Introduction of IMS Technology for Advanced Solder Bumping on Wafers / Laminates

Size: px
Start display at page:

Download "Introduction of IMS Technology for Advanced Solder Bumping on Wafers / Laminates"

Transcription

1 Introduction of IMS Technology for Advanced Solder Bumping on Wafers / Laminates Science & Technology IBM Research Tokyo Yasumitsu Orii, PhD Senju Metal Industry Co.,TW Deputy General Manager Lewis Huang

2 What is IMS (Injection Molded Solder) technology? C4NP (C4 New Process) for wafer bumping - in volume production in IBM since 2007 Mold fill Solder Transfer Wafer Glass mold Mold fill + Transfer -> One Process Molten Solder IMS head Mask (resist) Wafer or laminate Metal pad Very simple process Green process No flux, No formic acid Minimum solder waste Pure solder injection Higher solder volume Extendible to very fine pitch Solder alloy flexibility One pass for multiple solder sizes Injection of molten pure solder into through holes in N 2 environment molten solder wets on metal pads (or metal pillars) w/o flux. formation of IMCs (intermetallic compounds) at solder/pad interface. solidify solders in N 2 environment.

3 IMS (Injection Molded Solder) technologies Reusable Mask IMS for laminate bumping - ideal for high volume solder - available to skip solder bumping on chip side. Kapton mask Solder Laminate Remove mask Mask-less IMS for laminate bumping - ideal for low cost & fine pitch application As received laminate Solder IMS with Resist Mask for wafer/laminate bumping - Direct solder deposition on wafers/laminates without transfer Resist mask Solder Laminate Strip resist mask Resist mask Cu or Ni UBM IMS & strip resist mask & Etching seed layers C4 bump Wafer Resist mask Cu pillar Solder Capped Cu pillar bump

4 Cons. Pros. Technology IMS (Injection Molded Solder) technologies Reusable mask IMS Mask-less IMS IMS with resist mask laminate laminate Wafer or laminate No voids in solders Easy control of alloy composition Can make very high volume solder on laminates & wafers Good for island type I/O pads such as laminates No voids in solders Easy control of alloy composition No limitation in a size No limitation in pitch Very low cost No mask & no alignment No cost increase in finer pitch No voids in solders Easy control of alloy composition Can make very high volume solder on laminates & wafers Can be applied to finer pitch below 100 um pitch Can be applied to panel size laminates and wafers Tooling investment is required Difficulty of high volume production Currently, only singulated laminate or wafer is possible. Tooling investment is required Lower solder volume Tooling investment is required Photolithography is required Need some evaluation or development for the resist materials and process on high volume production

5 Target area (Possibility of IMS technology) IMS has a wide capability of the solder bumping compared with the commercially available bumping technologies; - from wider pitch (big bump) to finer pitch (small bump) applications - flexibility of solder alloy from pure Sn to ternary with minor alloy doping

6 20 60 μm Wafer IMS technology solder bumping on wafers SAC 305 1μm Cu 2μm Ni 20μm Cu

7 Wafer IMS results on different Cu thickness 40μm thick Cu pillar 2μm thick Cu UBM Dry film (60μm) Cu pillar Dry film Cu UBM As received After IMS Dry film SAC 305 Dry film SAC 305 After stripping dry film Particular geometry achieved is unique in industry. Straight sidewalls w/ round top of the solder bump on pillar No need additional reflow. It should help with fine pitch. Molten solder injection w/o flux No voids in solders. Ability to control solder composition readily. No change in throughput even though solder volume increased.

8 Wafer IMS bumping results on 8 inch wafer Demonstrated Wafer IMS bumping with 8 inch wafer Wafer IMS demonstration with various opening size in 8 inch wafer!!! Opening size Shape : 50μm ~ 200μm : Circle & Square 100μm, 250μm pitch 50μm, 200μm pitch 75μm, 225μm pitch 75μm, 125μm pitch 75μm, 175μm pitch 75μm, 150μm pitch 200μm, 400μm pitch 150μm, 300μm pitch 175μm, 350μm pitch 50μm 50μm solder bump 50μm diameter solder bump 75μm diameter

9 Concerns Advantages Technology Wafer bumping technologies Micro-ball mounting Electroplating Wafer IMS HVM tooling is in market bumping down to 60um dia. balls. Enough knowledge for processes, qualification, and cost. Ability to control solder composition readily. No voids in solders. Question of manufacturing tool availability for bumping 25um dia. balls. Tooling development could be required for fine pitch. Cost increase for making and handling small size balls. No way to use different I/Os size. HVM tooling is in market. Enough knowledge for processes, qualification, and cost. Easy to achieve fine pitch. Only pure Sn or binary solder composition. Solder composition uniformity. Possible voids in plated solders. Additional reflow after solder plating. Cost difference in Cu plating vs. solder plating. Cost for plating solutions and handling chemical waste of plating solutions. Ability to control solder composition readily. Not limited to binary composition. Bump height uniformity, even for different I/Os size and shape and Cu pillars have non-uniformity. No need of flux. No voids in solders. Green process / Minimum waste Head change : solder alloys change. If company does not have solder plating tools, easy to start IMS with low cost. Process & material optimization required. (prototype tool : ready, material : under development) HVM tooling optimization.

10 Laminate IMS Technology solder bumping on organic laminates Organic Laminate Cu pad ~ 63 μm Solder mask

11 Laminate IMS technologies Reusable film mask wide Organic laminate (a) Alignment mask N 2 Reusable Mask Mask-less (a) As received laminate Organic laminate Solder resist (SR) N 2 IMS with resist mask Organic laminate (a) Opened SR (b) Apply resist mask (b) Molten solder injection (b) IMS (c) Opening resist mask (lithography) Solder (c) Solidification of solder (c) Solidify solder (d) IMS in nitrogen (d) Mask separation (e) Strip resist mask (d) Reflow w/ flux (f) Reflow (optional)

12 Laminate IMS technologies A: Mask IMS (132μm pitch) Mask IMS bump height over solder resist H A F C E *Mask IMS 53.3μm over SR. D B IMS bump height distribution tighter then with paste printing G I B: Mask-less IMS (132μm pitch) Solder height above solder Average Std 17.9 mm 1.8 Solder volume and bump height are depended on solder resist opening design. No residue on solder resist ~ ideal for low cost (very fine pitch) ~

13 Summary IMS technology was demonstrated with organic substrates and wafers on different Cu thickness (Capable for solder capped Cu pillar structure) with 8 inch size wafers with 13μm diameter and 50μm height bumps with TSV (Through Silicon Via) IMS is an attractive technology, and IMS has many possibilities as well as solder bumping! TSV filling Bumping on Si / Organic / Glass IP Pre-soldering on C4 pads Laminate via filling BGA ball bumping

14 Introduction of IMS technology for advanced solder bumping on wafers / laminates Equipment Portion Contents IMS Tools & Process (Structure) Micro Bump Status (Under 50um) Cross Section, IMC & Bump Height (Coplanarity) Senju Metal Industry Co.,ltd 2013 Senju Metal Industry Co., Ltd. All rights reserved.

15 IMS Tools(Laboratory tool) <Work size> IMS-50: 50mm IMS-200: 8 inch wafer IMS-300: 12 inch wafer IMS-50 IMS-200 Developed year: IMS (Evaluating now) IMS process N2 pressure Melting solder Mask SR DFR wafers / Laminates 15

16 Tool structure IMS Head 4 th Stage Cooling 3 rd Stage IMS Cooling plate Index table Heating plate Touch panel operation Carrier 1 st Stage Loader / Unloader Heating plate 2 nd Stage Pre-heater Condition~ Solder : SAC305 3 rd stage : 250 Solder temp : 250 Head pressure : 0.3MPa Solder pressure : 0.06MPa Head speed : 2mm/s Resist thickness: 20um

17 Micro bump status (Under Φ50um) 8 inch wafer Condition~ Solder : SAC305 3 rd stage : 250 Solder temp : 250 Head pressure : 0.3MPa Solder pressure : 0.06MPa Head speed : 2mm/s Resist thickness: 20um Pad Diameter Φ50um Φ40um Φ30um Φ20um Pitch 100um 80um 60um 40um

18 Pad Diamete r Φ50um Φ40um Φ30um Φ20um Pitch 100um 80um 60um 40um Cross section IMC 18

19 Bump height (um) Resist: 20um Bump height Φ50umK Φ40umK Φ30umK Φ20umK Resist opening size Solder: SAC305 Solder temp: 250 Plate temp: 250 Solder pressure: 0.06MPa Head speed: 2mm/sec Resist thickness: 20um Resist opening size Wafer Measured value (N=20) Unit: um Ave. SD Φ Φ Φ Φ

20 Laboratory & Evaluation ~Technical support~ IMS Demonstration Sample Preparation Evaluation & Inspection IMS-50 IMS-200 Clean room: Class 1000 (0.5um) If you are interested in IMS technology, please contact us! <Representative person> Lewis Huang / 黃智堯 lewis@senju.com.tw Laboratory location:senju Metal Industry Co.,Ltd HQ 23 Senju Hashido-Cho Adachi-ku Tokyo, Japan <Contact person> Takashi Nauchi tnauchi@senju.com

21 SMIC Tochigi Factory SMIC Product Lineup Thanks for your attention!!! SMIC HQ

Fine Pitch Bumping Formation Application - PPS & Micro ball -

Fine Pitch Bumping Formation Application - PPS & Micro ball - Fine Pitch Bumping Formation Application - PPS & Micro ball - Sep.08.2011 Senju Metal Industry R&D center Kaichi Tsuruta Copyright 2011 SENJU METAL INDUSTRY CO.,LTD. Role of Senju Micro Soldering Material

More information

C4NP. Manufacturing & Reliability Data for Lead Free Flip Chip Solder Bumping based on IBM s C4NP process. Abstract

C4NP. Manufacturing & Reliability Data for Lead Free Flip Chip Solder Bumping based on IBM s C4NP process. Abstract 10 - C4NP - Manufacturing & Reliability - C4NP Manufacturing & Reliability Data for Lead Free Flip Chip Solder Bumping based on IBM s C4NP process Eric Laine SUSS MicroTec, Inc. 228 Suss Drive, Waterbury

More information

MICROBUMP CREATION SYSTEM FOR ADVANCED PACKAGING APPLICATIONS

MICROBUMP CREATION SYSTEM FOR ADVANCED PACKAGING APPLICATIONS MICROBUMP CREATION SYSTEM FOR ADVANCED PACKAGING APPLICATIONS Andrew Ahr, EKC Technology, & Chester E. Balut, DuPont Electronic Technologies Alan Huffman, RTI International Abstract Today, the electronics

More information

The Problems. Spheretek Wafer Bumping The Low Cost and Reliable Solution to Production Wafer Packaging

The Problems. Spheretek Wafer Bumping The Low Cost and Reliable Solution to Production Wafer Packaging Spheretek Wafer Bumping The Low Cost and Reliable Solution to Production Wafer Packaging The Problems. Packaging Production engineers and their CFO s have to date been disappointed in the results of their

More information

Flip chip Assembly with Sub-micron 3D Re-alignment via Solder Surface Tension

Flip chip Assembly with Sub-micron 3D Re-alignment via Solder Surface Tension Flip chip Assembly with Sub-micron 3D Re-alignment via Solder Surface Tension Jae-Woong Nah*, Yves Martin, Swetha Kamlapurkar, Sebastian Engelmann, Robert L. Bruce, and Tymon Barwicz IBM T. J. Watson Research

More information

S3X58-M High Reliability Lead Free Solder Paste. Technical Information. Koki no-clean LEAD FREE solder paste.

S3X58-M High Reliability Lead Free Solder Paste. Technical Information. Koki no-clean LEAD FREE solder paste. www.ko-ki.co.jp #52007 Revised on Nov.27, 2014 Koki no-clean LEAD FREE solder paste High Reliability Lead Free Solder Paste S3X58-M500-4 Technical Information O₂ Reflowed 0.5mmP QFP 0603R This product

More information

SOLDER BUMP FLIP CHIP BONDING FOR PIXEL DETECTOR HYBRIDIZATION

SOLDER BUMP FLIP CHIP BONDING FOR PIXEL DETECTOR HYBRIDIZATION SOLDER BUMP FLIP CHIP BONDING FOR PIXEL DETECTOR HYBRIDIZATION Jorma Salmi and Jaakko Salonen VTT Information Technology Microelectronics P.O. Box 1208 FIN-02044 VTT, Finland (visiting: Micronova, Tietotie

More information

A Low-cost Through Via Interconnection for ISM WLP

A Low-cost Through Via Interconnection for ISM WLP A Low-cost Through Via Interconnection for ISM WLP Jingli Yuan, Won-Kyu Jeung, Chang-Hyun Lim, Seung-Wook Park, Young-Do Kweon, Sung Yi To cite this version: Jingli Yuan, Won-Kyu Jeung, Chang-Hyun Lim,

More information

Bumping of Silicon Wafers using Enclosed Printhead

Bumping of Silicon Wafers using Enclosed Printhead Bumping of Silicon Wafers using Enclosed Printhead By James H. Adriance Universal Instruments Corp. SMT Laboratory By Mark A. Whitmore DEK Screen Printers Advanced Technologies Introduction The technology

More information

CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs

CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs 1 CMOS Digital Integrated Circuits 3 rd Edition Categories of Materials Materials can be categorized into three main groups regarding their

More information

FBTI Flexible Bumped Tape Interposer

FBTI Flexible Bumped Tape Interposer FBTI Flexible Bumped Tape Interposer Development of FBTI (Flexible Bumped Tape Interposer) * * * * *2 Kazuhito Hikasa Toshiaki Amano Toshiya Hikami Kenichi Sugahara Naoyuki Toyoda CSPChip Size Package

More information

Interconnection Challenge in Wire Bonding Ag alloy wire. Jensen Tsai / 蔡瀛洲, SPIL, Taiwan

Interconnection Challenge in Wire Bonding Ag alloy wire. Jensen Tsai / 蔡瀛洲, SPIL, Taiwan 1 Interconnection Challenge in Wire Bonding Ag alloy wire Jensen Tsai / 蔡瀛洲, SPIL, Taiwan 2 Content Ag Alloy Wire Type Market Ag Alloy Wire Benefits Workability and Reliability Performance IMC behavior

More information

Electroless Bumping for 300mm Wafers

Electroless Bumping for 300mm Wafers Electroless Bumping for 300mm Wafers T. Oppert Internepcon 2006 Tokyo Big Sight, Japan Outline Short Company Profile Electroless Ni/Au Under Bump Metallization UBM for Copper Devices Solder Bumping: Stencil

More information

Flexline - A Flexible Manufacturing Method for Wafer Level Packages (Extended Abstract)

Flexline - A Flexible Manufacturing Method for Wafer Level Packages (Extended Abstract) Flexline - A Flexible Manufacturing Method for Wafer Level Packages (Extended Abstract) by Tom Strothmann, *Damien Pricolo, **Seung Wook Yoon, **Yaojian Lin STATS ChipPAC Inc.1711 W Greentree Drive Tempe,

More information

Application Note AN-1011

Application Note AN-1011 AN-1011 Board Mounting Application Note for 0.800mm Pitch Devices For part numbers IRF6100, IRF6100PBF, IR130CSP, IR130CSPPBF, IR140CSP, IR140CSPPBF, IR1H40CSP, IR1H40CSPPBF By Hazel Schofield and Philip

More information

Chapter 11 Testing, Assembly, and Packaging

Chapter 11 Testing, Assembly, and Packaging Chapter 11 Testing, Assembly, and Packaging Professor Paul K. Chu Testing The finished wafer is put on a holder and aligned for testing under a microscope Each chip on the wafer is inspected by a multiple-point

More information

64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array

64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array 64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array 69 64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array Roland Jäger and Christian Jung We have designed and fabricated

More information

True Three-Dimensional Interconnections

True Three-Dimensional Interconnections True Three-Dimensional Interconnections Satoshi Yamamoto, 1 Hiroyuki Wakioka, 1 Osamu Nukaga, 1 Takanao Suzuki, 2 and Tatsuo Suemasu 1 As one of the next-generation through-hole interconnection (THI) technologies,

More information

Min Tao, Ph. D, Ashok Prabhu, Akash Agrawal, Ilyas Mohammed, Ph. D, Bel Haba, Ph. D Oct , IWLPC

Min Tao, Ph. D, Ashok Prabhu, Akash Agrawal, Ilyas Mohammed, Ph. D, Bel Haba, Ph. D Oct , IWLPC PACKAGE-ON-PACKAGE INTERCONNECT FOR FAN-OUT WAFER LEVEL PACKAGES Min Tao, Ph. D, Ashok Prabhu, Akash Agrawal, Ilyas Mohammed, Ph. D, Bel Haba, Ph. D Oct 18-20 2016, IWLPC 1 Outline Laminate to Fan-Out

More information

Peripheral Flip Chip Interconnection on Au Plated Pads using Solder-Capped Cu Pillar Bumps

Peripheral Flip Chip Interconnection on Au Plated Pads using Solder-Capped Cu Pillar Bumps Noma et al.: Peripheral Flip Chip Interconnection on Au (1/6) [Technical Paper] Peripheral Flip Chip Interconnection on Au Plated Pads using Solder-Capped Cu Pillar Bumps Hirokazu Noma*, Kazushige Toriyama*,

More information

50 Micron Pitch Flip Chip Bumping Technology: Processes and Applications

50 Micron Pitch Flip Chip Bumping Technology: Processes and Applications 50 Micron Pitch Flip Chip Bumping Technology: Processes and Applications Alan Huffman Center for Materials and Electronic Technologies huffman@rti.org Outline RTI Identity/History Historical development

More information

Chapter 3 Fabrication

Chapter 3 Fabrication Chapter 3 Fabrication The total structure of MO pick-up contains four parts: 1. A sub-micro aperture underneath the SIL The sub-micro aperture is used to limit the final spot size from 300nm to 600nm for

More information

SMT Assembly Considerations for LGA Package

SMT Assembly Considerations for LGA Package SMT Assembly Considerations for LGA Package 1 Solder paste The screen printing quantity of solder paste is an key factor in producing high yield assemblies. Solder Paste Alloys: 63Sn/37Pb or 62Sn/36Pb/2Ag

More information

A Technique for Improving the Yields of Fine Feature Prints

A Technique for Improving the Yields of Fine Feature Prints A Technique for Improving the Yields of Fine Feature Prints Dr. Gerald Pham-Van-Diep and Frank Andres Cookson Electronics Equipment 16 Forge Park Franklin, MA 02038 Abstract A technique that enhances the

More information

The Role of Flip Chip Bonding in Advanced Packaging David Pedder

The Role of Flip Chip Bonding in Advanced Packaging David Pedder The Role of Flip Chip Bonding in Advanced Packaging David Pedder David Pedder Associates Stanford in the Vale Faringdon Oxfordshire The Role of Flip Chip Bonding in Advanced Packaging Outline Flip Chip

More information

A review of the challenges and development of. the electronics industry

A review of the challenges and development of. the electronics industry SMTA LA/OC Expo, Long Beach, CA, USA A review of the challenges and development of SMT Wave and Rework assembly processes in SMT, the electronics industry Jasbir Bath, Consulting Engineer Christopher Associates

More information

M series. Product information. Koki no-clean LEAD FREE solder paste. Contents. Lead free SOLUTIONS you can TRUST.

M series. Product information. Koki no-clean LEAD FREE solder paste.   Contents. Lead free SOLUTIONS you can TRUST. www.ko-ki.co.jp Ver. 42017e.2 Prepared on Oct. 26, 2007 Koki no-clean LEAD FREE solder paste Anti-Pillow Defect Product information This Product Information contains product performance assessed strictly

More information

A. Special feature. B. Basic characteristic J3-ESM

A. Special feature. B. Basic characteristic J3-ESM A. Special feature 1. Solderability test for nickel 2. Solderability test for stainless 3. Reliability of J3-ESM-3 3-1: Insulation resistance test 3-2: Humidity test under DC voltage (Migration test) 4.

More information

EMERGING SUBSTRATE TECHNOLOGIES FOR PACKAGING

EMERGING SUBSTRATE TECHNOLOGIES FOR PACKAGING EMERGING SUBSTRATE TECHNOLOGIES FOR PACKAGING Henry H. Utsunomiya Interconnection Technologies, Inc. Suwa City, Nagano Prefecture, Japan henryutsunomiya@mac.com ABSTRACT This presentation will outline

More information

mcube WLCSP Application Note

mcube WLCSP Application Note AN-002 Rev.02 mcube WLCSP Application Note AN-002 Rev.02 mcube, Inc. 1 / 20 AN-002 Rev.02 Guidelines for Printed Circuit Board (PCB) Design and Assembly with mcube Wafer Level Chip Scale Package (WLCSP)

More information

Chemnitzer Seminar System Integration Technologies. Solder Jetting, Rework & electroless UBM Deposition

Chemnitzer Seminar System Integration Technologies. Solder Jetting, Rework & electroless UBM Deposition Chemnitzer Seminar System Integration Technologies June 14 15, 2016 Solder Jetting, Rework & electroless UBM Deposition Made in Germany PacTech Group - Milestones 1995 PacTech founded in Berlin, Germany

More information

POSSUM TM Die Design as a Low Cost 3D Packaging Alternative

POSSUM TM Die Design as a Low Cost 3D Packaging Alternative POSSUM TM Die Design as a Low Cost 3D Packaging Alternative The trend toward 3D system integration in a small form factor has accelerated even more with the introduction of smartphones and tablets. Integration

More information

450mm patterning out of darkness Backend Process Exposure Tool SOKUDO Lithography Breakfast Forum July 10, 2013 Doug Shelton Canon USA Inc.

450mm patterning out of darkness Backend Process Exposure Tool SOKUDO Lithography Breakfast Forum July 10, 2013 Doug Shelton Canon USA Inc. 450mm patterning out of darkness Backend Process Exposure Tool SOKUDO Lithography Breakfast Forum 2013 July 10, 2013 Doug Shelton Canon USA Inc. Introduction Half Pitch [nm] 2013 2014 2015 2016 2017 2018

More information

HOTBAR REFLOW SOLDERING

HOTBAR REFLOW SOLDERING HOTBAR REFLOW SOLDERING Content 1. Hotbar Reflow Soldering Introduction 2. Application Types 3. Process Descriptions > Flex to PCB > Wire to PCB 4. Design Guidelines 5. Equipment 6. Troubleshooting Guide

More information

Bob Willis Process Guides

Bob Willis Process Guides What is a Printed Circuit Board Pad? What is a printed circuit board pad, it may sound like a dumb question but do you stop to think what it really does and how its size is defined and why? A printed circuit

More information

Application Note 5026

Application Note 5026 Surface Laminar Circuit (SLC) Ball Grid Array (BGA) Eutectic Surface Mount Assembly Application Note 5026 Introduction This document outlines the design and assembly guidelines for surface laminar circuitry

More information

Flip Chip Assembly on PCB Substrates with Coined Solder Bumps

Flip Chip Assembly on PCB Substrates with Coined Solder Bumps Flip Chip Assembly on PCB Substrates with Coined Solder Bumps Jae-Woong Nah, Kyung W. Paik, Soon-Jin Cho*, and Won-Hoe Kim* Department of Materials Sci. & Eng., Korea Advanced Institute of Science and

More information

An Investigation into Lead-Free Low Silver Cored Solder Wire for Electronics Manufacturing Applications

An Investigation into Lead-Free Low Silver Cored Solder Wire for Electronics Manufacturing Applications An Investigation into Lead-Free Low Silver Cored Solder Wire for Electronics Manufacturing Applications Shantanu Joshi 1, Jasbir Bath 1, Kimiaki Mori 2, Kazuhiro Yukikata 2, Roberto Garcia 1, Takeshi Shirai

More information

New Approaches to Develop a Scalable 3D IC Assembly Method

New Approaches to Develop a Scalable 3D IC Assembly Method New Approaches to Develop a Scalable 3D IC Assembly Method Charles G. Woychik Ph.D. Sangil Lee, Ph.D., Scott McGrath, Eric Tosaya and Sitaram Arkalgud Ph.D. Invensas Corporation 3025 Orchard Parkway San

More information

Innovative Embedded Technologies to Enable Thinner IoT/Wearable/Mobile Devices

Innovative Embedded Technologies to Enable Thinner IoT/Wearable/Mobile Devices Innovative Embedded Technologies to Enable Thinner IoT/Wearable/Mobile Devices Jensen Tsai Deputy Director, SPIL Building a Smarter World Wearable Internet of Things Building a Smarter World Mobile Devices

More information

Laser Solder Attach for Optoelectronics Packages

Laser Solder Attach for Optoelectronics Packages 1 Laser Solder Attach for Optoelectronics Packages Elke Zakel, Lars Titerle, Thomas Oppert, Ronald G. Blankenhorn* Pac Tech Packaging Technologies GmbH Am Schlangenhorst 15-17, Germany Phone:+ 49 (0) 33

More information

PCB Supplier of the Best Quality, Lowest Price and Reliable Lead Time. Low Cost Prototype Standard Prototype & Production Stencil PCB Design

PCB Supplier of the Best Quality, Lowest Price and Reliable Lead Time. Low Cost Prototype Standard Prototype & Production Stencil PCB Design The Best Quality PCB Supplier PCB Supplier of the Best Quality, Lowest Price Low Cost Prototype Standard Prototype & Production Stencil PCB Design Visit us: www. qualiecocircuits.co.nz OVERVIEW A thin

More information

CHAPTER 11: Testing, Assembly, and Packaging

CHAPTER 11: Testing, Assembly, and Packaging Chapter 11 1 CHAPTER 11: Testing, Assembly, and Packaging The previous chapters focus on the fabrication of devices in silicon or the frontend technology. Hundreds of chips can be built on a single wafer,

More information

Through Glass Via (TGV) Technology for RF Applications

Through Glass Via (TGV) Technology for RF Applications Through Glass Via (TGV) Technology for RF Applications C. H. Yun 1, S. Kuramochi 2, and A. B. Shorey 3 1 Qualcomm Technologies, Inc. 5775 Morehouse Dr., San Diego, California 92121, USA Ph: +1-858-651-5449,

More information

& Anti-pillow. Product information. Koki no-clean LEAD FREE solder paste. Contents. Lead free SOLUTIONS you can TRUST.

& Anti-pillow. Product information. Koki no-clean LEAD FREE solder paste.   Contents. Lead free SOLUTIONS you can TRUST. www.ko-ki.co.jp #46019E Revised on JUN 15, 2009 Koki no-clean LEAD FREE solder paste Super Low-Void & Anti-pillow Product information Pillow defect This Product Information contains product performance

More information

Okamoto Machine Tool Works, LTD. June 22, th SEMATECH Symposium Japan 1

Okamoto Machine Tool Works, LTD. June 22, th SEMATECH Symposium Japan 1 Okamoto Machine Tool Works, LTD 1 Contents Solutions for TSV Wafer Thinning Process (Front Side Via) TSV Wafer Thinning Challenges Process Improvement (4-years Development) TSV Wafer Thinning Tool (TSV300)

More information

Data Sheet _ R&D. Rev Date: 8/17

Data Sheet _ R&D. Rev Date: 8/17 Data Sheet _ R&D Rev Date: 8/17 Micro Bump In coming years the interconnect density for several applications such as micro display, imaging devices will approach the pitch 10um and below. Many research

More information

3D ICs: Recent Advances in the Industry

3D ICs: Recent Advances in the Industry 3D ICs: Recent Advances in the Industry Suresh Ramalingam Senior Director, Advanced Packaging Outline 3D IC Background 3D IC Technology Development Summary Acknowledgements Stacked Silicon Interconnect

More information

3D TSV Micro Cu Column Chip-to-Substrate/Chip Assmbly/Packaging Technology

3D TSV Micro Cu Column Chip-to-Substrate/Chip Assmbly/Packaging Technology 3D TSV Micro Cu Column Chip-to-Substrate/Chip Assmbly/Packaging Technology by Seung Wook Yoon, *K. T. Kang, W. K. Choi, * H. T. Lee, Andy C. B. Yong and Pandi C. Marimuthu STATS ChipPAC LTD, 5 Yishun Street

More information

Technology Development & Integration Challenges for Lead Free Implementation. Vijay Wakharkar. Assembly Technology Development Intel Corporation

Technology Development & Integration Challenges for Lead Free Implementation. Vijay Wakharkar. Assembly Technology Development Intel Corporation Technology Development & Integration Challenges for Lead Free Implementation Vijay Wakharkar Assembly Technology Development Intel Corporation Legal Information THIS DOCUMENT AND RELATED MATERIALS AND

More information

Automotive Devices: Quad No- Lead (QFN) Technology with Inspectable Solder Connections

Automotive Devices: Quad No- Lead (QFN) Technology with Inspectable Solder Connections Automotive Devices: Quad No- Lead (QFN) Technology with Inspectable Solder Connections FTF-SDS-F0026 Dwight Daniels Package Engineer A P R. 2 0 1 4 TM External Use Agenda Wettable Lead Ends / Definition

More information

AN5046 Application note

AN5046 Application note Application note Printed circuit board assembly recommendations for STMicroelectronics PowerFLAT packages Introduction The PowerFLAT package (5x6) was created to allow a larger die to fit in a standard

More information

Figure 1. FCBGA and fccsp Packages

Figure 1. FCBGA and fccsp Packages Packaging Technology and Design Challenge for Fine Pitch Micro-Bump Cu-Pillar and BOT (Direct Bond on Substrate-Trace) Using TCNCP (Thermal Compression with Non-Conductive Paste Underfill) Method *MJ (Myung-June)

More information

EMBEDDED ACTIVE DEVICE PACKAGING TECHNOLOGY FOR REAL DDR2 MEMORY CHIPS

EMBEDDED ACTIVE DEVICE PACKAGING TECHNOLOGY FOR REAL DDR2 MEMORY CHIPS EMBEDDED ACTIVE DEVICE PACKAGING TECHNOLOGY FOR REAL DDR2 MEMORY CHIPS Yin-Po Hung, Tao-Chih Chang, Ching-Kuan Lee, Yuan-Chang Lee, Jing-Yao Chang, Chao-Kai Hsu, Shu-Man Li, Jui-Hsiung Huang, Fang-Jun

More information

A Study on Package Stacking Process for Package-on-Package (PoP)

A Study on Package Stacking Process for Package-on-Package (PoP) A Study on Package Stacking Process for Package-on-Package (PoP) Akito Yoshida, Jun Taniguchi, *Katsumasa Murata, *Morihiro Kada, **Yusuke Yamamoto, ***Yoshinori Takagi, ***Takeru Notomi, ***Asako Fujita

More information

Grypper GrypperG40 GrypperG80

Grypper GrypperG40 GrypperG80 Grypper GrypperG40 GrypperG80 High performance net zero footprint engineering test sockets ATTACHMENT AND REMOVAL GUIDE Before You Begin ABOUT THIS GUIDE Welcome to the Grypper Product Test Socket Attachment

More information

alpha Stencils Ultra-high precision stencils for semi conductor manufacturing ALPHA Flux WLCSP Flux deposition stencils

alpha Stencils Ultra-high precision stencils for semi conductor manufacturing ALPHA Flux WLCSP Flux deposition stencils alpha Stencils Alpha Ultra-high precision stencils for semi conductor manufacturing ALPHA Flux WLCSP Flux deposition stencils ALPHA Sphere WLCSP Ball placement stencils ALPHA Bump bumping solder paste

More information

MICROBUMP LITHOGRAPHY FOR 3D STACKING APPLICATIONS

MICROBUMP LITHOGRAPHY FOR 3D STACKING APPLICATIONS MICROBUMP LITHOGRAPHY FOR 3D STACKING APPLICATIONS Patrick Jaenen, John Slabbekoorn, Andy Miller IMEC Kapeldreef 75 B-3001 Leuven, Belgium millera@imec.be Warren W. Flack, Manish Ranjan, Gareth Kenyon,

More information

"Low Cost Electroless Bumping for Ultra Fine Pitch Applications in 8" and 12" Wafers"

Low Cost Electroless Bumping for Ultra Fine Pitch Applications in 8 and 12 Wafers 1 "Low Cost Electroless Bumping for Ultra Fine Pitch Applications in 8" and 12" Wafers" Elke Zakel, Thomas Oppert, Ghassem Azdasht, Thorsten Teutsch * Pac Tech Packaging Technologies GmbH Am Schlangenhorst

More information

Flip-Chip for MM-Wave and Broadband Packaging

Flip-Chip for MM-Wave and Broadband Packaging 1 Flip-Chip for MM-Wave and Broadband Packaging Wolfgang Heinrich Ferdinand-Braun-Institut für Höchstfrequenztechnik (FBH) Berlin / Germany with contributions by F. J. Schmückle Motivation Growing markets

More information

Compression Molding. Solutions for 3D TSV and other advanced packages as well as cost savings for standard package applications

Compression Molding. Solutions for 3D TSV and other advanced packages as well as cost savings for standard package applications Compression Molding Solutions for 3D TSV and other advanced packages as well as cost savings for standard package applications 1. Company Introduction 2. Package Development Trend 3. Compression FFT Molding

More information

6.777J/2.372J Design and Fabrication of Microelectromechanical Devices Spring Term Massachusetts Institute of Technology

6.777J/2.372J Design and Fabrication of Microelectromechanical Devices Spring Term Massachusetts Institute of Technology 6.777J/2.372J Design and Fabrication of Microelectromechanical Devices Spring Term 2007 Massachusetts Institute of Technology PROBLEM SET 2 (16 pts) Issued: Lecture 4 Due: Lecture 6 Problem 4.14 (4 pts):

More information

no-clean and halide free INTERFLUX Electronics N.V.

no-clean and halide free INTERFLUX Electronics N.V. Delphine series no-clean and halide free s o l d e r p a s t e INTERFLUX Electronics N.V. Product manual Key properties - Anti hidden pillow defect - Low voiding chemistry - High stability - High moisture

More information

Forming a vertical interconnect structure using dry film processing for Fan Out Wafer Level Packaging

Forming a vertical interconnect structure using dry film processing for Fan Out Wafer Level Packaging 2017 IEEE 67th Electronic Components and Technology Conference Forming a vertical interconnect structure using dry film processing for Fan Out Wafer Level Packaging Yew Wing Leong, Hsiang Yao Hsiao, Soon

More information

Design and Development of True-CSP

Design and Development of True-CSP Design and Development of True-CSP *Kolan Ravi Kanth, Francis K.S. Poh, B.K. Lim, Desmond Y.R. Chong, Anthony Sun, H.B. Tan United Test & Assembly Center Ltd (UTAC) 5 Serangoon North Ave 5, Singapore 554916

More information

Applications of Solder Fortification with Preforms

Applications of Solder Fortification with Preforms Applications of Solder Fortification with Preforms Carol Gowans Indium Corporation Paul Socha Indium Corporation Ronald C. Lasky, PhD, PE Indium Corporation Dartmouth College ABSTRACT Although many have

More information

Silicon Interposers enable high performance capacitors

Silicon Interposers enable high performance capacitors Interposers between ICs and package substrates that contain thin film capacitors have been used previously in order to improve circuit performance. However, with the interconnect inductance due to wire

More information

SESUB - Its Leadership In Embedded Die Packaging Technology

SESUB - Its Leadership In Embedded Die Packaging Technology SESUB - Its Leadership In Embedded Die Packaging Technology Sip Conference China 2018 TDK Corporation ECBC, PAF, SESUB BU Kofu, Japan October 17, 2018 Contents SESUB Introduction SESUB Process SESUB Quality

More information

Two major features of this text

Two major features of this text Two major features of this text Since explanatory materials are systematically made based on subject examination questions, preparation

More information

HOW DOES PRINTED SOLDER PASTE VOLUME AFFECT SOLDER JOINT RELIABILITY?

HOW DOES PRINTED SOLDER PASTE VOLUME AFFECT SOLDER JOINT RELIABILITY? HOW DOES PRINTED SOLDER PASTE VOLUME AFFECT SOLDER JOINT RELIABILITY? ABSTRACT Printing of solder paste and stencil technology has been well studied and many papers have been presented on the topic. Very

More information

GSP. TOYOTA s recommended solder paste for automotive electronics. Product information. LEAD FREE solder paste.

GSP. TOYOTA s recommended solder paste for automotive electronics. Product information. LEAD FREE solder paste. www.ko-ki.co.jp #47012E 2011.09.27 LEAD FREE solder paste TOYOTA s recommended solder paste for automotive electronics Product information Crack-Free Residue This Product Information contains product performance

More information

Characterization of a Thick Copper Pillar Bump Process

Characterization of a Thick Copper Pillar Bump Process Characterization of a Thick Copper Pillar Bump Process Warren W. Flack, Ha-Ai Nguyen Ultratech, Inc. San Jose, CA 95126 Elliott Capsuto, Craig McEwen Shin-Etsu MicroSi, Inc. Phoenix, AZ 85044 Abstract

More information

Study on Solder Joint Reliability of Fine Pitch CSP

Study on Solder Joint Reliability of Fine Pitch CSP As originally published in the IPC APEX EXPO Conference Proceedings. Study on Solder Joint Reliability of Fine Pitch CSP Yong (Hill) Liang, Hank Mao, YongGang Yan, Jindong (King) Lee. AEG, Flextronics

More information

High Efficient Heat Dissipation on Printed Circuit Boards. Markus Wille, R&D Manager, Schoeller Electronics Systems GmbH

High Efficient Heat Dissipation on Printed Circuit Boards. Markus Wille, R&D Manager, Schoeller Electronics Systems GmbH High Efficient Heat Dissipation on Printed Circuit Boards Markus Wille, R&D Manager, Schoeller Electronics Systems GmbH m.wille@se-pcb.de Introduction 2 Heat Flux: Q x y Q z The substrate (insulation)

More information

AND8081/D. Flip Chip CSP Packages APPLICATION NOTE

AND8081/D. Flip Chip CSP Packages APPLICATION NOTE Flip Chip CSP Packages Prepared by: Denise Thienpont ON Semiconductor Staff Engineer APPLICATION NOTE Introduction to Chip Scale Packaging This application note provides guidelines for the use of Chip

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -2015/280 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 02 November 2015 (v2, 06 November 2015)

More information

Contact Material Division Business Unit Assembly Materials

Contact Material Division Business Unit Assembly Materials Contact Material Division Business Unit Assembly Materials MICROBOND SOP 91121 P SAC305-89 M3 C Seite 1 Print Performance Soldering Performance General Information MICROBOND SOP 91121 P SAC305-89 M3 Technical

More information

Processes for Flexible Electronic Systems

Processes for Flexible Electronic Systems Processes for Flexible Electronic Systems Michael Feil Fraunhofer Institut feil@izm-m.fraunhofer.de Outline Introduction Single sheet versus reel-to-reel (R2R) Substrate materials R2R printing processes

More information

mcube LGA Package Application Note

mcube LGA Package Application Note AN-001 Rev.02 mcube LGA Package Application Note AN-001 Rev.02 mcube, Inc. 1 / 21 AN-001 Rev.02 Guidelines for Printed Circuit Board (PCB) Design and Assembly with mcube Land Grid Array (LGA) Package Sensors

More information

Ultra-Low Voiding Halogen-Free No-Clean Lead-Free Solder Paste for Large Pads

Ultra-Low Voiding Halogen-Free No-Clean Lead-Free Solder Paste for Large Pads Ultra-Low Voiding Halogen-Free No-Clean Lead-Free Solder Paste for Large Pads Li Ma, Fen Chen, and Dr. Ning-Cheng Lee Indium Corporation Clinton, NY mma@indium.com; fchen@indium.com; nclee@indium.com Abstract

More information

A BASIC EXPERIMENTAL STUDY OF CAST FILM EXTRUSION PROCESS FOR FABRICATION OF PLASTIC MICROLENS ARRAY DEVICE

A BASIC EXPERIMENTAL STUDY OF CAST FILM EXTRUSION PROCESS FOR FABRICATION OF PLASTIC MICROLENS ARRAY DEVICE A BASIC EXPERIMENTAL STUDY OF CAST FILM EXTRUSION PROCESS FOR FABRICATION OF PLASTIC MICROLENS ARRAY DEVICE Chih-Yuan Chang and Yi-Min Hsieh and Xuan-Hao Hsu Department of Mold and Die Engineering, National

More information

QUALITY SEMICONDUCTOR, INC.

QUALITY SEMICONDUCTOR, INC. Q QUALITY SEMICONDUCTOR, INC. AN-20 Board Assembly Techniques for 0.4mm Pin Pitch Surface Mount Packages Application Note AN-20 The need for higher performance systems continues to push both silicon and

More information

CF Series AXC5/AXC6. FEATURES 1. Vertical mating type with a 0.8 mm mated height low profile design

CF Series AXC5/AXC6. FEATURES 1. Vertical mating type with a 0.8 mm mated height low profile design For board-to-micro coaxial wire Micro coaxial connectors (Low profile) AC5/AC6 CF Series 2. with strong resistance to various environments provides high contact reliability and facilitates connection work

More information

APPLICATION NOTE 6381 ORGANIC LAND GRID ARRAY (OLGA) AND ITS APPLICATIONS

APPLICATION NOTE 6381 ORGANIC LAND GRID ARRAY (OLGA) AND ITS APPLICATIONS Keywords: OLGA, SMT, PCB design APPLICATION NOTE 6381 ORGANIC LAND GRID ARRAY (OLGA) AND ITS APPLICATIONS Abstract: This application note discusses Maxim Integrated s OLGA and provides the PCB design and

More information

Engineering Manual LOCTITE GC 10 T3 Solder Paste

Engineering Manual LOCTITE GC 10 T3 Solder Paste Engineering Manual LOCTITE GC T Solder Paste Suitable for use with: Standard SAC Alloys GC The Game Changer Contents. Performance Summary. Introduction: Properties, Features & Benefits. Operating Parameters

More information

Innovations Push Package-on-Package Into New Markets. Flynn Carson. STATS ChipPAC Inc Kato Rd Fremont, CA 94538

Innovations Push Package-on-Package Into New Markets. Flynn Carson. STATS ChipPAC Inc Kato Rd Fremont, CA 94538 Innovations Push Package-on-Package Into New Markets by Flynn Carson STATS ChipPAC Inc. 47400 Kato Rd Fremont, CA 94538 Copyright 2010. Reprinted from Semiconductor International, April 2010. By choosing

More information

QUALIFICATION PLAN PCN #: IIRA-05BPMD768. Date: Dec 18, Qualification of 132L DQFN package at ANAC assembly site. A.

QUALIFICATION PLAN PCN #: IIRA-05BPMD768. Date: Dec 18, Qualification of 132L DQFN package at ANAC assembly site. A. QUALIFICATION PLAN PCN #: IIRA-05BPMD768 Date: Dec 18, 2013 Qualification of 132L DQFN package at ANAC assembly site. Distribution Surasit P. Rangsun K A. Navarro Irina K Wichai K. Fernando C Chaweng W.

More information

!"#$%&'()'*"+,+$&#' ' '

!#$%&'()'*+,+$&#' ' ' !"#$%&'()'*"+,+$&#' *"89"+&+6'B22&83%45'8/6&10/%2'A"1'/22&83%4'/+#'C"0+0+D'8&67"#2'0+'&%&

More information

Market and technology trends in advanced packaging

Market and technology trends in advanced packaging Close Market and technology trends in advanced packaging Executive OVERVIEW Recent advances in device miniaturization trends have placed stringent requirements for all aspects of product manufacturing.

More information

Advances in stacked-die packaging

Advances in stacked-die packaging pg.10-15-carson-art 16/6/03 4:12 pm Page 1 The stacking of die within IC packages, primarily Chip Scale Packages (CSP) Ball Grid Arrays (BGAs) has evolved rapidly over the last few years. The now standard

More information

Application Note. Soldering Guidelines for Module PCB Mounting Rev 13

Application Note. Soldering Guidelines for Module PCB Mounting Rev 13 Application Note Soldering Guidelines for Module PCB Mounting Rev 13 OBJECTIVE The objective of this application note is to provide ANADIGICS customers general guidelines for PCB second level interconnect

More information

B. Flip-Chip Technology

B. Flip-Chip Technology B. Flip-Chip Technology B1. Level 1. Introduction to Flip-Chip techniques B1.1 Why flip-chip? In the development of packaging of electronics the aim is to lower cost, increase the packaging density, improve

More information

Modeling, Design, and Demonstration of 2.5D Glass Interposers for 16-Channel 28 Gbps Signaling Applications

Modeling, Design, and Demonstration of 2.5D Glass Interposers for 16-Channel 28 Gbps Signaling Applications Modeling, Design, and Demonstration of 2.5D Glass Interposers for 16-Channel 28 Gbps Signaling Applications Brett Sawyer, Bruce C. Chou, Saumya Gandhi, Jack Mateosky, Venky Sundaram, and Rao Tummala 3D

More information

Advanced High-Density Interconnection Technology

Advanced High-Density Interconnection Technology Advanced High-Density Interconnection Technology Osamu Nakao 1 This report introduces Fujikura s all-polyimide IVH (interstitial Via Hole)-multi-layer circuit boards and device-embedding technology. Employing

More information

BGA (Ball Grid Array)

BGA (Ball Grid Array) BGA (Ball Grid Array) National Semiconductor Application Note 1126 November 2002 Table of Contents Introduction... 2 Package Overview... 3 PBGA (PLASTIC BGA) CONSTRUCTION... 3 TE-PBGA (THERMALLY ENHANCED

More information

IMPROVED SMT AND BLR OF 0.35MM PITCH WAFER LEVEL PACKAGES

IMPROVED SMT AND BLR OF 0.35MM PITCH WAFER LEVEL PACKAGES As originally published in the SMTA Proceedings. IMPROVED SMT AND BLR OF 0.35MM PITCH WAFER LEVEL PACKAGES Brian Roggeman and Beth Keser Qualcomm Technologies, Inc. San Diego, CA, USA roggeman@qti.qualcomm.com

More information

UNSIGNED HARDCOPY NOT CONTROLLED

UNSIGNED HARDCOPY NOT CONTROLLED Subject: APPROVED BY STATUS PURPOSE Printed Wire Board Fabrication Manager, Hardware Engineering Maintenance Revision Extension to the master drawing for the fabrication and inspection of rigid single,

More information

(a) (d) (e) (b) (c) (f) 3D-NAND Flash and Its Manufacturing Process

(a) (d) (e) (b) (c) (f) 3D-NAND Flash and Its Manufacturing Process 3D-NAND Flash and Its Manufacturing Process 79 (d) Si Si (b) (c) (e) Si (f) +1-2 (g) (h) Figure 2.33 Top-down view in cap oxide and (b) in nitride_n-2; (c) cross-section near the top of the channel; top-down

More information

Getting the FLI Lead Out. Thomas J. De Bonis Assembly & Test Technology Development Technology and Manufacturing Group

Getting the FLI Lead Out. Thomas J. De Bonis Assembly & Test Technology Development Technology and Manufacturing Group Getting the FLI Lead Out Thomas J. De Bonis Assembly & Test Technology Development Technology and Manufacturing Group Lead has been used in flip chip FLI for decades. RoHS Exemption 15 was enacted in recognition

More information