2014 Power Amplifier Symposium BROADBAND PA TECHNIQUES FOR EFFICIENCY ENHANCEMENT

Size: px
Start display at page:

Download "2014 Power Amplifier Symposium BROADBAND PA TECHNIQUES FOR EFFICIENCY ENHANCEMENT"

Transcription

1 14 Power Amlifier Symosium BROADBAND PA TECHNIQUES FOR EFFICIENCY ENHANCEMENT Dr. Andrei Grebennikov 1

2 BROADBAND POWER AMPIFIER TECHNIQUES FOR EFFICIENCY ENHANCEMENT 1.Reactance comensation technique with series and arallel resonant circuits. Broadband arallel-circuit Class-E ower amlifier 3. Fully integrated broadband CMOS Class-E ower amlifier 4. Broadband Class-E ower amlifier with series inductance 5. Broadband arallel Doherty amlifier 6. Inverted Doherty amlifier architecture 7. Broadband inverted GaN HEMT Doherty amlifier

3 1. Reactance comensation technique Reactance comensation load networks with series and arallel resonant circuits ImZ Inut load-network reactance net s 1 C 1 / scs 1/ s (1/ R) 1 C C C To maximize frequency bandwidth: d ImZnet d C 1 R s 1 - reactance rovided by series resonant circuit - reactance rovided by arallel resonant circuit 3 summation of both reactances with oosite sloes Equal loaded quality factors Q C R / R s 3

4 4 Inut load-network admittance 1 Im net d Y d Reactance comensation load networks with arallel and series resonant circuits To maximize frequency bandwidth: 1. Reactance comensation technique s net 1 1 j R j C j Y s s / 1 / 1 C C 1 s R C 1 - suscetance rovided by arallel resonant circuit - suscetance rovided by series resonant circuit 3 summation of both suscetances with oosite sloes Equal loaded quality factors R C R Q / s

5 . Broadband arallel-circuit Class E ower amlifier C C R V cc v t t C R.73 R.685 R P V cc out dv t dt t Otimum circuit arameters: - arallel inductance - shunt caacitance - load resistance: highest value in Class E Inductive imedance at fundamental: R tan 1 RC R 1.6 C 1/ Otimum arameters for series resonant circuit in broadband Class-E mode: 5

6 . Broadband arallel-circuit Class E ower amlifier V Transmission-line arallelcircuit Class-E GaAs HBT ower amlifier for handset alication: 1.75 GHz v c /V cc 3 Collector voltage on off on 3, 8 5, 16 1 F 1 Z net C out 5 F 4 F 5. i c, A t, nsec Collector current Z net ( ) arameters of arallel transmission line is chosen to realize otimum inductive imedance at fundamental 3 1 Z net ( ) Z net (3 ) outut matching circuit consisting of series microstri line with two shunt caacitors should rovide caacitive reactances at second and third harmonics t, nsec Current flowing through collector caacitor 6

7 . Broadband arallel-circuit Class E ower amlifier GHz handset Class-E InGaP/GaAs HBT ower amlifier: two-stage MMIC designed in V 3.5 V V b1 V b Short microstri line P in Bias circuit Bias circuit P out Shunt inductance: bondwire 7

8 . Broadband arallel-circuit Class E ower amlifier GHz handset Class-E InGaP/GaAs HBT ower amlifier: two-stage MMIC designed in 1 Bias circuit Bias circuit P in P out 45 4 Efficiency [%] DCS 18 efficiency PCS 19 efficiency DCS 18 gain PCS 19 gain Gain [db] First device: 54 um Pout [dbm] Second device: 36 um DCS18/PCS19: Pout 3 dbm PAE 51 % Die size:.9 x 1. mm WCDMA at 7 dbm outut ower: ACPR -37 dbc PAE 38 % 8

9 3. Fully integrated broadband CMOS Class-E ower amlifier Enveloe 3.5 V For TE alications:.3-.7 GHz V g f V g1 3.5 V Bias circuit 3f P out High resistivity substrate for high efficiency Bias circuit V dd P in Size: 1.7 x 1.6 mm Simulations:.3 GHz.5 GHz.68 GHz 9

10 3. Fully integrated broadband CMOS Class-E ower amlifier TE test data: 16 QAM, 6.5 dbm,.5 GHz, V dd =.7 V ET disabled ET enabled 35% overall efficiency 41.5% PA efficiency ACR1: 13-dB imrovement ACR: 7-dB imrovement 1

11 4. Broadband Class-E ower amlifier with series inductance Reactance comensation load network with series inductance useful for ackaged devices with series lead inductance shunt inductance and caacitance can be relaced by shortcircuit and oen-circuit stubs at microwaves 11

12 Power gain, db PAE, % 4. Broadband Class-E ower amlifier with series inductance Cree GaN HEMT CGH715P Drain efficiency, % PAE E9 1.7E9 1.9E9.1E9.3E9.5E9.7E9.9E9 Frequency, GHz Outut ower, dbm P out G T E9 1.7E9 1.9E9.1E9.3E9.5E9.7E9.9E9 Frequency, GHz Bandwidth: GHz Drain efficiency = 73% Power gain = 11.8 db Outut ower = 4.8 dbm 1

13 5. Broadband arallel Doherty amlifier Classical Doherty architecture Parallel Doherty architecture P in Carrier PA /4 5 /4 Peaking PA /4 P out 5 P in /4 Peaking PA Carrier PA 5 / /4 7.7 /4 1 1 P out 5 Imedance transformation high-ower region (carrier and eaking PAs are ON): low-ower region (carrier PA is ON and eaking PA is OFF): Imedance transformation high-ower region (carrier and eaking PAs are ON): low-ower region (carrier PA is ON and eaking PA is OFF): 1 5 Imedance transformation ratio = 4 Imedance transformation ratio = oaded quality factor Q oaded quality factor Q

14 5. Broadband arallel Doherty amlifier ow-ower region (eaking amlifier is OFF) Parallel Doherty PA Classical. Magnitude S1 (db) f/f Parallel Classical Doherty PA Half-wave (/4 + /4) line translates oen circuit at eaking amlifier outut to carrier ath 14

15 Drain efficiency, % Drain efficiency, % 5. Broadband arallel Doherty amlifier Parallel Doherty architecture based on broadband Class-E amlifiers with 15-W Cree CGH715P devices: simulation Carrier /4 PA 7.7 /4 15. Power gain Efficiency 8 P in Peaking PA 5 /4 7.7 /4 P out 5 Power gain, db GHz 6 4 Small-signal S Pout, dbm 15 Power gain Efficiency db(s(,1)) Power gain, db GHz Frequency, GHz.-.8 GHz Pout, dbm 15

16 5. Broadband arallel Doherty amlifier Parallel Doherty architecture based on broadband Class-E amlifiers with 15-W Cree CGH715P devices: test board Broadband (-4 GHz) Anaren 3-dB couler dbm SoftPlot Measurement Presentation Uncorrected 38.7dBm Corrected 38.6dBm Start:.75 GHz Sto:.5 GHz Res BW: 3 khz Vid BW: 3 khz Swee:. s 17/1/1 15:11:34 Atten: db FSEA 3 Uncorrected 38.7dBm Measurement Parameter Channel bandwidth Channel sacing On- channel ower Value 1. MHz.14 GHz 6.5 MHz 1-MHz TE dbm signal Adjacent channel ower (channel -1) Adjacent channel ower (channel +1) Adjacent channel ower (channel -) Adjacent channel ower (channel +).73 dbm 3.5 dbm -6.3 dbm dbm Single-carrier 5-MHz WCDMA signal, PAR = 6.5 db: V dd = 8 V P out = 39 dbm Gain = 1 db Drain efficiency = 45% (.14 GHz) 4% (.655 GHz) ACR = -3 dbc -9 dbc 16

17 6. Inverted Doherty amlifier architecture Carrier amlifier Offset lines Inut matching circuit Outut matching circuit Z T, /4 P out Z, /4 P in Inut matching circuit Outut matching circuit Peaking amlifier Short at low ower quarterwave transmission line is connected to outut of eaking amlifier if it is easier to rovide short-circuit condition instead of oen circuit for eaking amlifier in low-ower region offset lines are necessary to comensate for eaking device arasitics and rovide oen-circuit condition seen by carrier amlifying ath in low-ower region required 9 hase shift is rovided in inut circuit of carrier amlifier 17

18 6. Inverted Doherty amlifier architecture carrier device should see high imedance in low-ower region roviding by outut matching circuit -1 X/ZO=. R/ZO=. X/ZO= Z match_off Z ot Гr A Гx CZ match_on Z out_off offset line is necessary to comensate for eaking device arasitics and rovide short-circuit condition at its outut in low-ower region for three-stage inverted Doherty amlifier, drain efficiency of 4% with ower gain of 9 db achieved at 4 dbm (8.5 db backoff) at.14 GHz M.-W. ee, S.-H. Kam, Y.-S. ee, and Y.-H. Jeong, Design of Highly Efficient Three-Stage Inverted Doherty Power Amlifier, IEEE Microwave Wireless Comonents ett., vol. 1, , July 11 18

19 7. Broadband inverted GaN HEMT Doherty amlifier ow-ower region (eaking amlifier is OFF) Inverted Doherty PA Classical. Inverted Magnitude S1 (db) f/f Two-section outut transformer (5 5 ) Quarterwave line translates short circuit at eaking amlifier outut to oen circuit seen by carrier ath and extends bandwidth 19

20 7. Broadband inverted GaN HEMT Doherty amlifier Circuit schematic using two broadband Class-E ower amlifiers for carrier and eaking amlifying aths V gc W = 8.5 mil = 45 mil Substrate: -mil RO436 Carrier Z carrier V dd W = 8.5 mil = 5 mil Two-section outut transformer F 5 W = 1 mil = 4 mil W = 3 mil = mil W = 45 mil = 13 mil 5 F 5 W = 1 mil = 13 mil CGH715F W = 8.5 mil = 3 mil W = 85 mil = 7 mil W = 4 mil = 67 mil P out P in Z eaking W = 8.5 mil = 15 mil F 5 W = 1 mil = 4 mil W = 1 mil = 13 mil W = 3 mil = mil CGH715F W = 8.5 mil = 3 mil W = 45 mil = 13 mil 5 F Z match W = 45 mil = 55 mil Oen circuit in low-ower region W = 8.5 mil = 45 mil Peaking W = 8.5 mil = 5 mil V g V dd

21 7. Broadband inverted GaN HEMT Doherty amlifier Inverted Doherty architecture based on broadband Class-E amlifiers with 15-W Cree CGH715P devices: simulation Inductive imedance at fundamental seen by carrier device in lowower region S(1,1) Z match ow reactance seen at eaking amlifier outut in low-ower region freq (1.8GHz to.7ghz) Z carrier S(1,1) freq (1.8GHz to.7ghz) S(1,1) Z eaking High reactance resented by eaking amlifying ath in low-ower region freq (1.8GHz to.7ghz) 1

22 Drain efficiency (%) 7. Broadband inverted GaN HEMT Doherty amlifier Inverted Doherty architecture based on broadband Class-E amlifiers with 15-W Cree CGH715P devices: simulation Small-signal S db(s(,1)) GHz Frequency, GHz 15. Power gain Efficiency 8 Power gain (db) MHz Outut ower (dbm)

23 7. Broadband inverted GaN HEMT Doherty amlifier Inverted Doherty architecture based on broadband Class-E amlifiers with 15-W Cree CGH715P devices: test board Broadband (69-7 MHz) Anaren 3-dB couler Single-carrier 5-MHz WCDMA signal PAR = 6.5 db: V dd = 8 V P out = 38 dbm Gain = 11 db Drain efficiency = 5% (1.85 GHz) 5% (.15 GHz) 4% (.65 GHz) ACR = -3 dbc -34 dbc -37 dbc 3

In modern wireless. A High-Efficiency Transmission-Line GaN HEMT Class E Power Amplifier CLASS E AMPLIFIER. design of a Class E wireless

In modern wireless. A High-Efficiency Transmission-Line GaN HEMT Class E Power Amplifier CLASS E AMPLIFIER. design of a Class E wireless CASS E AMPIFIER From December 009 High Frequency Electronics Copyright 009 Summit Technical Media, C A High-Efficiency Transmission-ine GaN HEMT Class E Power Amplifier By Andrei Grebennikov Bell abs Ireland

More information

Chapter 7: Passive Filters

Chapter 7: Passive Filters EETOMAGNETI OMPATIBIITY HANDBOOK 1 hater 7: Passive Filters 7.1 eeat the analytical analysis given in this chater for the low-ass filter for an filter in shunt with the load. The and for this filter are

More information

HIGH-EFFICIENCY RF AND MICROWAVE POWER AMPLIFIERS: HISTORICAL ASPECT AND MODERN TRENDS. Dr. Andrei Grebennikov

HIGH-EFFICIENCY RF AND MICROWAVE POWER AMPLIFIERS: HISTORICAL ASPECT AND MODERN TRENDS. Dr. Andrei Grebennikov 9 adio and Wireless Week Power Amplifier Symposium HIGH-EFFIIENY F AND MIOWAVE POWE AMPIFIES: HISTOIA ASPET AND MODEN TENDS Dr. Andrei Grebennikov grandrei@ieee.org HIGH-EFFIIENY F AND MIOWAVE POWE AMPIFIES:

More information

The Doherty Power Amplifier 1936 to the Present Day

The Doherty Power Amplifier 1936 to the Present Day TH1-E1 The Doherty Power Amplifier 1936 to the Present Day Ray Pengelly, Prism Consulting NC, LLC Hillsborough, NC 27278 USA 1 Summary Early History Broadcast Transmitters Handset Transmitters Cellular

More information

High-efficiency of MHz Inverter Constructed from Frequency Multiplying Circuit

High-efficiency of MHz Inverter Constructed from Frequency Multiplying Circuit High-efficiency of MHz Inverter Constructed from Frequency Multilying Circuit Koji Orikawa, Jun-ichi Itoh Deartment of Electrical Engineering Nagaoka University of Technology Nagaoka, Jaan orikawa@vos.nagaokaut.ac.j

More information

Introduction to CMOS RF Integrated Circuits Design

Introduction to CMOS RF Integrated Circuits Design VII. ower Amplifiers VII-1 Outline Functionality Figures of Merit A Design Classical Design (Class A, B, C) High-Efficiency Design (Class E, F) Matching Network Linearity T/R Switches VII-2 As and TRs

More information

DESIGN OF AN S-BAND TWO-WAY INVERTED ASYM- METRICAL DOHERTY POWER AMPLIFIER FOR LONG TERM EVOLUTION APPLICATIONS

DESIGN OF AN S-BAND TWO-WAY INVERTED ASYM- METRICAL DOHERTY POWER AMPLIFIER FOR LONG TERM EVOLUTION APPLICATIONS Progress In Electromagnetics Research Letters, Vol. 39, 73 80, 2013 DESIGN OF AN S-BAND TWO-WAY INVERTED ASYM- METRICAL DOHERTY POWER AMPLIFIER FOR LONG TERM EVOLUTION APPLICATIONS Hai-Jin Zhou * and Hua

More information

University of Twente

University of Twente University of Twente Faculty of Electrical Engineering, Mathematics & Comuter Science Design of an audio ower amlifier with a notch in the outut imedance Remco Twelkemeijer MSc. Thesis May 008 Suervisors:

More information

GaN Power Amplifiers for Next- Generation Wireless Communications

GaN Power Amplifiers for Next- Generation Wireless Communications GaN Power Amplifiers for Next- Generation Wireless Communications Jennifer Kitchen Arizona State University Students: Ruhul Hasin, Mahdi Javid, Soroush Moallemi, Shishir Shukla, Rick Welker Wireless Communications

More information

Noise Reduction in Transistor Oscillators: Part 3 Noise Shifting Techniques. cross-coupled. over other topolo-

Noise Reduction in Transistor Oscillators: Part 3 Noise Shifting Techniques. cross-coupled. over other topolo- From July 2005 High Frequency Electronics Copyright 2005 Summit Technical Media Noise Reduction in Transistor Oscillators: Part 3 Noise Shifting Techniques By Andrei Grebennikov M/A-COM Eurotec Figure

More information

Lab 4: The transformer

Lab 4: The transformer ab 4: The transformer EEC 305 July 8 05 Read this lab before your lab eriod and answer the questions marked as relaboratory. You must show your re-laboratory answers to the TA rior to starting the lab.

More information

SERIES RL CIRCUITS (1)

SERIES RL CIRCUITS (1) SEIES IUIS () ircuit above is a series network connected to an ac voltage source Need to find the hasor form of the total imedance of this combination he total imedance of this series combination is he

More information

TU3B-1. An 81 GHz, 470 mw, 1.1 mm 2 InP HBT Power Amplifier with 4:1 Series Power Combining using Sub-quarter-wavelength Baluns

TU3B-1. An 81 GHz, 470 mw, 1.1 mm 2 InP HBT Power Amplifier with 4:1 Series Power Combining using Sub-quarter-wavelength Baluns TU3B-1 Student Paper Finalist An 81 GHz, 470 mw, 1.1 mm 2 InP HBT Power Amplifier with 4:1 Series Power Combining using Sub-quarter-wavelength Baluns H. Park 1, S. Daneshgar 1, J. C. Rode 1, Z. Griffith

More information

DESIGN AND SIMULATION OF A GaAs HBT POWER AMPLIFIER FOR WIDEBAND CDMA WIRELESS SYSTEM

DESIGN AND SIMULATION OF A GaAs HBT POWER AMPLIFIER FOR WIDEBAND CDMA WIRELESS SYSTEM M. S. Alam, O. Farooq, and Izharuddin and G. A. Armstrong DESIGN AND SIMULATION OF A GaAs HBT POWER AMPLIFIER FOR WIDEBAND CDMA WIRELESS SYSTEM M. S. Alam, O. Farooq, Izharuddin Department of Electronics

More information

Today s wireless system

Today s wireless system From May 2009 High Frequency Electronics Copyright 2009 Summit Technical Media, LLC High-Power, High-Efficiency GaN HEMT Power Amplifiers for 4G Applications By Simon Wood, Ray Pengelly, Don Farrell, and

More information

A 1-W GaAs Class-E Power Amplifier with an FBAR Filter Embedded in the Output Network

A 1-W GaAs Class-E Power Amplifier with an FBAR Filter Embedded in the Output Network A 1-W GaAs Class-E Power Amplifier with an FBAR Filter Embedded in the Output Network Kyle Holzer and Jeffrey S. Walling University of Utah PERFIC Lab, Salt Lake City, UT 84112, USA Abstract Integration

More information

Wideband Reconfigurable Harmonically Tuned GaN SSPA for Cognitive Radios

Wideband Reconfigurable Harmonically Tuned GaN SSPA for Cognitive Radios The University Of Cincinnati College of Engineering Wideband Reconfigurable Harmonically Tuned GaN SSPA for Cognitive Radios Seth W. Waldstein The University of Cincinnati-Main Campus Miguel A. Barbosa

More information

Design of Class F Power Amplifiers Using Cree GaN HEMTs and Microwave Office Software to Optimize Gain, Efficiency, and Stability

Design of Class F Power Amplifiers Using Cree GaN HEMTs and Microwave Office Software to Optimize Gain, Efficiency, and Stability White Paper Design of Class F Power Amplifiers Using Cree GaN HEMTs and Microwave Office Software to Optimize Gain, Efficiency, and Stability Overview This white paper explores the design of power amplifiers

More information

NI AWR Design Environment Load-Pull Simulation Supports the Design of Wideband High-Efficiency Power Amplifiers

NI AWR Design Environment Load-Pull Simulation Supports the Design of Wideband High-Efficiency Power Amplifiers Design NI AWR Design Environment Load-Pull Simulation Supports the Design of Wideband High-Efficiency Power Amplifiers The design of power amplifiers (PAs) for present and future wireless systems requires

More information

AM002535MM-BM-R AM002535MM-FM-R

AM002535MM-BM-R AM002535MM-FM-R AM002535MM-BM-R AM002535MM-FM-R December 2008 Rev. 1 DESCRIPTION AMCOM s AM002535MM-BM-R is part of the GaAs MMIC power amplifier series. It has 24 db gain, 34 dbm output power over most of the 0.03 to

More information

Transformer and LCL Filter Design for DPFCs

Transformer and LCL Filter Design for DPFCs Transformer and LCL Filter Design for DPFCs Ivo M. Martins 1, J. Fernando A. Silva, Sónia Ferreira Pinto, and Isménio E. Martins 1 1 INESC-id, Deartment of Electrical Engineering, ISE, University of Algarve,

More information

A New Topology of Load Network for Class F RF Power Amplifiers

A New Topology of Load Network for Class F RF Power Amplifiers A New Topology of Load Network for Class F RF Firas Mohammed Ali Al-Raie Electrical Engineering Department, University of Technology/Baghdad. Email: 30204@uotechnology.edu.iq Received on:12/1/2016 & Accepted

More information

Design and simulation of Parallel circuit class E Power amplifier

Design and simulation of Parallel circuit class E Power amplifier International Journal of scientific research and management (IJSRM) Volume 3 Issue 7 Pages 3270-3274 2015 \ Website: www.ijsrm.in ISSN (e): 2321-3418 Design and simulation of Parallel circuit class E Power

More information

High-efficiency class E/F 3 power amplifiers with extended maximum operating frequency

High-efficiency class E/F 3 power amplifiers with extended maximum operating frequency LETTER IEICE Electronics Express, Vol.15, No.12, 1 10 High-efficiency class E/F 3 power amplifiers with extended maximum operating frequency Chang Liu 1, Xiang-Dong Huang 2a), and Qian-Fu Cheng 1 1 School

More information

(11) Bipolar Op-Amp. Op-Amp Circuits:

(11) Bipolar Op-Amp. Op-Amp Circuits: (11) O-Am Circuits: Biolar O-Am Learning Outcome Able to: Describe and analyze the dc and ac characteristics of the classic 741 biolar o-am circuit. eference: Neamen, Chater 13 11.0) 741 O-Am 11.1) Circuit

More information

NDA-310-D 4 GENERAL PURPOSE. Gain Stage or Driver Amplifiers for MWRadio/Optical Designs

NDA-310-D 4 GENERAL PURPOSE. Gain Stage or Driver Amplifiers for MWRadio/Optical Designs 7\SLFDO$SSOLFDWLRQV Narrow and Broadband Commercial and Military Radio Designs Linear and Saturated Amplifiers 3URGXFW'HVFULSWLRQ The NDA-310-D GaInP/GaAs HBT MMIC distributed amplifier is a low-cost,

More information

POSTECH Activities on CMOS based Linear Power Amplifiers

POSTECH Activities on CMOS based Linear Power Amplifiers 1 POSTECH Activities on CMOS based Linear Power Amplifiers Jan. 16. 2006 Bumman Kim, & Jongchan Kang MMIC Laboratory Department of EE, POSTECH Presentation Outline 2 Motivation Basic Design Approach CMOS

More information

An Overview of Substrate Noise Reduction Techniques

An Overview of Substrate Noise Reduction Techniques An Overview of Substrate Noise Reduction Techniques Shahab Ardalan, and Manoj Sachdev ardalan@ieee.org, msachdev@ece.uwaterloo.ca Deartment of Electrical and Comuter Engineering University of Waterloo

More information

GaN HPA optimized for telecom - Linearity results & DPD assessment March 2017

GaN HPA optimized for telecom - Linearity results & DPD assessment March 2017 GaN HPA optimized for telecom - Linearity results & DPD assessment March 2017 christophe.auvinet@ums-gaas.com GaN technology toward 5G 1. Toward 5G with GaN 2. AB class HPA optimization 3. Doherty linearity

More information

A GHz Highly Linear Broadband Power Amplifier for LTE-A Application

A GHz Highly Linear Broadband Power Amplifier for LTE-A Application Progress In Electromagnetics Research C, Vol. 66, 47 54, 2016 A 1.8 2.8 GHz Highly Linear Broadband Power Amplifier for LTE-A Application Chun-Qing Chen, Ming-Li Hao, Zhi-Qiang Li, Ze-Bao Du, and Hao Yang

More information

Low Phase Noise C band HBT VCO. GaAs Monolithic Microwave IC

Low Phase Noise C band HBT VCO. GaAs Monolithic Microwave IC Frequency (GHz) GaAs Monolithic Microwave IC Description The is a low phase noise C band HBT voltage controlled oscillator that integrates negative resistor, varactors and buffer amplifiers. It provides

More information

High Power Two- Stage Class-AB/J Power Amplifier with High Gain and

High Power Two- Stage Class-AB/J Power Amplifier with High Gain and MPRA Munich Personal RePEc Archive High Power Two- Stage Class-AB/J Power Amplifier with High Gain and Efficiency Fatemeh Rahmani and Farhad Razaghian and Alireza Kashaninia Department of Electronics,

More information

ARFTG Workshop, Boulder, December 2014

ARFTG Workshop, Boulder, December 2014 ARFTG Workshop, Boulder, December 2014 Design and measurements of high-efficiency PAs with high PAR signals Zoya Popovic, Tibault Reveyrand, David Sardin, Mike Litchfield, Scott Schafer, Andrew Zai Department

More information

Self-Driven Phase Shifted Full Bridge Converter for Telecom Applications

Self-Driven Phase Shifted Full Bridge Converter for Telecom Applications Self-Driven Phase Shifted Full Bridge Converter for Telecom Alications SEVILAY CETIN Technology Faculty Pamukkale University 7 Kinikli Denizli TURKEY scetin@au.edu.tr Abstract: - For medium ower alications,

More information

= 25 C) of Demonstration Amplifier. Parameter 2.3 GHz 2.4 GHz 2.5 GHz 2.6 GHz 2.7 GHz Units. 43 dbm

= 25 C) of Demonstration Amplifier. Parameter 2.3 GHz 2.4 GHz 2.5 GHz 2.6 GHz 2.7 GHz Units. 43 dbm Rev 3.1 - June 2015 CGH25120F 120 W, 2300-2700 MHz, GaN HEMT for WiMAX and LTE Cree s CGH25120F is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically for high efficiency,

More information

ECEN 5014, Spring 2009 Special Topics: Active Microwave Circuits Zoya Popovic, University of Colorado, Boulder

ECEN 5014, Spring 2009 Special Topics: Active Microwave Circuits Zoya Popovic, University of Colorado, Boulder ECEN 5014, Spring 2009 Special Topics: Active Microwave Circuits Zoya opovic, University of Colorado, Boulder LECTURE 3 MICROWAVE AMLIFIERS: INTRODUCTION L3.1. TRANSISTORS AS BILATERAL MULTIORTS Transistor

More information

RF1226 BROADBAND MEDIUM POWER DIFFERENTIAL SPDT SWITCH

RF1226 BROADBAND MEDIUM POWER DIFFERENTIAL SPDT SWITCH BROADBAND MEDIUM POWER DIFFERENTIAL SPDT SWITCH Package Style: QFN, 12-pin, 2.0 mm x 2.0 mm x 0.55 mm Features Broadband Performance Low Frequency to 3.5 GHz Very Low Insertion Loss 0.25 db Typ at 0.90

More information

MMICs based on pseudomorphic

MMICs based on pseudomorphic phemt MMIC Power Amplifiers for Base Stations and Adaptive Arrays GaAs technology is used in a family of amplifiers for wireless applications requiring good gain, efficiency and linearity Raymond S. Pengelly,

More information

NPA105-D. Preliminary GHz GaN 40W Power Amplifier. Product Description: Key Features:

NPA105-D. Preliminary GHz GaN 40W Power Amplifier. Product Description: Key Features: Product Description: The Nxbeam is a Ku-band high power GaN MMIC fabricated in 0.2um GaN HEMT on SiC. This part is ideally suited for satellite communications, point-to-point radios, and radar applications.

More information

A 2 4 GHz Octave Bandwidth GaN HEMT Power Amplifier with High Efficiency

A 2 4 GHz Octave Bandwidth GaN HEMT Power Amplifier with High Efficiency Progress In Electromagnetics Research Letters, Vol. 63, 7 14, 216 A 2 4 GHz Octave Bandwidth GaN HEMT Power Amplifier with High Efficiency Hao Guo, Chun-Qing Chen, Hao-Quan Wang, and Ming-Li Hao * Abstract

More information

RECENT MOBILE handsets for code-division multiple-access

RECENT MOBILE handsets for code-division multiple-access IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 55, NO. 4, APRIL 2007 633 The Doherty Power Amplifier With On-Chip Dynamic Bias Control Circuit for Handset Application Joongjin Nam and Bumman

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v2.65 HMC455LP3 / 455LP3E Typical

More information

VCC1 GND IN GND LOP LON GND GND. Product Description. GaAs HBT GaAs MESFET InGaP HBT

VCC1 GND IN GND LOP LON GND GND. Product Description. GaAs HBT GaAs MESFET InGaP HBT Direct Quadrature Modulator 145MHz to 27MHz RFMD214 DIRECT QUADRATURE MODULATOR 145MHz TO 27MHz Package: QFN, 24-Pin, 4mm x 4mm VCC1 IN IP 24 23 22 21 2 19 Features ACPR Performance: -7dBc Typ. for 1-Carrier

More information

Freescale RF Solutions

Freescale RF Solutions Freescale RF Solutions EUF-IND-T0977 Yan Vainter J A N. 2 0 1 5 TM External Use Freescale Overview 17,000 employees 2013 revenue $4.19b Headquartered in Austin, TX 5 Business Groups Microcontrollers Automotive

More information

A 0.7 V-to-1.0 V 10.1 dbm-to-13.2 dbm 60-GHz Power Amplifier Using Digitally- Assisted LDO Considering HCI Issues

A 0.7 V-to-1.0 V 10.1 dbm-to-13.2 dbm 60-GHz Power Amplifier Using Digitally- Assisted LDO Considering HCI Issues A 0.7 V-to-1.0 V 10.1 dbm-to-13.2 dbm 60-GHz Power Amplifier Using Digitally- Assisted LDO Considering HCI Issues Rui Wu, Yuuki Tsukui, Ryo Minami, Kenichi Okada, and Akira Matsuzawa Tokyo Institute of

More information

CGH40006P. 6 W, RF Power GaN HEMT APPLICATIONS FEATURES

CGH40006P. 6 W, RF Power GaN HEMT APPLICATIONS FEATURES Rev 3. May 15 CGHP W, RF Power GaN HEMT Cree s CGHP is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CGHP, operating from a volt rail, offers a general purpose, broadband

More information

High-Frequency Isolated DC/DC Converter for Input Voltage Conditioning of a Linear Power Amplifier

High-Frequency Isolated DC/DC Converter for Input Voltage Conditioning of a Linear Power Amplifier High-Frequency solated DC/DC Converter for nut oltage Conditioning of a inear ower Amlifier Guanghai Gong, Hans Ertl and Johann W. Kolar Swiss Federal nstitute of Technology (ETH) urich ower Electronic

More information

Class E and Class D -1 GaN HEMT Switched-Mode Power Amplifiers

Class E and Class D -1 GaN HEMT Switched-Mode Power Amplifiers Class E and Class D -1 GaN HEMT Switched-Mode Power Amplifiers J. A. GARCÍA *, R. MERLÍN *, M. FERNÁNDEZ *, B. BEDIA *, L. CABRIA *, R. MARANTE *, T. M. MARTÍN-GUERRERO ** *Departamento Ingeniería de Comunicaciones

More information

5KW LED DRIVER. High Power White LED. LED Driver Requirement. Topology selection: Design Specifications

5KW LED DRIVER. High Power White LED. LED Driver Requirement. Topology selection: Design Specifications 5KW LED DRIVER High Power White LED Enormous energy can be saved by using efficient equiments along with effective control and careful design. The use of energy efficient lighting has been gaining oularity

More information

The Design of 2.4GHz Bipolar Oscillator by Using the Method of Negative Resistance Cheng Sin Hang Tony Sept. 14, 2001

The Design of 2.4GHz Bipolar Oscillator by Using the Method of Negative Resistance Cheng Sin Hang Tony Sept. 14, 2001 The Design of 2.4GHz Bipolar Oscillator by Using the Method of Negative Resistance Cheng Sin Hang Tony Sept. 14, 2001 Introduction In this application note, the design on a 2.4GHz bipolar oscillator by

More information

Analysis and Design of L-strip Proximity Coupled Circular Microstrip Antenna

Analysis and Design of L-strip Proximity Coupled Circular Microstrip Antenna 192 Analysis and Design of L-stri Proximity Couled Circular Microstri Antenna Ganga Prasad Pandey 1*, Binod Kumar Kanaujia 2 1* Deartment of Electronics and Communication Engineering, Maharaja Agrasen

More information

K-BAND HARMONIC DIELECTRIC RESONATOR OS- CILLATOR USING PARALLEL FEEDBACK STRUC- TURE

K-BAND HARMONIC DIELECTRIC RESONATOR OS- CILLATOR USING PARALLEL FEEDBACK STRUC- TURE Progress In Electromagnetics Research Letters, Vol. 34, 83 90, 2012 K-BAND HARMONIC DIELECTRIC RESONATOR OS- CILLATOR USING PARALLEL FEEDBACK STRUC- TURE Y. C. Du *, Z. X. Tang, B. Zhang, and P. Su School

More information

Foundries, MMICs, systems. Rüdiger Follmann

Foundries, MMICs, systems. Rüdiger Follmann Foundries, MMICs, systems Rüdiger Follmann Content MMIC foundries Designs and trends Examples 2 Foundries and MMICs Feb-09 IMST GmbH - All rights reserved MMIC foundries Foundries IMST is a UMS certified

More information

A novel High Bandwidth Pulse-Width Modulated Inverter

A novel High Bandwidth Pulse-Width Modulated Inverter Proceedings of the 10th WSEAS International onference on IRUITS, Vouliagmeni, Athens, Greece, July 101, 006 (8085) A novel High Bandwidth PulseWidth Modulated Inverter J. HATZAKIS, M. VOGIATZAKI, H. RIGAKIS,

More information

Physics. Valve Electronics.

Physics. Valve Electronics. Physics Valve Electronics www.testrekart.com Table of Content 1. Do You Know?. Thermionic Emission and Emitters. 3. Vacuum Tubes and Thermionic Valves. 4. Diode Valve. 5. Triode Valve. 1 1. Do You Know?

More information

Fiber-fed wireless systems based on remote up-conversion techniques

Fiber-fed wireless systems based on remote up-conversion techniques 2008 Radio and Wireless Symposium incorporating WAMICON 22 24 January 2008, Orlando, FL. Fiber-fed wireless systems based on remote up-conversion techniques Jae-Young Kim and Woo-Young Choi Dept. of Electrical

More information

Class E Amplifier. V=0 dv/dt=0. Clever resonant load is constructed so that V(t)=0 when the switch closes!! This avoids 1/2CV 2 f loss.

Class E Amplifier. V=0 dv/dt=0. Clever resonant load is constructed so that V(t)=0 when the switch closes!! This avoids 1/2CV 2 f loss. Class E Amplifier Clever resonant load is constructed so that V(t)=0 when the switch closes!! This avoids 1/2CV 2 f loss. V=0 dv/dt=0 Vo driver Cp Voltage across switch is brought to zero when switch closes

More information

15 W, 28V, GaN HEMT for Linear Communications ranging from VHF to 3 GHz = 25 C) Parameter 2.3 GHz 2.4 GHz 2.5 GHz 2.6 GHz 2.

15 W, 28V, GaN HEMT for Linear Communications ranging from VHF to 3 GHz = 25 C) Parameter 2.3 GHz 2.4 GHz 2.5 GHz 2.6 GHz 2. CGH27015 15 W, 28V, GaN HEMT for Linear Communications ranging from VHF to 3 GHz Cree s CGH27015 is a gallium nitride (GaN) high electron mobility transistor designed specifically for high efficiency,

More information

= 25 C) Parameter 2.5 GHz 4.0 GHz 6.0 GHz Units Gain db W Power P OUT. = 43 dbm

= 25 C) Parameter 2.5 GHz 4.0 GHz 6.0 GHz Units Gain db W Power P OUT. = 43 dbm CMPA2560025D 25 W, 2.5-6.0 GHz, GaN MMIC, Power Amplifier Cree s CMP2560025D is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN

More information

InGaP HBT MMIC Development

InGaP HBT MMIC Development InGaP HBT MMIC Development Andy Dearn, Liam Devlin; Plextek Ltd, Wing Yau, Owen Wu; Global Communication Semiconductors, Inc. Abstract InGaP HBT is being increasingly adopted as the technology of choice

More information

A New ISPWM Switching Technique for THD Reduction in Custom Power Devices

A New ISPWM Switching Technique for THD Reduction in Custom Power Devices A New ISPWM Switching Technique for THD Reduction in Custom Power Devices S. Esmaeili Jafarabadi, G. B. Gharehetian Deartment of Electrical Engineering, Amirkabir University of Technology, 15914 Tehran,

More information

Typical Performance 1. Absolute Maximum Ratings

Typical Performance 1. Absolute Maximum Ratings Device Features +5V/680mA at operating bias condition Gain = 27.3 db @ 1850 MHz P1dB = 33.1 dbm @ 1850MHz LTE 10M ACLR = 23.5dBm Output Power at -50dBc @ 1850MHz Intergrated interstage matching Lead-free/Green/RoHS-compliant

More information

CGH35060F1 / CGH35060P1

CGH35060F1 / CGH35060P1 CGH35060F1 / CGH35060P1 60 W, 3.3-3.9 GHz, 28V, GaN HEMT for WiMAX, Broadband Wireless Access Cree s CGH35060F is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically

More information

DESIGN OF LINEARITY IMPROVED ASYMMETRICAL GAN DOHERTY POWER AMPLIFIER USING COMPOS- ITE RIGHT/LEFT-HANDED TRANSMISSION LINES

DESIGN OF LINEARITY IMPROVED ASYMMETRICAL GAN DOHERTY POWER AMPLIFIER USING COMPOS- ITE RIGHT/LEFT-HANDED TRANSMISSION LINES Progress In Electromagnetics Research B, Vol. 53, 89 106, 2013 DESIGN OF LINEARITY IMPROVED ASYMMETRICAL GAN DOHERTY POWER AMPLIFIER USING COMPOS- ITE RIGHT/LEFT-HANDED TRANSMISSION LINES Yunxuan Feng

More information

Wideband and High Efficiency Feed-Forward Linear Power Amplifier for Base Stations

Wideband and High Efficiency Feed-Forward Linear Power Amplifier for Base Stations Base Station Power Amplifier High Efficiency Wideband and High Efficiency Feed-Forward Linear Power Amplifier for Base Stations This paper presents a new feed-forward linear power amplifier configuration

More information

HMC454ST89 / 454ST89E. Features. = +25 C, Vs= +5V [1]

HMC454ST89 / 454ST89E. Features. = +25 C, Vs= +5V [1] Typical Applications The HMC44ST8 / HMC44ST8E is ideal for applications requiring a high dynamic range amplifi er: GSM, GPRS & EDGE CDMA & W-CDMA CATV/Cable Modem Fixed Wireless & WLL Features Output IP3:

More information

Fully integrated UHF RFID mobile reader with power amplifiers using System-in-Package (SiP)

Fully integrated UHF RFID mobile reader with power amplifiers using System-in-Package (SiP) Fully integrated UHF RFID mobile reader with power amplifiers using System-in-Package (SiP) Hyemin Yang 1, Jongmoon Kim 2, Franklin Bien 3, and Jongsoo Lee 1a) 1 School of Information and Communications,

More information

Efficiency (%) Characteristic Symbol Min Typ Max Unit. Adjacent Channel Power Ratio ACPR dbc

Efficiency (%) Characteristic Symbol Min Typ Max Unit. Adjacent Channel Power Ratio ACPR dbc GTRA36282FC Thermally-Enhanced High Power RF GaN on SiC HEMT 28 W, 48 V, 34 36 MHz Description The GTRA36282FC is a 28-watt ( ) GaN on SiC high electron mobility transistor (HEMT) designed for use in multi-standard

More information

= 25 C) Parameter 6.0 GHz 7.5 GHz 9.0 GHz 10.5 GHz 12.0 GHz Units Small Signal Gain db P OUT

= 25 C) Parameter 6.0 GHz 7.5 GHz 9.0 GHz 10.5 GHz 12.0 GHz Units Small Signal Gain db P OUT CMPA601C025F 25 W, 6.0-12.0 GHz, GaN MMIC, Power Amplifier The CMPA601C025F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC) on a

More information

Efficiency (%) gtra364002fc_g1. Characteristic Symbol Min Typ Max Unit. Adjacent Channel Power Ratio ACPR dbc

Efficiency (%) gtra364002fc_g1. Characteristic Symbol Min Typ Max Unit. Adjacent Channel Power Ratio ACPR dbc Thermally-Enhanced High Power RF GaN on SiC HEMT 0 W, 48 V, 30 30 MHz Description The is a 0-watt (PSAT) GaN on SiC high electron mobility transistor (HEMT) designed for use in multi-standard cellular

More information

Efficiency (%) Characteristic Symbol Min Typ Max Unit. Adjacent Channel Power Ratio ACPR dbc. Output 0.01% CCDF OPAR 7 7.

Efficiency (%) Characteristic Symbol Min Typ Max Unit. Adjacent Channel Power Ratio ACPR dbc. Output 0.01% CCDF OPAR 7 7. Thermally-Enhanced High Power RF GaN on SiC HEMT W, 48 V, 34 36 MHz Description The is a -watt (P3dB) GaN on SiC high electron mobility transistor (HEMT) designed for use in multi-standard cellular power

More information

15 W, 28V, GaN HEMT for Linear Communications ranging from VHF to 3 GHz. Parameter 2.3 GHz 2.4 GHz 2.5 GHz 2.6 GHz 2.7 GHz Units

15 W, 28V, GaN HEMT for Linear Communications ranging from VHF to 3 GHz. Parameter 2.3 GHz 2.4 GHz 2.5 GHz 2.6 GHz 2.7 GHz Units Rev 4.0 May 2015 CGH27015 15 W, 28V, GaN HEMT for Linear Communications ranging from VHF to 3 GHz Cree s CGH27015 is a gallium nitride (GaN) high electron mobility transistor designed specifically for

More information

NPA110-D. Preliminary GHz GaN 38W Power Amplifier. Product Description: Key Features:

NPA110-D. Preliminary GHz GaN 38W Power Amplifier. Product Description: Key Features: NPA1-D Product Description: The Nxbeam NPA1-D is a Ka-band high power GaN MMIC fabricated in.2um GaN HEMT on SiC. This part is ideally suited for satellite communications, point-to-point radios, and radar

More information

CGH55030F1 / CGH55030P1

CGH55030F1 / CGH55030P1 CGH55030F1 / CGH55030P1 30 W, 5500-5800 MHz, 28V, GaN HEMT for WiMAX Cree s CGH55030F1/CGH55030P1 is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically for high efficiency,

More information

Product Description. GaAs HBT GaAs MESFET InGaP HBT

Product Description. GaAs HBT GaAs MESFET InGaP HBT Direct Quadrature Modulator RFMD0014 DIRECT QUADRATURE MODULATOR Package: QFN, 24-Pin, 4mm x 4mm Features ACPR Performance: -70 dbc Typ. for 1-Carrier WCDMA Very High Linearity: +26 dbm OIP3 Very Low Noise

More information

DESIGNING AN OCTAVE-BANDWIDTH DOHERTY AM- PLIFIER USING A NOVEL POWER COMBINATION METHOD

DESIGNING AN OCTAVE-BANDWIDTH DOHERTY AM- PLIFIER USING A NOVEL POWER COMBINATION METHOD Progress In Electromagnetics Research B, Vol. 56, 327 346, 2013 DESIGNING AN OCTAVE-BANDWIDTH DOHERTY AM- PLIFIER USING A NOVEL POWER COMBINATION METHOD Necip Sahan 1, * and Simsek Demir 2 1 Aselsan Inc.,

More information

EECS-730 High-Power Inverted Doherty Power Amplifier for Broadband Application

EECS-730 High-Power Inverted Doherty Power Amplifier for Broadband Application EECS-730 High-Power Inverted Doherty Power Amplifier for Broadband Application Jehyeon Gu* Mincheol Seo Hwiseob Lee Jinhee Kwon Junghyun Ham Hyungchul Kim and Youngoo Yang Sungkyunkwan University 300 Cheoncheon-dong

More information

HMC454ST89 / 454ST89E

HMC454ST89 / 454ST89E HMC44ST8 / 44ST8E Typical Applications The HMC44ST8 / HMC44ST8E is ideal for applications requiring a high dynamic range amplifi er: GSM, GPRS & EDGE CDMA & W-CDMA CATV/Cable Modem Fixed Wireless & WLL

More information

i 1 i 2 LOmod 3 RF OUT 4 RF OUT 5 IF 6 IF 7 ENABLE 8 YYWW

i 1 i 2 LOmod 3 RF OUT 4 RF OUT 5 IF 6 IF 7 ENABLE 8 YYWW Vector Modulator/Mixer Technical Data HPMX-27 Features 5 MHz to 4 GHz Overall Operating Frequency Range 4-4 MHz LOmod range 2.7-5.5 V Operation (3 V, 25 ma) Differential High Impedance i, q Inputs On-Chip

More information

Linear High Power Amplifiers

Linear High Power Amplifiers PRODUCTS Linear High Power Amplifiers Aethercomm designs and manufactures high power class A and AB linear amplifiers to transmit voice, data and video for military systems, wireless customers and industrial

More information

RF1136 BROADBAND LOW POWER SP3T SWITCH

RF1136 BROADBAND LOW POWER SP3T SWITCH BROADBAND LOW POWER SP3T SWITCH Package Style: QFN, 12-Pin, 2.5 mm x 2.5 mm x 0.6 mm Features Low Frequency - 3.5 GHz Operations Very Low Insertion Loss: Cell Band 0.25 db PCS Band 0.30 db High Isolation:

More information

Design of Broadband Three-way Sequential Power Amplifiers

Design of Broadband Three-way Sequential Power Amplifiers MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Design of Broadband Three-way Sequential Power Amplifiers Ma, R.; Shao, J.; Shinjo, S.; Teo, K.H. TR2016-110 August 2016 Abstract In this paper,

More information

RF2162 3V 900MHz LINEAR AMPLIFIER

RF2162 3V 900MHz LINEAR AMPLIFIER 3V 900MHz LINEAR AMPLIFIER Package Style: QFN, 16-Pin, 4x4 Features Single 3V Supply 9dBm Linear Output Power 9dB Linear Gain 35% Linear Efficiency Onboard Power Down Mode 800MHz to 960MHz Operation Applications

More information

Efficiency (%) Characteristic Symbol Min Typ Max Unit. Adjacent Channel Power Ratio ACPR dbc

Efficiency (%) Characteristic Symbol Min Typ Max Unit. Adjacent Channel Power Ratio ACPR dbc Thermally-Enhanced High Power RF LDMOS FET 480 W, 48 V, 859 960 MHz Description The PTRA094808NF is a 480-watt LDMOS FET intended for use in multi-standard cellular power amplifier applications in the

More information

transistor is available in a flange and pill package. Package Types: & PN s: CG2H40045F & CG2H40045P

transistor is available in a flange and pill package. Package Types: & PN s: CG2H40045F & CG2H40045P Rev 0.0 - May 2017 CG2H40045 45 W, DC - 4 GHz RF Power GaN HEMT Cree s CG2H40045 is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CG2H40045, operating from a 28 volt

More information

ANALYSIS OF BROADBAND GAN SWITCH MODE CLASS-E POWER AMPLIFIER

ANALYSIS OF BROADBAND GAN SWITCH MODE CLASS-E POWER AMPLIFIER Progress In Electromagnetics Research Letters, Vol. 38, 151 16, 213 ANALYSIS OF BROADBAND GAN SWITCH MODE CLASS-E POWER AMPLIFIER Ahmed Tanany, Ahmed Sayed *, and Georg Boeck Berlin Institute of Technology,

More information

2.4~2.5 GHz 1 Watt Power Amplifier Pin Details

2.4~2.5 GHz 1 Watt Power Amplifier Pin Details 2.~2. GHz Watt Power Amplifier 23.7. is a linear, two-stages power amplifier MMIC with high output power in 2.GHz band utilizing InGaP/GaAs HBT process. With the excellent linearity performance, the device

More information

Keysight Technologies HMMC-3002 DC-16 GHz GaAs HBT MMIC Divide-by-2 Prescaler

Keysight Technologies HMMC-3002 DC-16 GHz GaAs HBT MMIC Divide-by-2 Prescaler Keysight Technologies HMMC-3002 DC-16 GHz GaAs HBT MMIC Divide-by-2 Prescaler 1GC1-8004 Data Sheet Features Wide Frequency Range: 0.2 to 16 GHz High Input Power Sensitivity: On-chip pre- and post-amps

More information

PRELIMINARY = 25 C) Parameter GHz 14.0 GHz 14.5 GHz Units Small Signal Gain db P SAT. = 26 dbm W P 3dB

PRELIMINARY = 25 C) Parameter GHz 14.0 GHz 14.5 GHz Units Small Signal Gain db P SAT. = 26 dbm W P 3dB CMPADE030D PRELIMINARY 30 W, 3.75-4.5 GHz, 40 V, GaN MMIC, Power Amplifier Cree s CMPADE030D is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit

More information

2.4 GHz Front-End Module SST12LF01

2.4 GHz Front-End Module SST12LF01 FEATURES: Gain: Typically 12 db gain across 2.4 2.5 GHz for Receiver (RX) chain. Typically 29 db gain across 2.4 2.5 GHz over temperature C to +8 C for Transmitter (TX) chain. Low-Noise Figure Typical

More information

GaAs MMIC Power Amplifier

GaAs MMIC Power Amplifier GaAs MMIC Power Amplifier AM14MM-BM-R AM14MM-FM-R Aug 10 Rev 8 DESCRIPTION AMCOM s is part of the GaAs HiFET MMIC power amplifier series. It is a 2-stage GaAs MESFET MMIC power amplifier biased at 14V.

More information

Design of alinearized and efficient doherty amplifier for c-band applications

Design of alinearized and efficient doherty amplifier for c-band applications 12th European Microwave Integrated Circuits Conference (EuMIC) Design of alinearized and efficient doherty amplifier for c-band applications Steffen Probst Timo Martinelli Steffen Seewald Bernd Geck Dirk

More information

TQM7M6001 Advance Data Sheet

TQM7M6001 Advance Data Sheet Functional Block Diagram VCC1 RFIN GND VMODE VREF Product Description Bias Control Match VCC2 GND RFOUT GND GND Advanced compact 3V linear power amplifier module designed for mobile UMTS handset applications

More information

transistor is available in a flange and pill package. Package Types: & PN s: CG2H40045P & CG2H40045F

transistor is available in a flange and pill package. Package Types: & PN s: CG2H40045P & CG2H40045F Rev 0.0 - May 2017 CG2H40045 45 W, DC - 4 GHz RF Power GaN HEMT Cree s CG2H40045 is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CG2H40045, operating from a 28 volt

More information

AM036MX-QG-R 1 WATT, 2 GHz POWER AMPLIFIER

AM036MX-QG-R 1 WATT, 2 GHz POWER AMPLIFIER AM036MX-QG-R 1 WATT, 2 GHz POWER AMPLIFIER AN136 January 2011 REV 3 INTRODUCTION This application note describes the design of a one-watt, single stage power amplifier at 2GHz using AMCOM s low cost surface

More information

Introduction to Envelope Tracking. G J Wimpenny Snr Director Technology, Qualcomm UK Ltd

Introduction to Envelope Tracking. G J Wimpenny Snr Director Technology, Qualcomm UK Ltd Introduction to Envelope Tracking G J Wimpenny Snr Director Technology, Qualcomm UK Ltd Envelope Tracking Historical Context EER first proposed by Leonard Kahn in 1952 to improve efficiency of SSB transmitters

More information

Design and Implementation of Type-II Compensator in DC-DC Switch-Mode Step-up Power Supply

Design and Implementation of Type-II Compensator in DC-DC Switch-Mode Step-up Power Supply Design and Imlementation of Tye-II Comensator in DC-DC Switch-Mode Ste-u Power Suly Arnab Ghosh, Student Member, IEEE, and Subrata Banerjee, Member, IEEE Deartment of Electrical Engineering, National Institute

More information

= 25 C) Parameter 1.0 GHz 2.0 GHz 3.0 GHz 4.0 GHz 5.0 GHz 6.0 GHz Units. Gain db. 32 dbm W

= 25 C) Parameter 1.0 GHz 2.0 GHz 3.0 GHz 4.0 GHz 5.0 GHz 6.0 GHz Units. Gain db. 32 dbm W CMPA006005D 5 W, 0 MHz - 6.0 GHz, GaN MMIC, Power Amplifier Cree s CMPA006005D is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC).

More information

Push-Pull Class-E Power Amplifier with a Simple Load Network Using an Impedance Matched Transformer

Push-Pull Class-E Power Amplifier with a Simple Load Network Using an Impedance Matched Transformer Proceedings of the International Conference on Electrical, Electronics, Computer Engineering and their Applications, Kuala Lumpur, Malaysia, 214 Push-Pull Class-E Power Amplifier with a Simple Load Network

More information

ISSCC 2006 / SESSION 11 / RF BUILDING BLOCKS AND PLLS / 11.9

ISSCC 2006 / SESSION 11 / RF BUILDING BLOCKS AND PLLS / 11.9 ISSCC 2006 / SESSION 11 / RF BUILDING BLOCKS AND PLLS / 11.9 11.9 A Single-Chip Linear CMOS Power Amplifier for 2.4 GHz WLAN Jongchan Kang 1, Ali Hajimiri 2, Bumman Kim 1 1 Pohang University of Science

More information