Probabilistic Robotics and Models of Gaze Control

Size: px
Start display at page:

Download "Probabilistic Robotics and Models of Gaze Control"

Transcription

1 Probabilistic Robotics and Models of Gaze Control Dr. José Ignacio Núñez Varela MICCS 2015

2 Part I: Probabilistic Robotics

3 Imagen:

4 Imagen:

5 Why do we need robots?

6 Imagen:

7 Imagen:

8 Imagen:

9 Imagen:

10 Imagen:

11 Imagen:

12 Imagen:

13 But the kind of robot we really want is

14 Imagen: cb /bigbangtheory/images/e/ed/the-big-bang-theory-the-robotic- Manipulation.jpg

15 No, not really. What about this

16 Imagen:

17 Imagen:

18 Imagen:

19 Unfortunately, there are still many things to solve first

20 Basic model of robot interaction

21

22 Sensing Planning Acting Asimo Honda Picture credits:

23 We need intelligent robots!

24 Intelligent robots Learning Reasoning Decision-making Planning Understanding Common sense PR2 Willow Garage

25 Robots have to be able to accomodate the enormous uncertainty that exists in the physical world. Imagen:

26 But, what is uncertainty?

27 Being not certain about something. Imagen:

28 The estimated percentage by which an estimated or calculated value may differ from the true value.

29 Imagen:

30 Let s see an example Robot grasping

31

32 The robot might not have a good estimate of where the object is

33

34 What factors contribute to the robot's uncertainty?

35 Robot Environments Well structured environment << uncertainty Not structured environment >>> uncertainty Imagen:

36 Robot Sensors Sensors are limited in what they can perceive (e.g., physical limitations affect range and resolution) Sensors are subject to noise Sensors can break Imagen:

37 Robot Actuators Motors are, at some extent, unpredictable Control noise, wear-and-tear, mechanical failure Imagen:

38 Robot s Internal Models All internal models of the world are approximate Model errors have often being ignored Imagen:

39 Algorithmic Approximations Robots are real time systems, thus limiting the amount of computation being carried out Algorithms need to be approximated Imagen:

40 Robots are forced to act even though they don't have sufficient information to make decisions with absolute certainty. Imagen:

41 Managing uncertainty is possibly the most important step towards robust real-world robot systems. - Thrun, Burgard and Fox

42 Probabilistic Robotics Key idea: Represent uncertainty explicitly using the calculus of probability theory. Instead of relying on a single best guess, probabilistic algorithms represent information by probability distributions over a whole space of guesses.

43 Mobile Robot Localization Imagen:

44 Mobile Robot Localization The map is given The robot wants to know where it is

45 Mobile Robot Localization The robot assumes a uniform probability distribution of where it is (it is likely to be in any place in the map)

46 Mobile Robot Localization The robot s belief increases after sensing a door (data is integrated into the old belief)

47 Mobile Robot Localization The robot moves some distance (Its belief moves as well, but the movement introduces some noise)

48 Mobile Robot Localization The robot senses a door once again, and its belief of where it is increases

49 Bayes Theorem Imagen:

50 Bayes Theorem Prior probability

51 Bayes Theorem Data

52 Bayes Theorem Posterior probability

53 Part II: Gaze Control Imagen:

54 Gaze Control Biological perspective Machine perspective Jason Babcock icub.org

55 Why study gaze control?

56

57

58

59

60 Foveal Vision cellfield.ca Michael Land

61

62

63 Eye Movements Saccades Aim: Shift the fovea to obtain high resolution samples Rapid jump-like movements (900 /sec) Ballistic (trajectory cannot change) Stereotyped (follow the same pattern) Voluntary and involuntary

64 Saccade Sequence

65 We perform hundreds or even thousands of saccades every day!

66 How does the brain decide where to fixate next?

67 Active Vision Ilya Repin

68 Yarbus

69 Task and context determine where to fixate next

70 Vision and Action Mary Hayhoe

71 Uncertainty Reduction

72 What mechanisms a rational decision maker could employ to select a gaze location optimally, or near optimally, given limited information and limited computation time during the performance of a task? Engineering science goal How humans select the next gaze location? Human behavioural goal

73 Gaze Control Processes

74 icub Humanoid Robot icub.org

75 Two problems where to look gaze allocation

76 Pick & Place Task

77

78

79

80

81 Models of Gaze Control Based on uncertainty reduction (Uncertainty) Based on rewards and uncertainty (Rew+Unc) Based on rewards, uncertainty and gain (Rew+Unc+Gain)

82 One-step look ahead gaze control What would happen if I look at entity e i?

83 Uncertainty Reduction How much uncertainty is reduced if I look at entity e i? X

84 Reward and Uncertainty How much value am I expected to get after looking at entity e i? X

85 Reward, Uncertainty & Gain Which motor system would get more benefit if gaze is allocated to it? X

86

87 Conclusions We need robots! There is still much to do before we can buy our assistant robot You can contribute to make this happen!

88 Thank You!! Botodesigns / Chen Reichert jose.nunez@uaslp.mx Website:

89 Reach/Grasp Sensitivity

90 Observation Noise

91 Field of View

Probabilistic Robotics and Models of Gaze Control. José Ignacio Núñez Varela

Probabilistic Robotics and Models of Gaze Control. José Ignacio Núñez Varela Probabilistic Robotics and Models of Gaze Control José Ignacio Núñez Varela Seminario del Posgrado de Ingeniería Eléctrica 22 noviembre 2013 Outline: Introduction to probabilistic robotics Introduction

More information

Visual Search using Principal Component Analysis

Visual Search using Principal Component Analysis Visual Search using Principal Component Analysis Project Report Umesh Rajashekar EE381K - Multidimensional Digital Signal Processing FALL 2000 The University of Texas at Austin Abstract The development

More information

The Future of AI A Robotics Perspective

The Future of AI A Robotics Perspective The Future of AI A Robotics Perspective Wolfram Burgard Autonomous Intelligent Systems Department of Computer Science University of Freiburg Germany The Future of AI My Robotics Perspective Wolfram Burgard

More information

Unit 1: Introduction to Autonomous Robotics

Unit 1: Introduction to Autonomous Robotics Unit 1: Introduction to Autonomous Robotics Computer Science 4766/6778 Department of Computer Science Memorial University of Newfoundland January 16, 2009 COMP 4766/6778 (MUN) Course Introduction January

More information

Unit 1: Introduction to Autonomous Robotics

Unit 1: Introduction to Autonomous Robotics Unit 1: Introduction to Autonomous Robotics Computer Science 6912 Andrew Vardy Department of Computer Science Memorial University of Newfoundland May 13, 2016 COMP 6912 (MUN) Course Introduction May 13,

More information

Advanced Robotics Introduction

Advanced Robotics Introduction Advanced Robotics Introduction Institute for Software Technology 1 Agenda Motivation Some Definitions and Thought about Autonomous Robots History Challenges Application Examples 2 Bridge the Gap Mobile

More information

TSBB15 Computer Vision

TSBB15 Computer Vision TSBB15 Computer Vision Lecture 9 Biological Vision!1 Two parts 1. Systems perspective 2. Visual perception!2 Two parts 1. Systems perspective Based on Michael Land s and Dan-Eric Nilsson s work 2. Visual

More information

Perceptual and Artistic Principles for Effective Computer Depiction. Gaze Movement & Focal Points

Perceptual and Artistic Principles for Effective Computer Depiction. Gaze Movement & Focal Points Perceptual and Artistic Principles for Effective Computer Depiction Perceptual and Artistic Principles for Effective Computer Depiction Perceptual and Artistic Principles for Effective Computer Depiction

More information

Open Source in Mobile Robotics

Open Source in Mobile Robotics Presentation for the course Il software libero Politecnico di Torino - IIT@Polito June 13, 2011 Introduction Mobile Robotics Applications Where are the problems? What about the solutions? Mobile robotics

More information

ROBOTICS ENG YOUSEF A. SHATNAWI INTRODUCTION

ROBOTICS ENG YOUSEF A. SHATNAWI INTRODUCTION ROBOTICS INTRODUCTION THIS COURSE IS TWO PARTS Mobile Robotics. Locomotion (analogous to manipulation) (Legged and wheeled robots). Navigation and obstacle avoidance algorithms. Robot Vision Sensors and

More information

Figure 1: The trajectory and its associated sensor data ow of a mobile robot Figure 2: Multi-layered-behavior architecture for sensor planning In this

Figure 1: The trajectory and its associated sensor data ow of a mobile robot Figure 2: Multi-layered-behavior architecture for sensor planning In this Sensor Planning for Mobile Robot Localization Based on Probabilistic Inference Using Bayesian Network Hongjun Zhou Shigeyuki Sakane Department of Industrial and Systems Engineering, Chuo University 1-13-27

More information

Advanced Robotics Introduction

Advanced Robotics Introduction Advanced Robotics Introduction Institute for Software Technology 1 Motivation Agenda Some Definitions and Thought about Autonomous Robots History Challenges Application Examples 2 http://youtu.be/rvnvnhim9kg

More information

What is Artificial Intelligence? Alternate Definitions (Russell + Norvig) Human intelligence

What is Artificial Intelligence? Alternate Definitions (Russell + Norvig) Human intelligence CSE 3401: Intro to Artificial Intelligence & Logic Programming Introduction Required Readings: Russell & Norvig Chapters 1 & 2. Lecture slides adapted from those of Fahiem Bacchus. What is AI? What is

More information

A conversation with Russell Stewart, July 29, 2015

A conversation with Russell Stewart, July 29, 2015 Participants A conversation with Russell Stewart, July 29, 2015 Russell Stewart PhD Student, Stanford University Nick Beckstead Research Analyst, Open Philanthropy Project Holden Karnofsky Managing Director,

More information

Spring 19 Planning Techniques for Robotics Introduction; What is Planning for Robotics?

Spring 19 Planning Techniques for Robotics Introduction; What is Planning for Robotics? 16-350 Spring 19 Planning Techniques for Robotics Introduction; What is Planning for Robotics? Maxim Likhachev Robotics Institute Carnegie Mellon University About Me My Research Interests: - Planning,

More information

Goals of this Course. CSE 473 Artificial Intelligence. AI as Science. AI as Engineering. Dieter Fox Colin Zheng

Goals of this Course. CSE 473 Artificial Intelligence. AI as Science. AI as Engineering. Dieter Fox Colin Zheng CSE 473 Artificial Intelligence Dieter Fox Colin Zheng www.cs.washington.edu/education/courses/cse473/08au Goals of this Course To introduce you to a set of key: Paradigms & Techniques Teach you to identify

More information

CSC384 Intro to Artificial Intelligence* *The following slides are based on Fahiem Bacchus course lecture notes.

CSC384 Intro to Artificial Intelligence* *The following slides are based on Fahiem Bacchus course lecture notes. CSC384 Intro to Artificial Intelligence* *The following slides are based on Fahiem Bacchus course lecture notes. Artificial Intelligence A branch of Computer Science. Examines how we can achieve intelligent

More information

CS295-1 Final Project : AIBO

CS295-1 Final Project : AIBO CS295-1 Final Project : AIBO Mert Akdere, Ethan F. Leland December 20, 2005 Abstract This document is the final report for our CS295-1 Sensor Data Management Course Final Project: Project AIBO. The main

More information

Recommended Text. Logistics. Course Logistics. Intelligent Robotic Systems

Recommended Text. Logistics. Course Logistics. Intelligent Robotic Systems Recommended Text Intelligent Robotic Systems CS 685 Jana Kosecka, 4444 Research II kosecka@gmu.edu, 3-1876 [1] S. LaValle: Planning Algorithms, Cambridge Press, http://planning.cs.uiuc.edu/ [2] S. Thrun,

More information

Humanoid Robots. by Julie Chambon

Humanoid Robots. by Julie Chambon Humanoid Robots by Julie Chambon 25th November 2008 Outlook Introduction Why a humanoid appearance? Particularities of humanoid Robots Utility of humanoid Robots Complexity of humanoids Humanoid projects

More information

Eye-Tracking Methodolgy

Eye-Tracking Methodolgy Eye-Tracking Methodolgy Author: Bálint Szabó E-mail: szabobalint@erg.bme.hu Budapest University of Technology and Economics The human eye Eye tracking History Case studies Class work Ergonomics 2018 Vision

More information

Artificial Intelligence: Definition

Artificial Intelligence: Definition Lecture Notes Artificial Intelligence: Definition Dae-Won Kim School of Computer Science & Engineering Chung-Ang University What are AI Systems? Deep Blue defeated the world chess champion Garry Kasparov

More information

Robot Motion Control and Planning

Robot Motion Control and Planning Robot Motion Control and Planning http://www.cs.bilkent.edu.tr/~saranli/courses/cs548 Lecture 1 Introduction and Logistics Uluç Saranlı http://www.cs.bilkent.edu.tr/~saranli CS548 - Robot Motion Control

More information

Physics-Based Manipulation in Human Environments

Physics-Based Manipulation in Human Environments Vol. 31 No. 4, pp.353 357, 2013 353 Physics-Based Manipulation in Human Environments Mehmet R. Dogar Siddhartha S. Srinivasa The Robotics Institute, School of Computer Science, Carnegie Mellon University

More information

CS 188: Artificial Intelligence Fall Course Information

CS 188: Artificial Intelligence Fall Course Information CS 188: Artificial Intelligence Fall 2009 Lecture 1: Introduction 8/27/2009 Dan Klein UC Berkeley Multiple slides over the course adapted from either Stuart Russell or Andrew Moore Course Information http://inst.cs.berkeley.edu/~cs188

More information

4D-Particle filter localization for a simulated UAV

4D-Particle filter localization for a simulated UAV 4D-Particle filter localization for a simulated UAV Anna Chiara Bellini annachiara.bellini@gmail.com Abstract. Particle filters are a mathematical method that can be used to build a belief about the location

More information

CSC C85 Embedded Systems Project # 1 Robot Localization

CSC C85 Embedded Systems Project # 1 Robot Localization 1 The goal of this project is to apply the ideas we have discussed in lecture to a real-world robot localization task. You will be working with Lego NXT robots, and you will have to find ways to work around

More information

CSE 473 Artificial Intelligence (AI) Outline

CSE 473 Artificial Intelligence (AI) Outline CSE 473 Artificial Intelligence (AI) Rajesh Rao (Instructor) Ravi Kiran (TA) http://www.cs.washington.edu/473 UW CSE AI faculty Goals of this course Logistics What is AI? Examples Challenges Outline 2

More information

Insights into High-level Visual Perception

Insights into High-level Visual Perception Insights into High-level Visual Perception or Where You Look is What You Get Jeff B. Pelz Visual Perception Laboratory Carlson Center for Imaging Science Rochester Institute of Technology Students Roxanne

More information

CS 378: Autonomous Intelligent Robotics. Instructor: Jivko Sinapov

CS 378: Autonomous Intelligent Robotics. Instructor: Jivko Sinapov CS 378: Autonomous Intelligent Robotics Instructor: Jivko Sinapov http://www.cs.utexas.edu/~jsinapov/teaching/cs378/ Semester Schedule C++ and Robot Operating System (ROS) Learning to use our robots Computational

More information

Humanoid robot. Honda's ASIMO, an example of a humanoid robot

Humanoid robot. Honda's ASIMO, an example of a humanoid robot Humanoid robot Honda's ASIMO, an example of a humanoid robot A humanoid robot is a robot with its overall appearance based on that of the human body, allowing interaction with made-for-human tools or environments.

More information

A.I in Automotive? Why and When.

A.I in Automotive? Why and When. A.I in Automotive? Why and When. AGENDA 01 02 03 04 Definitions A.I? A.I in automotive Now? Next big A.I breakthrough in Automotive 01 DEFINITIONS DEFINITIONS Artificial Intelligence Artificial Intelligence:

More information

High Speed vslam Using System-on-Chip Based Vision. Jörgen Lidholm Mälardalen University Västerås, Sweden

High Speed vslam Using System-on-Chip Based Vision. Jörgen Lidholm Mälardalen University Västerås, Sweden High Speed vslam Using System-on-Chip Based Vision Jörgen Lidholm Mälardalen University Västerås, Sweden jorgen.lidholm@mdh.se February 28, 2007 1 The ChipVision Project Within the ChipVision project we

More information

Revised and extended. Accompanies this course pages heavier Perception treated more thoroughly. 1 - Introduction

Revised and extended. Accompanies this course pages heavier Perception treated more thoroughly. 1 - Introduction Topics to be Covered Coordinate frames and representations. Use of homogeneous transformations in robotics. Specification of position and orientation Manipulator forward and inverse kinematics Mobile Robots:

More information

CS325 Artificial Intelligence Robotics I Autonomous Robots (Ch. 25)

CS325 Artificial Intelligence Robotics I Autonomous Robots (Ch. 25) CS325 Artificial Intelligence Robotics I Autonomous Robots (Ch. 25) Dr. Cengiz Günay, Emory Univ. Günay Robotics I Autonomous Robots (Ch. 25) Spring 2013 1 / 15 Robots As Killers? The word robot coined

More information

LECTURE 1: OVERVIEW. CS 4100: Foundations of AI. Instructor: Robert Platt. (some slides from Chris Amato, Magy Seif El-Nasr, and Stacy Marsella)

LECTURE 1: OVERVIEW. CS 4100: Foundations of AI. Instructor: Robert Platt. (some slides from Chris Amato, Magy Seif El-Nasr, and Stacy Marsella) LECTURE 1: OVERVIEW CS 4100: Foundations of AI Instructor: Robert Platt (some slides from Chris Amato, Magy Seif El-Nasr, and Stacy Marsella) SOME LOGISTICS Class webpage: http://www.ccs.neu.edu/home/rplatt/cs4100_spring2018/index.html

More information

Executive Summary. Chapter 1. Overview of Control

Executive Summary. Chapter 1. Overview of Control Chapter 1 Executive Summary Rapid advances in computing, communications, and sensing technology offer unprecedented opportunities for the field of control to expand its contributions to the economic and

More information

GPU Computing for Cognitive Robotics

GPU Computing for Cognitive Robotics GPU Computing for Cognitive Robotics Martin Peniak, Davide Marocco, Angelo Cangelosi GPU Technology Conference, San Jose, California, 25 March, 2014 Acknowledgements This study was financed by: EU Integrating

More information

Introduction to Mobile Robotics Welcome

Introduction to Mobile Robotics Welcome Introduction to Mobile Robotics Welcome Wolfram Burgard, Michael Ruhnke, Bastian Steder 1 Today This course Robotics in the past and today 2 Organization Wed 14:00 16:00 Fr 14:00 15:00 lectures, discussions

More information

Why we need to know what AI is. Overview. Artificial Intelligence is it finally arriving?

Why we need to know what AI is. Overview. Artificial Intelligence is it finally arriving? Artificial Intelligence is it finally arriving? Artificial Intelligence is it finally arriving? Are we nearly there yet? Leslie Smith Computing Science and Mathematics University of Stirling May 2 2013.

More information

CSE 473 Artificial Intelligence (AI)

CSE 473 Artificial Intelligence (AI) CSE 473 Artificial Intelligence (AI) Rajesh Rao (Instructor) Jennifer Hanson (TA) Evan Herbst (TA) http://www.cs.washington.edu/473 Based on slides by UW CSE AI faculty, Dan Klein, Stuart Russell, Andrew

More information

Fall 17 Planning & Decision-making in Robotics Introduction; What is Planning, Role of Planning in Robots

Fall 17 Planning & Decision-making in Robotics Introduction; What is Planning, Role of Planning in Robots 16-782 Fall 17 Planning & Decision-making in Robotics Introduction; What is Planning, Role of Planning in Robots Maxim Likhachev Robotics Institute Carnegie Mellon University Class Logistics Instructor:

More information

Outline. Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types Agent types

Outline. Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types Agent types Intelligent Agents Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types Agent types Agents An agent is anything that can be viewed as

More information

AI and the Impending Revolution in Brain Sciences

AI and the Impending Revolution in Brain Sciences AI and the Impending Revolution in Brain Sciences AAAI Presidential Address Tom M. Mitchell Carnegie Mellon University August 2002 Collaborators: Marcel Just, Radu Stefan Niculescu, Francisco Pereira,

More information

CS 730/830: Intro AI. Prof. Wheeler Ruml. TA Bence Cserna. Thinking inside the box. 5 handouts: course info, project info, schedule, slides, asst 1

CS 730/830: Intro AI. Prof. Wheeler Ruml. TA Bence Cserna. Thinking inside the box. 5 handouts: course info, project info, schedule, slides, asst 1 CS 730/830: Intro AI Prof. Wheeler Ruml TA Bence Cserna Thinking inside the box. 5 handouts: course info, project info, schedule, slides, asst 1 Wheeler Ruml (UNH) Lecture 1, CS 730 1 / 23 My Definition

More information

Distributed Robotics: Building an environment for digital cooperation. Artificial Intelligence series

Distributed Robotics: Building an environment for digital cooperation. Artificial Intelligence series Distributed Robotics: Building an environment for digital cooperation Artificial Intelligence series Distributed Robotics March 2018 02 From programmable machines to intelligent agents Robots, from the

More information

Course Information. CS 188: Artificial Intelligence. Course Staff. Course Information. Today. Waiting List. Lecture 1: Introduction.

Course Information. CS 188: Artificial Intelligence. Course Staff. Course Information. Today. Waiting List. Lecture 1: Introduction. CS 188: Artificial Intelligence Course Information http://inst.cs.berkeley.edu/~cs188/sp12 Lecture 1: Introduction Pieter Abbeel UC Berkeley Many slides from Dan Klein. This semester s website will be

More information

CS 188: Artificial Intelligence. Course Information

CS 188: Artificial Intelligence. Course Information CS 188: Artificial Intelligence Lecture 1: Introduction Pieter Abbeel UC Berkeley Many slides from Dan Klein. Course Information http://inst.cs.berkeley.edu/~cs188/sp12 This semester s website will be

More information

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 1: Intro

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 1: Intro COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 1: Intro Sanjeev Arora Elad Hazan Today s Agenda Defining intelligence and AI state-of-the-art, goals Course outline AI by introspection

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence (Sistemas Inteligentes) Pedro Cabalar Depto. Computación Universidade da Coruña, SPAIN Chapter 1. Introduction Pedro Cabalar (UDC) ( Depto. AIComputación Universidade da Chapter

More information

Virtual Assistants and Self-Driving Cars: To what extent is Artificial Intelligence needed in Next-Generation Autonomous Vehicles?

Virtual Assistants and Self-Driving Cars: To what extent is Artificial Intelligence needed in Next-Generation Autonomous Vehicles? Virtual Assistants and Self-Driving Cars: To what extent is Artificial Intelligence needed in Next-Generation Autonomous Vehicles? Dr. Giuseppe Lugano ERAdiate Team, University of Žilina (Slovakia) giuseppe.lugano@uniza.sk

More information

UNIT VI. Current approaches to programming are classified as into two major categories:

UNIT VI. Current approaches to programming are classified as into two major categories: Unit VI 1 UNIT VI ROBOT PROGRAMMING A robot program may be defined as a path in space to be followed by the manipulator, combined with the peripheral actions that support the work cycle. Peripheral actions

More information

Modern Robotics with OpenCV. Widodo Budiharto

Modern Robotics with OpenCV. Widodo Budiharto Modern Robotics with OpenCV Widodo Budiharto Science Publishing Group 548 Fashion Avenue New York, NY 10018 Published by Science Publishing Group 2014 Copyright Widodo Budiharto 2014 All rights reserved.

More information

Overview. Pre AI developments. Birth of AI, early successes. Overwhelming optimism underwhelming results

Overview. Pre AI developments. Birth of AI, early successes. Overwhelming optimism underwhelming results Help Overview Administrivia History/applications Modeling agents/environments What can we learn from the past? 1 Pre AI developments Philosophy: intelligence can be achieved via mechanical computation

More information

AI in Robot(ic)s in AI

AI in Robot(ic)s in AI AI in Robot(ic)s in AI Applied artificial intelligence (EDAF70) Lecture 05 2018-01-31 Elin A. Topp Course book (chapter 25), images & movies from various sources, and original material (Some images and

More information

Robot Assessment Report

Robot Assessment Report Robot Assessment Report Report Date 2009-05-27 Report Responsible Customer Information Company Name Address N/A Location N/A Controller Information Controllers S/N 66-33752 Controller Time (Hours) 20800

More information

Overview Agents, environments, typical components

Overview Agents, environments, typical components Overview Agents, environments, typical components CSC752 Autonomous Robotic Systems Ubbo Visser Department of Computer Science University of Miami January 23, 2017 Outline 1 Autonomous robots 2 Agents

More information

CS 599: Distributed Intelligence in Robotics

CS 599: Distributed Intelligence in Robotics CS 599: Distributed Intelligence in Robotics Winter 2016 www.cpp.edu/~ftang/courses/cs599-di/ Dr. Daisy Tang All lecture notes are adapted from Dr. Lynne Parker s lecture notes on Distributed Intelligence

More information

Artificial Intelligence: An overview

Artificial Intelligence: An overview Artificial Intelligence: An overview Thomas Trappenberg January 4, 2009 Based on the slides provided by Russell and Norvig, Chapter 1 & 2 What is AI? Systems that think like humans Systems that act like

More information

Designing Probabilistic State Estimators for Autonomous Robot Control

Designing Probabilistic State Estimators for Autonomous Robot Control Designing Probabilistic State Estimators for Autonomous Robot Control Thorsten Schmitt, and Michael Beetz TU München, Institut für Informatik, 80290 München, Germany {schmittt,beetzm}@in.tum.de, http://www9.in.tum.de/agilo

More information

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute Jane Li Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute State one reason for investigating and building humanoid robot (4 pts) List two

More information

Course Information. CS 188: Artificial Intelligence Fall Course Staff. Course Information. Today. Sci-Fi AI? Lecture 1: Introduction 8/25/2011

Course Information. CS 188: Artificial Intelligence Fall Course Staff. Course Information. Today. Sci-Fi AI? Lecture 1: Introduction 8/25/2011 CS 188: Artificial Intelligence Fall 2011 Course Information http://inst.cs.berkeley.edu/~cs188 Lecture 1: Introduction 8/25/2011 Dan Klein UC Berkeley Multiple slides over the course adapted from either

More information

Multi-Robot Teamwork Cooperative Multi-Robot Systems

Multi-Robot Teamwork Cooperative Multi-Robot Systems Multi-Robot Teamwork Cooperative Lecture 1: Basic Concepts Gal A. Kaminka galk@cs.biu.ac.il 2 Why Robotics? Basic Science Study mechanics, energy, physiology, embodiment Cybernetics: the mind (rather than

More information

Planning in autonomous mobile robotics

Planning in autonomous mobile robotics Sistemi Intelligenti Corso di Laurea in Informatica, A.A. 2017-2018 Università degli Studi di Milano Planning in autonomous mobile robotics Nicola Basilico Dipartimento di Informatica Via Comelico 39/41-20135

More information

MTRX 4700 : Experimental Robotics

MTRX 4700 : Experimental Robotics Mtrx 4700 : Experimental Robotics Dr. Stefan B. Williams Dr. Robert Fitch Slide 1 Course Objectives The objective of the course is to provide students with the essential skills necessary to develop robotic

More information

Subsumption Architecture in Swarm Robotics. Cuong Nguyen Viet 16/11/2015

Subsumption Architecture in Swarm Robotics. Cuong Nguyen Viet 16/11/2015 Subsumption Architecture in Swarm Robotics Cuong Nguyen Viet 16/11/2015 1 Table of content Motivation Subsumption Architecture Background Architecture decomposition Implementation Swarm robotics Swarm

More information

Low-Cost Localization of Mobile Robots Through Probabilistic Sensor Fusion

Low-Cost Localization of Mobile Robots Through Probabilistic Sensor Fusion Low-Cost Localization of Mobile Robots Through Probabilistic Sensor Fusion Brian Chung December, Abstract Efforts to achieve mobile robotic localization have relied on probabilistic techniques such as

More information

IN5480 vildehos Høst 2018

IN5480 vildehos Høst 2018 1. Three definitions of Ai The study of how to produce machines that have some of the qualities that the human mind has, such as the ability to understand language, recognize pictures, solve problems,

More information

Introduction to Robotics

Introduction to Robotics Introduction to Robotics Analysis, systems, Applications Saeed B. Niku Chapter 1 Fundamentals 1. Introduction Fig. 1.1 (a) A Kuhnezug truck-mounted crane Reprinted with permission from Kuhnezug Fordertechnik

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) Markov Chain Monte Carlo (MCMC) Tim Frasier Copyright Tim Frasier This work is licensed under the Creative Commons Attribution 4.0 International license. Click here for more information. What is MCMC?

More information

Creating a 3D environment map from 2D camera images in robotics

Creating a 3D environment map from 2D camera images in robotics Creating a 3D environment map from 2D camera images in robotics J.P. Niemantsverdriet jelle@niemantsverdriet.nl 4th June 2003 Timorstraat 6A 9715 LE Groningen student number: 0919462 internal advisor:

More information

Lean Smart Parking. How to Collect High-Quality Data Cost-Effectively

Lean Smart Parking. How to Collect High-Quality Data Cost-Effectively Lean Smart Parking How to Collect High-Quality Data Cost-Effectively Lean Smart Parking How to Collect High-Quality Data Cost-Effectively On-street sensors are now installed in cities from Los Angeles

More information

Team Edinferno Description Paper for RoboCup 2011 SPL

Team Edinferno Description Paper for RoboCup 2011 SPL Team Edinferno Description Paper for RoboCup 2011 SPL Subramanian Ramamoorthy, Aris Valtazanos, Efstathios Vafeias, Christopher Towell, Majd Hawasly, Ioannis Havoutis, Thomas McGuire, Seyed Behzad Tabibian,

More information

Neural Models for Multi-Sensor Integration in Robotics

Neural Models for Multi-Sensor Integration in Robotics Department of Informatics Intelligent Robotics WS 2016/17 Neural Models for Multi-Sensor Integration in Robotics Josip Josifovski 4josifov@informatik.uni-hamburg.de Outline Multi-sensor Integration: Neurally

More information

Robot Mapping. Introduction to Robot Mapping. Gian Diego Tipaldi, Wolfram Burgard

Robot Mapping. Introduction to Robot Mapping. Gian Diego Tipaldi, Wolfram Burgard Robot Mapping Introduction to Robot Mapping Gian Diego Tipaldi, Wolfram Burgard 1 What is Robot Mapping? Robot a device, that moves through the environment Mapping modeling the environment 2 Related Terms

More information

Lecture 1 What is AI?

Lecture 1 What is AI? Lecture 1 What is AI? CSE 473 Artificial Intelligence Oren Etzioni 1 AI as Science What are the most fundamental scientific questions? 2 Goals of this Course To teach you the main ideas of AI. Give you

More information

Computer Vision Based Chess Playing Capabilities for the Baxter Humanoid Robot

Computer Vision Based Chess Playing Capabilities for the Baxter Humanoid Robot International Conference on Control, Robotics, and Automation 2016 Computer Vision Based Chess Playing Capabilities for the Baxter Humanoid Robot Andrew Tzer-Yeu Chen, Kevin I-Kai Wang {andrew.chen, kevin.wang}@auckland.ac.nz

More information

Attentional Object Spotting by Integrating Multimodal Input

Attentional Object Spotting by Integrating Multimodal Input Attentional Object Spotting by Integrating Multimodal Input Chen Yu, Dana H. Ballard, and Shenghuo Zhu Department of Computer Science niversity of Rochester Rochester, NY 14627,SA yu,dana,zsh @cs.rochester.edu

More information

IVR: Introduction to Control

IVR: Introduction to Control IVR: Introduction to Control OVERVIEW Control systems Transformations Simple control algorithms History of control Centrifugal governor M. Boulton and J. Watt (1788) J. C. Maxwell (1868) On Governors.

More information

Event-based Algorithms for Robust and High-speed Robotics

Event-based Algorithms for Robust and High-speed Robotics Event-based Algorithms for Robust and High-speed Robotics Davide Scaramuzza All my research on event-based vision is summarized on this page: http://rpg.ifi.uzh.ch/research_dvs.html Davide Scaramuzza University

More information

Robotics. Applied artificial intelligence (EDA132) Lecture Elin A. Topp

Robotics. Applied artificial intelligence (EDA132) Lecture Elin A. Topp Robotics Applied artificial intelligence (EDA132) Lecture 10 2015-02-20 Elin A. Topp Course book (chapter 25), images & movies from various sources, and original material Images are film characters found

More information

Hybrid architectures. IAR Lecture 6 Barbara Webb

Hybrid architectures. IAR Lecture 6 Barbara Webb Hybrid architectures IAR Lecture 6 Barbara Webb Behaviour Based: Conclusions But arbitrary and difficult to design emergent behaviour for a given task. Architectures do not impose strong constraints Options?

More information

Development of a Mobile Robotic Simulator. K. Kelly, P. Wardlaw, C. McGinn

Development of a Mobile Robotic Simulator. K. Kelly, P. Wardlaw, C. McGinn Development of a Mobile Robotic Simulator K. Kelly, P. Wardlaw, C. McGinn Department of Mechanical and Manufacturing Engineering, Trinity College Dublin ABSTRACT Robotic simulators facilitate design and

More information

SECOND YEAR PROJECT SUMMARY

SECOND YEAR PROJECT SUMMARY SECOND YEAR PROJECT SUMMARY Grant Agreement number: 215805 Project acronym: Project title: CHRIS Cooperative Human Robot Interaction Systems Period covered: from 01 March 2009 to 28 Feb 2010 Contact Details

More information

Dr. Ashish Dutta. Professor, Dept. of Mechanical Engineering Indian Institute of Technology Kanpur, INDIA

Dr. Ashish Dutta. Professor, Dept. of Mechanical Engineering Indian Institute of Technology Kanpur, INDIA Introduction: History of Robotics - past, present and future Dr. Ashish Dutta Professor, Dept. of Mechanical Engineering Indian Institute of Technology Kanpur, INDIA Origin of Automation: replacing human

More information

Safe and Efficient Autonomous Navigation in the Presence of Humans at Control Level

Safe and Efficient Autonomous Navigation in the Presence of Humans at Control Level Safe and Efficient Autonomous Navigation in the Presence of Humans at Control Level Klaus Buchegger 1, George Todoran 1, and Markus Bader 1 Vienna University of Technology, Karlsplatz 13, Vienna 1040,

More information

Vishnu Nath. Usage of computer vision and humanoid robotics to create autonomous robots. (Ximea Currera RL04C Camera Kit)

Vishnu Nath. Usage of computer vision and humanoid robotics to create autonomous robots. (Ximea Currera RL04C Camera Kit) Vishnu Nath Usage of computer vision and humanoid robotics to create autonomous robots (Ximea Currera RL04C Camera Kit) Acknowledgements Firstly, I would like to thank Ivan Klimkovic of Ximea Corporation,

More information

Robotica Umanoide. Lorenzo Natale icub Facility Istituto Italiano di Tecnologia. 30 Novembre 2015, Milano

Robotica Umanoide. Lorenzo Natale icub Facility Istituto Italiano di Tecnologia. 30 Novembre 2015, Milano Robotica Umanoide Lorenzo Natale icub Facility Istituto Italiano di Tecnologia 30 Novembre 2015, Milano Italy Genova Genova Italian Institute of Technology Italy Genova Italian Institute of Technology

More information

Self-Localization Based on Monocular Vision for Humanoid Robot

Self-Localization Based on Monocular Vision for Humanoid Robot Tamkang Journal of Science and Engineering, Vol. 14, No. 4, pp. 323 332 (2011) 323 Self-Localization Based on Monocular Vision for Humanoid Robot Shih-Hung Chang 1, Chih-Hsien Hsia 2, Wei-Hsuan Chang 1

More information

Automatic Maneuver Recognition in the Automobile: the Fusion of Uncertain Sensor Values using Bayesian Models

Automatic Maneuver Recognition in the Automobile: the Fusion of Uncertain Sensor Values using Bayesian Models Automatic Maneuver Recognition in the Automobile: the Fusion of Uncertain Sensor Values using Bayesian Models Arati Gerdes Institute of Transportation Systems German Aerospace Center, Lilienthalplatz 7,

More information

Autonomous Mobile Robots

Autonomous Mobile Robots Autonomous Mobile Robots The three key questions in Mobile Robotics Where am I? Where am I going? How do I get there?? To answer these questions the robot has to have a model of the environment (given

More information

Using Reactive Deliberation for Real-Time Control of Soccer-Playing Robots

Using Reactive Deliberation for Real-Time Control of Soccer-Playing Robots Using Reactive Deliberation for Real-Time Control of Soccer-Playing Robots Yu Zhang and Alan K. Mackworth Department of Computer Science, University of British Columbia, Vancouver B.C. V6T 1Z4, Canada,

More information

Robot brains: AI and Machine Learning

Robot brains: AI and Machine Learning Robot brains: AI and Machine Learning Mike Taylor CMU 15-110 April 13, 2018 Baymax: Pixar The Sense-Think-Act Paradigm Analogous to funcnons! A func%on takes inputs and yields outputs A robot thinks about

More information

HIT3002: Introduction to Artificial Intelligence

HIT3002: Introduction to Artificial Intelligence HIT3002: Introduction to Artificial Intelligence Intelligent Agents Outline Agents and environments. The vacuum-cleaner world The concept of rational behavior. Environments. Agent structure. Swinburne

More information

Modeling Security Decisions as Games

Modeling Security Decisions as Games Modeling Security Decisions as Games Chris Kiekintveld University of Texas at El Paso.. and MANY Collaborators Decision Making and Games Research agenda: improve and justify decisions Automated intelligent

More information

History and Philosophical Underpinnings

History and Philosophical Underpinnings History and Philosophical Underpinnings Last Class Recap game-theory why normal search won t work minimax algorithm brute-force traversal of game tree for best move alpha-beta pruning how to improve on

More information

Beliefs and Sequential Equilibrium

Beliefs and Sequential Equilibrium Beliefs and Sequential Equilibrium to solve a game of incomplete information, we should look at the beliefs of the uninformed player(s) suppose that player 2 is in an information set which contains two

More information

Experiences with CiceRobot, a museum guide cognitive robot

Experiences with CiceRobot, a museum guide cognitive robot Experiences with CiceRobot, a museum guide cognitive robot I. Macaluso 1, E. Ardizzone 1, A. Chella 1, M. Cossentino 2, A. Gentile 1, R. Gradino 1, I. Infantino 2, M. Liotta 1, R. Rizzo 2, G. Scardino

More information

Curiosity as a Survival Technique

Curiosity as a Survival Technique Curiosity as a Survival Technique Amber Viescas Department of Computer Science Swarthmore College Swarthmore, PA 19081 aviesca1@cs.swarthmore.edu Anne-Marie Frassica Department of Computer Science Swarthmore

More information