ARCHIVE INFORMATION. PCS Band RF Linear LDMOS Amplifier MHL Freescale Semiconductor. Technical Data MHL Rev. 4, 1/2005 Technical Data Rev. 4, 1/25 Replaced by N. There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate transition to lead-free terminations. PCS Band

More information

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9318. Freescale Semiconductor. Technical Data MHL9318. Rev.

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9318. Freescale Semiconductor. Technical Data MHL9318. Rev. Technical Data Rev. 3, 1/2005 Replaced by N. There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate transition to lead-free terminations. Cellular

More information

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Technical Data Reference Design Library Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Device Characteristics (From Device Data Sheet) Designed for broadband commercial and industrial

More information

RF LDMOS Wideband Integrated Power Amplifiers

RF LDMOS Wideband Integrated Power Amplifiers Technical Data RF LDMOS Wideband Integrated Power Amplifiers The MW4IC00 wideband integrated circuit is designed for use as a distortion signature device in analog predistortion systems. It uses Freescale

More information

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9236MN. Freescale Semiconductor. Technical Data

ARCHIVE INFORMATION. Cellular Band RF Linear LDMOS Amplifier MHL9236MN. Freescale Semiconductor. Technical Data Technical Data Cellular Band RF Linear LDMOS Amplifier Designed for ultra- linear amplifier applications in ohm systems operating in the cellular frequency band. A silicon FET Class A design provides outstanding

More information

ELECTRICAL CHARACTERISTICS continued (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS Emitter Base Break

ELECTRICAL CHARACTERISTICS continued (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS Emitter Base Break SEMICONDUCTOR TECHNICAL DATA Order this document by /D The RF Sub Micron Bipolar Line Designed for broadband commercial and industrial applications at frequencies from 1800 to 2000 MHz. The high gain and

More information

Heterostructure Field Effect Transistor (GaAs HFET) Broadband High Linearity Amplifier

Heterostructure Field Effect Transistor (GaAs HFET) Broadband High Linearity Amplifier Technical Data Heterostructure Field Effect Transistor (GaAs HFET) Broadband High Linearity Amplifier The is a General Purpose Amplifier that is internally input and output prematched. It is designed for

More information

Characteristic Symbol Value Unit Thermal Resistance, Junction-to-Case R θjc 6 C/W

Characteristic Symbol Value Unit Thermal Resistance, Junction-to-Case R θjc 6 C/W Technical Data Silicon Lateral FET, N-Channel Enhancement-Mode MOSFET Designed for use in medium voltage, moderate power amplifiers such as portable analog and digital cellular radios and PC RF modems.

More information

P D Storage Temperature Range T stg - 65 to +175 C Operating Junction Temperature T J 200 C

P D Storage Temperature Range T stg - 65 to +175 C Operating Junction Temperature T J 200 C Technical Data Document Number: MRF6S186 Rev. 2, 5/26 Replaced by MRF6S186NR1/NBR1. There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate transition

More information

Rating Symbol Value Unit Drain-Source Voltage V DSS 40 Vdc Gate-Source Voltage V GS ± 20 Vdc Total Device T C = 25 C Derate above 25 C

Rating Symbol Value Unit Drain-Source Voltage V DSS 40 Vdc Gate-Source Voltage V GS ± 20 Vdc Total Device T C = 25 C Derate above 25 C MOTOROLA SEMICONDUCTOR TECHNICAL DATA Order this document by MRF157T1/D The RF MOSFET Line RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Designed for broadband commercial

More information

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier Technical Data Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier The is a General Purpose Amplifier that is internally input and output matched. It is designed for a broad

More information

Rating Symbol Value Unit Drain Source Voltage V DSS 65 Vdc Gate Source Voltage V GS ±20 Vdc Total Device T C = 25 C Derate above 25 C

Rating Symbol Value Unit Drain Source Voltage V DSS 65 Vdc Gate Source Voltage V GS ±20 Vdc Total Device T C = 25 C Derate above 25 C SEMICONDUCTOR TECHNICAL DATA Order this document by MRF284/D The RF Sub Micron MOSFET Line N Channel Enhancement Mode Lateral MOSFETs Designed for PCN and PCS base station applications at frequencies from

More information

Watts W/ C Storage Temperature Range Tstg 65 to +150 C Operating Junction Temperature TJ 200 C

Watts W/ C Storage Temperature Range Tstg 65 to +150 C Operating Junction Temperature TJ 200 C SEMICONDUCTOR TECHNICAL DATA Order this document by MRF184/D The RF MOSFET Line N Channel Enhancement Mode Lateral MOSFETs Designed for broadband commercial and industrial applications at frequencies to

More information

LIFETIME BUY LAST ORDER 3 OCT 08 LAST SHIP 14 MAY 09. RF Power Field-Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET MRF374A

LIFETIME BUY LAST ORDER 3 OCT 08 LAST SHIP 14 MAY 09. RF Power Field-Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET MRF374A Technical Data Document Number: Rev. 5, 5/26 LIFETIME BUY RF Power Field-Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed for broadband commercial and industrial applications with frequencies

More information

Heterojunction Bipolar Transistor Technology (InGaP HBT) Broadband High Linearity Amplifier

Heterojunction Bipolar Transistor Technology (InGaP HBT) Broadband High Linearity Amplifier Freescale Semiconductor Technical Data Heterojunction Bipolar Transistor Technology (InGaP HBT) Broadband High Linearity Amplifier The is a general purpose amplifier that is internally input matched and

More information

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed primarily for large- signal output applications at 2450 MHz. Device is suitable for use in industrial,

More information

PD Storage Temperature Range Tstg 65 to +200 C Operating Junction Temperature TJ 200 C

PD Storage Temperature Range Tstg 65 to +200 C Operating Junction Temperature TJ 200 C SEMICONDUCTOR TECHNICAL DATA Order this document by MRF187/D Product Is Not Recommended for New Design. The next generation of higher performance products are in development. Visit our online Selector

More information

RF LDMOS Wideband Integrated Power Amplifiers

RF LDMOS Wideband Integrated Power Amplifiers Technical Data RF LDMOS Wideband Integrated Power Amplifiers The MWE6IC9N wideband integrated circuit is designed with on-chip matching that makes it usable from 869 to 96 MHz. This multi-stage structure

More information

Freescale Semiconductor, I

Freescale Semiconductor, I nc. SEMICONDUCTOR TECHNICAL DATA Order this document by MRF282/D The RF Sub Micron MOSFET Line N Channel Enhancement Mode Lateral MOSFETs Designed for Class A and Class AB PCN and PCS base station applications

More information

MRFIC2006. The MRFIC Line SEMICONDUCTOR TECHNICAL DATA

MRFIC2006. The MRFIC Line SEMICONDUCTOR TECHNICAL DATA SEMICONDUCTOR TECHNICAL DATA Order this document by /D The MRFIC Line The is an Integrated PA designed for linear operation in the MHz to. GHz frequency range. The design utilizes Motorola s advanced MOSAIC

More information

RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET

RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET Designed for CDMA base station applications with frequencies from 2600 to 2700 MHz Suitable for WiMAX, WiBro

More information

ARCHIVE INFORMATION. RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET MRF21120R6. Freescale Semiconductor.

ARCHIVE INFORMATION. RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET MRF21120R6. Freescale Semiconductor. Technical Data RF Power Field Effect Transistor N- Channel Enhancement- Mode Lateral MOSFET Designed for W- CDMA base station applications with frequencies from 2110 to 2170 MHz. Suitable for FM, TDMA,

More information

Freescale Semiconductor, I

Freescale Semiconductor, I 查询 MRF1550FT1 供应商 nc. SEMICONDUCTOR TECHNICAL DATA Order this document by MRF1550T1/D The RF MOSFET Line N Channel Enhancement Mode Lateral MOSFETs Designed for broadband commercial and industrial applications

More information

PD Operating Junction and Storage Temperature Range TJ, Tstg 65 to +150 C

PD Operating Junction and Storage Temperature Range TJ, Tstg 65 to +150 C SEMICONDUCTOR TECHNICAL DATA Order this document by MRF4427/D The RF Line Designed for amplifier, frequency multiplier, or oscillator applications in industrial equipment constructed with surface mount

More information

ARCHIVE INFORMATION LOW POWER NARROWBAND FM IF

ARCHIVE INFORMATION LOW POWER NARROWBAND FM IF Order this document by MC6C/D The MC6C includes an Oscillator, Mixer, Limiting Amplifier, Quadrature Discriminator, Active Filter, Squelch, Scan Control and Mute Switch. This device is designed for use

More information

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET Freescale Semiconductor Technical Data RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET Designed for Class A or Class AB power amplifier applications with frequencies up to 2000 MHz.

More information

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed for Class A or Class AB base station applications with frequencies up to 2000 MHz. Suitable for analog

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs RF Power transistors designed for applications operating at 10 MHz. These devices are suitable for use in pulsed

More information

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Designed primarily for CW large-signal output and driver applications at 2450 MHz. Devices are suitable for use

More information

Freescale Semiconductor, I

Freescale Semiconductor, I nc. SEMICONDUCTOR APPLICATION NOTE Order this document by AN1670/D Prepared by: Jean Jacques Bouny Principal Staff Engineer Motorola Semiconductors S.A. Toulouse, France INTRODUCTION This application note

More information

ELECTRICAL CHARACTERISTICS continued (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit ON CHARACTERISTICS DC Current Gain (I

ELECTRICAL CHARACTERISTICS continued (T C = 25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit ON CHARACTERISTICS DC Current Gain (I SEMICONDUCTOR TECHNICAL DATA Order this document by /D The RF Line The is designed for output stages in band IV and V TV transmitter amplifiers. It incorporates high value emitter ballast resistors, gold

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs RF Power transistors designed for CW and pulsed applications operating at 1300 MHz. These devices are suitable

More information

P D Storage Temperature Range T stg 65 to +150 C. Characteristic Symbol Max Unit Thermal Resistance, Junction to Case R θjc 1.

P D Storage Temperature Range T stg 65 to +150 C. Characteristic Symbol Max Unit Thermal Resistance, Junction to Case R θjc 1. SEMICONDUCTOR TECHNICAL DATA Order this document by /D The RF Line Designed for 24 Volt UHF large signal, common emitter, class AB linear amplifier applications in industrial and commercial FM/AM equipment

More information

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed for broadband commercial and industrial applications with frequencies from 470 to 860 MHz. The high gain

More information

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET Freescale Semiconductor Technical Data RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET RF power transistor suitable for industrial heating applications operating at 2450 MHz. Device

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Freescale Semiconductor Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed primarily for large--signal output applications at 2450 MHz. Devices are suitable

More information

Characteristic Symbol Value (1,2) Unit Thermal Resistance, Junction to Case Case Temperature 80 C, 20 W CW

Characteristic Symbol Value (1,2) Unit Thermal Resistance, Junction to Case Case Temperature 80 C, 20 W CW Technical Data Document Number: MRF5S9100 Rev. 4, 5/2006 Replaced by MRF5S9100NR1/NBR1. There are no form, fit or function changes with this part replacement. N suffix added to part number to indicate

More information

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Designed for broadband commercial and industrial applications with frequencies up to 1000 MHz The high gain and

More information

RF LDMOS Wideband Integrated Power Amplifier

RF LDMOS Wideband Integrated Power Amplifier Freescale Semiconductor Technical Data RF LDMOS Wideband Integrated Power Amplifier The MMRF2004NB wideband integrated circuit is designed with on--chip matching that makes it usable from 2300 to 2700

More information

RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs

RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs Designed primarily for CW large-signal output and driver applications with frequencies up to 600 MHz. Devices

More information

RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs

RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N- Channel Enhancement- Mode Lateral MOSFETs Designed for GSM and GSM EDGE base station applications with frequencies from 18 to 2 MHz. Suitable for TDMA,

More information

RF LDMOS Wideband Integrated Power Amplifier

RF LDMOS Wideband Integrated Power Amplifier Freescale Semiconductor Technical Data RF LDMOS Wideband Integrated Power Amplifier The MW7IC22N wideband integrated circuit is designed with on--chip matching that makes it usable from 185 to 217 MHz.

More information

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed for broadband commercial and industrial applications with frequencies up to 1000 MHz The high gain and

More information

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs Freescale Semiconductor Technical Data RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs RF power transistors suitable for both narrowband and broadband CW or pulse

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for W--CDMA and LTE base station applications with frequencies from 211 to 217 MHz. Can be used in

More information

Characteristic Symbol Min Typ Max Unit Instantaneous Bandwidth BW MHz Input Return Loss IRL 15 db

Characteristic Symbol Min Typ Max Unit Instantaneous Bandwidth BW MHz Input Return Loss IRL 15 db SEMICONDUCTOR TECHNICAL DATA Order this document by /D The RF Line The is a solid state class AB amplifier and is specifically designed for TV transposers and transmitters. This amplifier incorporates

More information

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Designed for W-CDMA and LTE base station applications with frequencies from 211 to 217 MHz. Can be used in Class

More information

Figure 1. MRF6S27015NR1(GNR1) Test Circuit Schematic

Figure 1. MRF6S27015NR1(GNR1) Test Circuit Schematic Technical Data RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Designed for CDMA base station applications with frequencies from 2000 to 2700 MHz. Suitable for WiMAX, WiBro,

More information

1 Block HV2 LDMOS Device Number of fingers: 56, Periphery: 5.04 mm Frequency: 1 GHz, V DS. =26 v & I DS

1 Block HV2 LDMOS Device Number of fingers: 56, Periphery: 5.04 mm Frequency: 1 GHz, V DS. =26 v & I DS Number of fingers: 56, Periphery: 5.4 mm =2. ma/mm 5 ohm Termination Output Power at Fundamental vs. 4 11 Transducer Gain vs. Output Power at Fundamental 3 1-1 Transducer Gain 1 9 7 6 - -3 - -1 1 3 4 5-3

More information

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs Freescale Semiconductor Technical Data Document Number: AFT2S15N Rev. 1, 11/213 RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs These 1.5 W RF power LDMOS transistors are designed

More information

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier Freescale Semiconductor Technical Data Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier The is a general purpose amplifier that is internally input and output matched. It

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs RF Power transistors designed for applications operating at frequencies between 1.8 and 600 MHz. These devices

More information

LOW POWER FM IF SEMICONDUCTOR TECHNICAL DATA PIN CONNECTIONS. Figure 1. Representative Block Diagram ORDERING INFORMATION

LOW POWER FM IF SEMICONDUCTOR TECHNICAL DATA PIN CONNECTIONS. Figure 1. Representative Block Diagram ORDERING INFORMATION Order this document by MC7/D... includes Oscillator, Mixer, Limiting Amplifier, Quadrature Discriminator, Active, Squelch, Scan Control, and Mute Switch. The MC7 is designed for use in FM dual conversion

More information

ARCHIVE INFORMATION. RF Power Field-Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET MRF377 MRF377R3 MRF377R5. Freescale Semiconductor

ARCHIVE INFORMATION. RF Power Field-Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET MRF377 MRF377R3 MRF377R5. Freescale Semiconductor Technical Data Document Number: MRF377 Rev. 1, 12/2004 RF Power Field-Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed for broadband commercial and industrial applications with frequencies

More information

VHF 2.0 GHz LOW NOISE AMPLIFIER WITH PROGRAMMABLE BIAS

VHF 2.0 GHz LOW NOISE AMPLIFIER WITH PROGRAMMABLE BIAS Order this document by MC13144/D The MC13144 is designed in the Motorola High Frequency Bipolar MOSIAC V wafer process to provide excellent performance in analog and digital communication systems. It includes

More information

V GS(th) Vdc. V GS(Q) 2.6 Vdc. V GG(Q) Vdc. V DS(on) Vdc

V GS(th) Vdc. V GS(Q) 2.6 Vdc. V GG(Q) Vdc. V DS(on) Vdc Freescale Semiconductor Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for CDMA and multicarrier base station applications with frequencies from

More information

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data Document Number: A2T27S2N Rev. 1, 1/218 RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs These 2.5 W RF power LDMOS transistors are designed for cellular base station

More information

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET Designed primarily for pulsed wideband applications with frequencies up to 150 MHz. Device is unmatched and is

More information

PD Storage Temperature Range Tstg 65 to +150 C. Characteristic Symbol Max Unit Thermal Resistance, Junction to Case RθJC 4.

PD Storage Temperature Range Tstg 65 to +150 C. Characteristic Symbol Max Unit Thermal Resistance, Junction to Case RθJC 4. SEMICONDUCTOR TECHNICAL DATA Order this document by /D The RF Line... designed for 12.5 Volt UHF large signal amplifier applications in industrial and commercial FM equipment operating to 512 MHz. Specified

More information

Freescale Semiconductor, I

Freescale Semiconductor, I High Temperature Accuracy Integrated Silicon Pressure Sensor for Measuring Absolute Pressure, On- Chip Signal Conditioned, Temperature Compensated and Calibrated Motorola s MPXA611A/MPXH611A series sensor

More information

Figure 4. MMG15241H Driving MD7IC2250N Board Layout. Table 1. MMG15241H Driving MD7IC2250N Test Circuit Component Designations and Values

Figure 4. MMG15241H Driving MD7IC2250N Board Layout. Table 1. MMG15241H Driving MD7IC2250N Test Circuit Component Designations and Values Freescale Semiconductor Technical Data RF Power Reference Design RF Power Amplifier Lineup GaAs E--pHEMT Driving RF LDMOS Amplifier Lineup Characteristics This reference design provides a prepared high-gain

More information

Freescale Semiconductor, I

Freescale Semiconductor, I nc. SEMICONDUCTOR APPLICATION NOTE Order this document by AN955/D Prepared by: Ken Dufour Motorola Power Products Division INTRODUCTION This application note describes a two stage, 30 watt VHF amplifier

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for W--CDMA base station applications with frequencies from 2110 to 2170 MHz. Suitable for TDMA, CDMA

More information

LOW POWER NARROWBAND FM IF

LOW POWER NARROWBAND FM IF Order this document by MC336C/D The MC336C includes an Oscillator, Mixer, Limiting Amplifier, Quadrature Discriminator, Active Filter, Squelch, Scan Control and Mute Switch. This device is designed for

More information

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET Technical Data RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET RF Power transistor designed for applications operating at frequencies between 960 and 400 MHz, % to 20% duty

More information

Rating Symbol Value Unit Drain Source Voltage VDSS 65 Vdc Gate Source Voltage VGS ±20 Vdc Total Device TC = 25 C Derate above 25 C

Rating Symbol Value Unit Drain Source Voltage VDSS 65 Vdc Gate Source Voltage VGS ±20 Vdc Total Device TC = 25 C Derate above 25 C SEMICONDUCTOR TECHNICAL DATA Order this document from WISD RF Marketing The RF Sub Micron MOSFET Line N Channel Enhancement Mode Lateral MOSFETs Designed for PCN and PCS base station applications at frequencies

More information

Distributed by: www.jameco.com 1--31-4242 The content and copyrights of the attached material are the property of its owner. Order this document by M3/D The M3 is an integrated circuit featuring wide range

More information

EB W (PEP) AMATEUR RADIO LINEAR AMPLIFIER

EB W (PEP) AMATEUR RADIO LINEAR AMPLIFIER MOTOROLA Order this document by EB63/D SEMICONDUCTOR ENGINEERING BULLETIN EB63 140 W (PEP) AMATEUR RADIO LINEAR AMPLIFIER 2 30 MHz The popularity of 2 30 MHz, SSB, Solid State, linear amplifiers is increasing

More information

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET Freescale Semiconductor Technical Data RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET Designed primarily for CW large--signal output and driver applications with frequencies up to

More information

RF LDMOS Wideband Integrated Power Amplifiers

RF LDMOS Wideband Integrated Power Amplifiers Technical Data Document Number: A3I35D012WN Rev. 0, 11/2018 RF LDMOS Wideband Integrated Power Amplifiers The A3I35D012WN wideband integrated circuit is designed for cellular base station applications

More information

RF Power GaN Transistor

RF Power GaN Transistor Freescale Semiconductor Technical Data Document Number: A2G35S2--1S Rev., 5/216 RF Power GaN Transistor This 4 W RF power GaN transistor is designed for cellular base station applications requiring very

More information

RF LDMOS Wideband Integrated Power Amplifiers

RF LDMOS Wideband Integrated Power Amplifiers Technical Data Document Number: A2I09VD050N Rev. 0, 09/2018 RF LDMOS Wideband Integrated Power Amplifiers The A2I09VD050N wideband integrated circuit is designed with on--chip matching that makes it usable

More information

P D Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C

P D Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C SEMICONDUCTOR TECHNICAL DATA Order this document by /D The RF MOSFET Line N Channel Enhancement Mode Designed primarily for linear large signal output stages up to150 MHz frequency range. Specified 50

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs RF power transistors designed for CW and pulse applications operating at 1300 MHz. These devices are suitable

More information

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET Freescale Semiconductor Technical Data Document Number: A2V09H300--04N Rev. 0, 2/2016 RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 79 W asymmetrical Doherty RF power LDMOS

More information

MJD44H11 (NPN) MJD45H11 (PNP) Complementary Power Transistors. DPAK For Surface Mount Applications

MJD44H11 (NPN) MJD45H11 (PNP) Complementary Power Transistors. DPAK For Surface Mount Applications MJDH (NPN) MJD5H (PNP) Complementary Power Transistors For Surface Mount Applications Designed for general purpose power and switching such as output or driver stages in applications such as switching

More information

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Freescale Semiconductor Technical Data RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs Designed for W--CDMA and LTE base station applications with frequencies from 75 to

More information

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier Freescale Semiconductor Technical Data Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier The is a general purpose amplifier that is internally input and output matched. It

More information

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET Freescale Semiconductor Technical Data RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 250 W CW RF power transistor is designed for consumer and commercial cooking applications

More information

PD Characteristic Symbol Max Unit Thermal Resistance, Junction to Case RθJC 25 C/W. Characteristic Symbol Min Typ Max Unit.

PD Characteristic Symbol Max Unit Thermal Resistance, Junction to Case RθJC 25 C/W. Characteristic Symbol Min Typ Max Unit. SEMICONDUCTOR TECHNICAL DATA Order this document by /D The RF Line Designed primarily for wideband large signal predriver stages in the MHz frequency range. Specified @.5 V, 7 MHz Characteristics Output

More information

Freescale Semiconductor, I

Freescale Semiconductor, I nc. SEMICONDUCTOR TECHNICAL DATA Order this document by MPXAZ4115A/D Motorola s MPXAZ4115A series sensor integrates on chip, bipolar op amp circuitry and thin film resistor networks to provide a high output

More information

Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family

Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family Application Note Rev., 1/3 NOTE: The theory in this application note is still applicable, but some of the products referenced may be discontinued. Quiescent Current Thermal Tracking Circuit in the RF Integrated

More information