Inexpensive robots of all forms are on the rise. Most are

Size: px
Start display at page:

Download "Inexpensive robots of all forms are on the rise. Most are"

Transcription

1 Elisabeth Eitel The Rise of Soft Robots Actuators and the that Drive Them The newest robots sidestep the usual approach of making stiff moves and instead yield to their environments. Inexpensive robots of all forms are on the rise. Most are tailored to specific applications, so they don t rely on programming for all their intelligence. Instead, their geometry and actuators themselves carry some smarts. Many use cost-effective parts and compliant actuators. These soft robots yield and shift from their equilibrium position when subject to a disturbance force. They range from basic DIY stretch-cable-and-link hands on instructables.com to Dept. of Defense UGVs with all the sophistication of traditional industrial robotics. Why compliant actuators? Traditional robots are built for industrial automation. They have precision linkages controlled by PID loops with large gains that quickly correct for disturbances. Gearmotor-driven actuators usually move the linkages while encoders track joint positions and allow position control. Actuator dynamics (including masses, reflected inertias, and stiffnesses) heavily influence the system s controls and overall performance. They impart high (ideally infinite) mechanical impedance, meaning the robots resist motion when subject to a force. The robots also have high bandwidth and quickly move to commanded positions no matter what external forces act on their joints. That s perfect for industrial automation because it lets robots track trajectories in static or mapped environments in pickand-place applications, for example. But these features aren t good for robots that interact with unmapped and dynamic environments. New types of robots must act as coworkers that help humans and assemble devices on manufacturing lines, for example. Others strap onto human limbs to make soldiers stronger or paraplegics mobile. Still others navigate households or outdoor environments and must move themselves efficiently. All the parameters in such applications aren t measurable, so position control becomes difficult. What s more, traditional robots stiff actuators can t store and release energy or exploit natural dynamics, making them too inefficient for mobile designs. Finally, the high reflected inertia of gearmotors in industrial robots can hurt people during collisions. Soft robots address these issues. They also do better in uncontrolled environments, according to soft-robot researcher Bram Vanderborght of the Robotics & Multibody Mechanics Research Group (R&MM), Vrije Universiteit, Brussels. They re not suitable for applications requiring nanometer or micrometer precision: Many soft robotics compromise performance and payload for safety, says Nick Hunt, manager of technology and support, ABB Robotics North America, Auburn Hills, Mich. However, some soft robots are starting to overcome the challenges of low controllability (low bandwidth), complexity, and cost. Evolution of compliant robotics In the 1980s, MIT researcher Neville Hogan first outlined the basics of impedance control and the idea of getting compliant behavior from motors with software. Then came compliant hardware elements. The first were air-spring-powered hopping robots and series elastic actuators (SEAs) developed machine design

2 A UR5 robot from Universal Robots, E. Setauket, N. Y., works alongside employees to produce gear wheels at BJ Gear, Denmark. Automation with traditional robotics was too costly. UR5s change tasks as needed and stops operating if they bump into something. at the MIT Leg Lab by Gill Pratt and Matt Williamson. An SEA is a traditional motor-powered actuator fitted with a spring that attaches to the load. In the last decade, other compliant actuator types have been developed and used, including some based on shape-memory alloys, magnetostrictive materials, and pneumatics. For example, a bionic elephant trunk released in 2010 by Festo, Esslingen, Germany, is stuffed with polyamide bellows that bend the trunk s gripper in different directions depending on how they re inflated. The compressibility of the air in the bellows makes the arm yield to external forces, so it s gentle enough to handle delicate objects. Some traditional robots built for high-end industrial applications use software to impart virtual compliance, often called active compliance. For example, arms from ABB Robotics use SoftMove, active-compliance control software that measures external forces and then reduces joints output forces as needed letting the robot float and comply with external forces. Ultimately, that helps robotic arms tend to other machines in a plant more efficiently for example, in automotive assembly, to hold and press a part into a car body while another process attaches the part to the body. In contrast, robots like Festo s elephant trunk and Baxter (from Rethink Robotics, Boston) use passive compliance by leveraging mechanical elasticity. On Baxter, Go To machinedesign.com

3 SEAs on all seven axes incorporate actual springs to help the 165-lb robot execute mundane tasks too simple to justify full industrial robotics. SEA components and controls SEAs are one of the most basic compliant actuators and are currently the most commercialized. Like other compliant robot actuators, they reflect less inertia back to motors and decouple motor inertias from the robotic limb should the robot accidentally hit something. That means when an SEA-driven robot smacks into something, it just bumps off without causing harm and that s an inexpensive way to build safety into the design, says Aaron Edsinger, Ph.D. and cofounder of Meka Robotics, San Francisco, another manufacturer that uses SEAs in nearly every joint of their robots. SEAs also isolate gearboxes from shock and reduce the effects of a gearbox s backlash and friction on output, which lets robot makers use low-cost gears. Plus, when the aim is only millimeter-level precision, SEAs work well with unexotic motors and midgrade bearings. Finally, SEAs bring down robot costs by measuring electrical current in the joints to determine force and movement rather than rely on expensive sensors (like robots that operate under position control). The SEAs change a robot joint s equi- Meka uses SEAs in nearly all joints of its robotic systems. A spring between motor and load provides shock tolerance and a way to measure force. librium position via actuator stiffness. A sensor tracks spring deflections and uses those values to calculate force on each joint according to Hooke s law F = k. (x x 0 ), where F = generated force; k = stiffness; x = actual spring length; and x 0 = rest length. The controller sums each force and the total resultant force profile then becomes the basis for motion adjustments. Feedback is derived from motor-winding currents and Four promises of soft robots MACCEPA actuators in ALTACRO therapy robots have adjustable compliance that lets therapists set how much it moves a patient s limb. Bram Vanderborght, Robotics & Multibody Mechanics Research Group (R&MM), Vrije Universiteit, Brussels 1. Soft robots move swiftly and accurately but never harm humans or themselves. 2. Soft robots are efficient particularly those that walk. 3. Soft robots recover from external perturbations and unpredictable model errors a.k.a. changes in the environment. For example, the COmpliant humanoid robot Coman, developed at the Italian Institute of Technology, Genova, has 25 compliant actuators and torque sensors to walk with a natural gait and stay upright even when shoved. 4. Soft robots adapt to apply just the right force in interactions with people and applications that require continuous contact in hands-on assistive devices, exoskeletons, and haptics machine design

4 spring deflections (position). In other words, a simple PID loop around the spring deflection controls torque, so the controller calculates forces and then changes the spring s setpoint (x 0 ). In ours, the motors are controlled closing a current-control loop on the amplifier DSP and then closing a torque loop around the spring deflection that commands a current to the inner loop, all on a DSP at 2 khz, Edsinger says. One caveat: SEAs have low zeromotion force bandwidth and so have trouble holding precise positions. Software such as the Robot Operating System (ROS) must predict lost motion to compensate. Some robot makers leverage this trait by adding gravity compensation so users can push and pull the robot arms around for follow-my-lead programming. SEA-driven robots can also use sensorless technology to detect collision forces and stop the robot, according to Edward Mullen of Universal Robots USA, Wading River, N. Y. On our UR5 and UR10 arms, each joint monitors motor current and joint position from dual encoders. The controllers use this data to derive the force exerted for each joint, which streams back to redundant microprocessors that determine if it falls within normal conditions. Universal s robotic arms handle microscopically small parts with repeatability of in. Other motorized variations As with any actuator, SEAs present design limitations, trading the benefits of compliance for some performance. To address SEAs performance limitations and to output higher-bandwidth force, newer variable impedance actuators (VIAs) use power inputs in tandem to let controls separately adjust stiffness. In iterations that use antagonistic stiffness control, two compliant actuators are mounted in the machine to oppose one another, much like a bicep and tricep in a human arm. That lets the arm move up, down, and (if both actuators Standards dictate safe interactions This ankle-mimicking prosthetic foot (AMPFoot) 2.0 uses two force sensors and a compliant actuator to store energy when the foot hits the ground and release it when the ankle pushes off. Designed by Vrije Universiteit researchers, it weighs the same as a human foot and only needs a 60-W motor to generate torque sufficient for stable walking. Many soft robots are specifically designed for CoBoting helping people assemble devices, sort items on a line, lift parts, and more. Dictating what s considered safe interaction is the Robotic Industries Association R15.06 standard and the ISO standard for collaborative robots. In a collision, our robot delivers less force than the 150-N (33.72 lb) regulatory limit [EN ISO 13850]. So, depending on the application, Universal Robots may be able to operate without an enclosure, says Mullen of Universal Robots. A risk assessment should be done for any industrial motion control applications, as end effectors and other conditions can create hazards. But in the 1,600 applications our robots are currently automating, 80% don t require enclosures, Mullen adds. Soft robots aren t the only answer for safe human-robot operations. Nick Hunt of ABB underscores that some traditional robots meet these safety parameters and don t need to be caged. He says computational electronics and sensing devices, both tactile and optical, and the associated cost of implementation, will dictate future CoBoting innovations. Our approach now is to keep momentum low, keep servo compensation as responsive as possible, and allow compression at the point of contact machine design

5 are powered) stiffen. Two examples are variable-stiffness actuators (VSAs) and quadratic designs that split twin springlinked SEAs with a wedge attached to the load. Another VIA approach is to mechanically control stiffness, as in the VS Joint developed by the German Aerospace Center and the MACCEPA developed by R&MM researchers. These actively make joints stiffer or more compliant on the fly: One motor controls torque while another controls spring stiffness (and equilibrium position). This lets MACCEPA outperform other compliant actuators and is why it s used in fish robots, arms to throw balls, and exoskeleton robots. It s difficult to compare MACCEPA s overall cost to that of alternatives because most aren t commercial products yet. However, Vanderborght thinks the actuator could prove cheapest, as it s easy to make with just a few off-the-shelf components. Controls are customizable to how compliance is used in the application for stabilization or energy storage, for example. VIAs make designs that adapt, and not just with control and computation, says Vanderborght. The idea is that the dynamic interaction between a robot s morphology, sensory-motor control, and environment should dictate its form, because natural movements have better safety, energy efficiency, and dynamics. Others agree that motor-powered compliant actuators such as SEAs and VIAs excel in soft robotics. For example, some believe electric actuators aren t suitable for rehabilitation robots that must not force limbs along preprogrammed trajectories, says Kenneth J. Hunt, Bern University of Applied Sciences, Switzerland. That s because in traditional control engineering, dc motors are driven to deliver setpoint tracking. This has spurred morphological actuators with obvious compliance, such as artificial muscles in orthotics that inflate to get mechanical leverage. Hunt argues that even rehabilitation robotics can use dc motors that employ impedancelike control strategies. Motor drives and controls are mature technologies and a solid choice for getting soft behaviors from robots, he says. For example, the compliant-actuator-powered Lokomat exoskeleton made by Hocoma Inc., Norwell, Mass., straps on patients and pairs with a treadmill and motion-simulation screen to safely help stroke victims retrain their brains muscle controls. Other compliant robotics That s not to say that motors are the only solution for soft robots. Artificial muscles powered by pneumatics abound, and an array of compliant-robot innovations is on the horizon. Consider electroactive polymer artificial muscles (EPAMs) made by Artificial Muscle Inc. of Sunnyvale, Calif., in which electrodes sandwiching polymer films force them to contract when voltage is applied to, in turn, move attached loads. And some new soft robots are weirder still. Researchers at Cornell University s Creative Machines Lab, Ithaca, N. Y., are designing robots built of stacked cubes stuck together. Stiff cubes give leverage while pliable ones expand and contract to drag, waddle, or heave the robot along. A prototype with open-cell foam cubes actuated by environmental pressure variation confirms the design works, and researchers hope future versions will be manufactured additively. But soft-grasping robots may show the most innovation in coming years. Unlike common industrial grippers that rely on rigid linkages and accurate models of the environment, compliant grippers directly interact with objects. For example, robotic tentacles from the Octopus Project led by Scuola Superiore Sant Anna researchers, Italy, have arrays of shape-memory-alloy cables attached to a center steel cord that tighten and release to curl, extend, retract, or straighten the tentacle. A silicone skin studded with contact sensors and passive suckers let the tentacle grasp objects. The latest version of Baxter is for research applications. It contains SEAs coinvented by Matt Williamson, now at Rethink machine design

Design of a Compliant and Force Sensing Hand for a Humanoid Robot

Design of a Compliant and Force Sensing Hand for a Humanoid Robot Design of a Compliant and Force Sensing Hand for a Humanoid Robot Aaron Edsinger-Gonzales Computer Science and Artificial Intelligence Laboratory, assachusetts Institute of Technology E-mail: edsinger@csail.mit.edu

More information

Biologically Inspired Robot Manipulator for New Applications in Automation Engineering

Biologically Inspired Robot Manipulator for New Applications in Automation Engineering Preprint of the paper which appeared in the Proc. of Robotik 2008, Munich, Germany, June 11-12, 2008 Biologically Inspired Robot Manipulator for New Applications in Automation Engineering Dipl.-Biol. S.

More information

Elements of Haptic Interfaces

Elements of Haptic Interfaces Elements of Haptic Interfaces Katherine J. Kuchenbecker Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania kuchenbe@seas.upenn.edu Course Notes for MEAM 625, University

More information

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute Jane Li Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute Use an example to explain what is admittance control? You may refer to exoskeleton

More information

Baxter Safety and Compliance Overview

Baxter Safety and Compliance Overview Baxter Safety and Compliance Overview How this unique collaborative robot safely manages operational risks Unlike typical industrial robots that operate behind safeguarding, Baxter, the collaborative robot

More information

ROBOTICS ENG YOUSEF A. SHATNAWI INTRODUCTION

ROBOTICS ENG YOUSEF A. SHATNAWI INTRODUCTION ROBOTICS INTRODUCTION THIS COURSE IS TWO PARTS Mobile Robotics. Locomotion (analogous to manipulation) (Legged and wheeled robots). Navigation and obstacle avoidance algorithms. Robot Vision Sensors and

More information

Humanoid robot. Honda's ASIMO, an example of a humanoid robot

Humanoid robot. Honda's ASIMO, an example of a humanoid robot Humanoid robot Honda's ASIMO, an example of a humanoid robot A humanoid robot is a robot with its overall appearance based on that of the human body, allowing interaction with made-for-human tools or environments.

More information

Challenges of Precision Assembly with a Miniaturized Robot

Challenges of Precision Assembly with a Miniaturized Robot Challenges of Precision Assembly with a Miniaturized Robot Arne Burisch, Annika Raatz, and Jürgen Hesselbach Technische Universität Braunschweig, Institute of Machine Tools and Production Technology Langer

More information

Proprioception & force sensing

Proprioception & force sensing Proprioception & force sensing Roope Raisamo Tampere Unit for Computer-Human Interaction (TAUCHI) School of Information Sciences University of Tampere, Finland Based on material by Jussi Rantala, Jukka

More information

How To Create The Right Collaborative System For Your Application. Corey Ryan Manager - Medical Robotics KUKA Robotics Corporation

How To Create The Right Collaborative System For Your Application. Corey Ryan Manager - Medical Robotics KUKA Robotics Corporation How To Create The Right Collaborative System For Your Application Corey Ryan Manager - Medical Robotics KUKA Robotics Corporation C Definitions Cobot: for this presentation a robot specifically designed

More information

Servo Tuning. Dr. Rohan Munasinghe Department. of Electronic and Telecommunication Engineering University of Moratuwa. Thanks to Dr.

Servo Tuning. Dr. Rohan Munasinghe Department. of Electronic and Telecommunication Engineering University of Moratuwa. Thanks to Dr. Servo Tuning Dr. Rohan Munasinghe Department. of Electronic and Telecommunication Engineering University of Moratuwa Thanks to Dr. Jacob Tal Overview Closed Loop Motion Control System Brain Brain Muscle

More information

Dynamic analysis and control of a Hybrid serial/cable driven robot for lower-limb rehabilitation

Dynamic analysis and control of a Hybrid serial/cable driven robot for lower-limb rehabilitation Dynamic analysis and control of a Hybrid serial/cable driven robot for lower-limb rehabilitation M. Ismail 1, S. Lahouar 2 and L. Romdhane 1,3 1 Mechanical Laboratory of Sousse (LMS), National Engineering

More information

Getting Started Sizing & Selecting Servos: Understanding the need for a system solution

Getting Started Sizing & Selecting Servos: Understanding the need for a system solution Getting Started Sizing & Selecting Servos: Understanding the need for a system solution 1 Sizing and selecting a servo motor system for a machine design begins by understanding the components that make

More information

Designing Better Industrial Robots with Adams Multibody Simulation Software

Designing Better Industrial Robots with Adams Multibody Simulation Software Designing Better Industrial Robots with Adams Multibody Simulation Software MSC Software: Designing Better Industrial Robots with Adams Multibody Simulation Software Introduction Industrial robots are

More information

THE HUMAN POWER AMPLIFIER TECHNOLOGY APPLIED TO MATERIAL HANDLING

THE HUMAN POWER AMPLIFIER TECHNOLOGY APPLIED TO MATERIAL HANDLING THE HUMAN POWER AMPLIFIER TECHNOLOGY APPLIED TO MATERIAL HANDLING H. Kazerooni Mechanical Engineering Department Human Engineering Laboratory (HEL) University ofcajifomia, Berkeley, CA 94720-1740 USA E-Mail:

More information

Analog Vs. Digital Weighing Systems

Analog Vs. Digital Weighing Systems Analog Vs. Digital Weighing Systems When sizing up a weighing application there are many options to choose from. With modern technology and the advancements in A/D converter technology the performance

More information

ME7752: Mechanics and Control of Robots Lecture 1

ME7752: Mechanics and Control of Robots Lecture 1 ME7752: Mechanics and Control of Robots Lecture 1 Instructor: Manoj Srinivasan Office: E340 Scott Laboratory Email: srinivasan.88@osu.edu ( PDF posted. In the PDF, if there are no links to videos, do a

More information

Introduction to Robotics in CIM Systems

Introduction to Robotics in CIM Systems Introduction to Robotics in CIM Systems Fifth Edition James A. Rehg The Pennsylvania State University Altoona, Pennsylvania Prentice Hall Upper Saddle River, New Jersey Columbus, Ohio Contents Introduction

More information

Advanced Servo Tuning

Advanced Servo Tuning Advanced Servo Tuning Dr. Rohan Munasinghe Department of Electronic and Telecommunication Engineering University of Moratuwa Servo System Elements position encoder Motion controller (software) Desired

More information

A conversation with Russell Stewart, July 29, 2015

A conversation with Russell Stewart, July 29, 2015 Participants A conversation with Russell Stewart, July 29, 2015 Russell Stewart PhD Student, Stanford University Nick Beckstead Research Analyst, Open Philanthropy Project Holden Karnofsky Managing Director,

More information

Design and Controll of Haptic Glove with McKibben Pneumatic Muscle

Design and Controll of Haptic Glove with McKibben Pneumatic Muscle XXVIII. ASR '2003 Seminar, Instruments and Control, Ostrava, May 6, 2003 173 Design and Controll of Haptic Glove with McKibben Pneumatic Muscle KOPEČNÝ, Lukáš Ing., Department of Control and Instrumentation,

More information

Design and Control of the BUAA Four-Fingered Hand

Design and Control of the BUAA Four-Fingered Hand Proceedings of the 2001 IEEE International Conference on Robotics & Automation Seoul, Korea May 21-26, 2001 Design and Control of the BUAA Four-Fingered Hand Y. Zhang, Z. Han, H. Zhang, X. Shang, T. Wang,

More information

Development of Running Robot Based on Charge Coupled Device

Development of Running Robot Based on Charge Coupled Device Development of Running Robot Based on Charge Coupled Device Hongzhang He School of Mechanics, North China Electric Power University, Baoding071003, China. hhzh_ncepu@163.com Abstract Robot technology is

More information

Self-learning Assistive Exoskeleton with Sliding Mode Admittance Control

Self-learning Assistive Exoskeleton with Sliding Mode Admittance Control 213 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) November 3-7, 213. Tokyo, Japan Self-learning Assistive Exoskeleton with Sliding Mode Admittance Control Tzu-Hao Huang, Ching-An

More information

DEVELOPMENT OF A HUMANOID ROBOT FOR EDUCATION AND OUTREACH. K. Kelly, D. B. MacManus, C. McGinn

DEVELOPMENT OF A HUMANOID ROBOT FOR EDUCATION AND OUTREACH. K. Kelly, D. B. MacManus, C. McGinn DEVELOPMENT OF A HUMANOID ROBOT FOR EDUCATION AND OUTREACH K. Kelly, D. B. MacManus, C. McGinn Department of Mechanical and Manufacturing Engineering, Trinity College, Dublin 2, Ireland. ABSTRACT Robots

More information

FANUC Collaborative Robot Technology and GM Applications

FANUC Collaborative Robot Technology and GM Applications FANUC Collaborative Robot Technology and GM Applications Greg Buell Fanuc America Chris Ihrke General Motors Spare Tire Application Perennial ergonomic and safety concern Productivity issue Wanted a low

More information

Dr. Ashish Dutta. Professor, Dept. of Mechanical Engineering Indian Institute of Technology Kanpur, INDIA

Dr. Ashish Dutta. Professor, Dept. of Mechanical Engineering Indian Institute of Technology Kanpur, INDIA Introduction: History of Robotics - past, present and future Dr. Ashish Dutta Professor, Dept. of Mechanical Engineering Indian Institute of Technology Kanpur, INDIA Origin of Automation: replacing human

More information

Robotica Umanoide. Lorenzo Natale icub Facility Istituto Italiano di Tecnologia. 30 Novembre 2015, Milano

Robotica Umanoide. Lorenzo Natale icub Facility Istituto Italiano di Tecnologia. 30 Novembre 2015, Milano Robotica Umanoide Lorenzo Natale icub Facility Istituto Italiano di Tecnologia 30 Novembre 2015, Milano Italy Genova Genova Italian Institute of Technology Italy Genova Italian Institute of Technology

More information

Perception. Read: AIMA Chapter 24 & Chapter HW#8 due today. Vision

Perception. Read: AIMA Chapter 24 & Chapter HW#8 due today. Vision 11-25-2013 Perception Vision Read: AIMA Chapter 24 & Chapter 25.3 HW#8 due today visual aural haptic & tactile vestibular (balance: equilibrium, acceleration, and orientation wrt gravity) olfactory taste

More information

More Info at Open Access Database by S. Dutta and T. Schmidt

More Info at Open Access Database  by S. Dutta and T. Schmidt More Info at Open Access Database www.ndt.net/?id=17657 New concept for higher Robot position accuracy during thermography measurement to be implemented with the existing prototype automated thermography

More information

ACTUATORS AND SENSORS. Joint actuating system. Servomotors. Sensors

ACTUATORS AND SENSORS. Joint actuating system. Servomotors. Sensors ACTUATORS AND SENSORS Joint actuating system Servomotors Sensors JOINT ACTUATING SYSTEM Transmissions Joint motion low speeds high torques Spur gears change axis of rotation and/or translate application

More information

Humanoids. Lecture Outline. RSS 2010 Lecture # 19 Una-May O Reilly. Definition and motivation. Locomotion. Why humanoids? What are humanoids?

Humanoids. Lecture Outline. RSS 2010 Lecture # 19 Una-May O Reilly. Definition and motivation. Locomotion. Why humanoids? What are humanoids? Humanoids RSS 2010 Lecture # 19 Una-May O Reilly Lecture Outline Definition and motivation Why humanoids? What are humanoids? Examples Locomotion RSS 2010 Humanoids Lecture 1 1 Why humanoids? Capek, Paris

More information

Robot Hands: Mechanics, Contact Constraints, and Design for Open-loop Performance

Robot Hands: Mechanics, Contact Constraints, and Design for Open-loop Performance Robot Hands: Mechanics, Contact Constraints, and Design for Open-loop Performance Aaron M. Dollar John J. Lee Associate Professor of Mechanical Engineering and Materials Science Aerial Robotics Yale GRAB

More information

Soft Bionics Hands with a Sense of Touch Through an Electronic Skin

Soft Bionics Hands with a Sense of Touch Through an Electronic Skin Soft Bionics Hands with a Sense of Touch Through an Electronic Skin Mahmoud Tavakoli, Rui Pedro Rocha, João Lourenço, Tong Lu and Carmel Majidi Abstract Integration of compliance into the Robotics hands

More information

profile Using intelligent servo drives to filter mechanical resonance and improve machine accuracy in printing and converting machinery

profile Using intelligent servo drives to filter mechanical resonance and improve machine accuracy in printing and converting machinery profile Drive & Control Using intelligent servo drives to filter mechanical resonance and improve machine accuracy in printing and converting machinery Challenge: Controlling machine resonance the white

More information

The Air Bearing Throughput Edge By Kevin McCarthy, Chief Technology Officer

The Air Bearing Throughput Edge By Kevin McCarthy, Chief Technology Officer 159 Swanson Rd. Boxborough, MA 01719 Phone +1.508.475.3400 dovermotion.com The Air Bearing Throughput Edge By Kevin McCarthy, Chief Technology Officer In addition to the numerous advantages described in

More information

Introduction To Robotics (Kinematics, Dynamics, and Design)

Introduction To Robotics (Kinematics, Dynamics, and Design) Introduction To Robotics (Kinematics, Dynamics, and Design) SESSION # 5: Concepts & Defenitions Ali Meghdari, Professor School of Mechanical Engineering Sharif University of Technology Tehran, IRAN 11365-9567

More information

John Henry Foster INTRODUCING OUR NEW ROBOTICS LINE. Imagine Your Business...better. Automate Virtually Anything jhfoster.

John Henry Foster INTRODUCING OUR NEW ROBOTICS LINE. Imagine Your Business...better. Automate Virtually Anything jhfoster. John Henry Foster INTRODUCING OUR NEW ROBOTICS LINE Imagine Your Business...better. Automate Virtually Anything 800.582.5162 John Henry Foster 800.582.5162 What if you could automate the repetitive manual

More information

Birth of An Intelligent Humanoid Robot in Singapore

Birth of An Intelligent Humanoid Robot in Singapore Birth of An Intelligent Humanoid Robot in Singapore Ming Xie Nanyang Technological University Singapore 639798 Email: mmxie@ntu.edu.sg Abstract. Since 1996, we have embarked into the journey of developing

More information

Positioning Paper Demystifying Collaborative Industrial Robots

Positioning Paper Demystifying Collaborative Industrial Robots Positioning Paper Demystifying Collaborative Industrial Robots published by International Federation of Robotics Frankfurt, Germany December 2018 A positioning paper by the International Federation of

More information

Robotic Capture and De-Orbit of a Tumbling and Heavy Target from Low Earth Orbit

Robotic Capture and De-Orbit of a Tumbling and Heavy Target from Low Earth Orbit www.dlr.de Chart 1 Robotic Capture and De-Orbit of a Tumbling and Heavy Target from Low Earth Orbit Steffen Jaekel, R. Lampariello, G. Panin, M. Sagardia, B. Brunner, O. Porges, and E. Kraemer (1) M. Wieser,

More information

Robotics 2 Collision detection and robot reaction

Robotics 2 Collision detection and robot reaction Robotics 2 Collision detection and robot reaction Prof. Alessandro De Luca Handling of robot collisions! safety in physical Human-Robot Interaction (phri)! robot dependability (i.e., beyond reliability)!

More information

Theme 2: The new paradigm in robotics safety

Theme 2: The new paradigm in robotics safety Competitiveness in Emerging Robot Technologies (CEROBOT) The opportunities in safety and robots for SMEs Theme 2: The new paradigm in robotics safety Colin Blackman Simon Forge SCF Associates Ltd Safety

More information

Design of a Biped Actuated by Pleated Pneumatic Artificial Muscles

Design of a Biped Actuated by Pleated Pneumatic Artificial Muscles Design of a Biped Actuated by Pleated Pneumatic Artificial Muscles B. VERRELST, R. VAN HAM, F. DAERDEN & D. LEFEBER Vrije Universiteit Brussel, Department of Mechanical Engineering, Pleinlaan 2, 15 Brussels,

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): / _0087

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): / _0087 Hauser, H. (2016). Morphological Computation A Potential Solution for the Control Problem in Soft Robotics. In Advances in Cooperative Robotics : Proceedings of the 19th International Conference on CLAWAR

More information

Haptic interaction. Ruth Aylett

Haptic interaction. Ruth Aylett Haptic interaction Ruth Aylett Contents Haptic definition Haptic model Haptic devices Measuring forces Haptic Technologies Haptics refers to manual interactions with environments, such as sensorial exploration

More information

Comau AURA - Advanced Use Robotic Arm AURA. Soft as a Human Touch

Comau AURA - Advanced Use Robotic Arm AURA. Soft as a Human Touch AURA Soft as a Human Touch 2 The Culture of Automation Designing advanced automation solutions means thinking about the industry in a new way, developing new scenarios, designing innovative products and

More information

INDUSTRIAL ROBOTS AND ROBOT SYSTEM SAFETY

INDUSTRIAL ROBOTS AND ROBOT SYSTEM SAFETY INDUSTRIAL ROBOTS AND ROBOT SYSTEM SAFETY I. INTRODUCTION. Industrial robots are programmable multifunctional mechanical devices designed to move material, parts, tools, or specialized devices through

More information

AURA Soft as a Human Touch

AURA Soft as a Human Touch The Culture of Automation AURA Soft as a Human Touch Designing advanced automation solutions means thinking about the industry in a new way, developing new scenarios, designing innovative products and

More information

2. Introduction to Computer Haptics

2. Introduction to Computer Haptics 2. Introduction to Computer Haptics Seungmoon Choi, Ph.D. Assistant Professor Dept. of Computer Science and Engineering POSTECH Outline Basics of Force-Feedback Haptic Interfaces Introduction to Computer

More information

FALL 2014, Issue No. 32 ROBOTICS AT OUR FINGERTIPS

FALL 2014, Issue No. 32 ROBOTICS AT OUR FINGERTIPS FALL 2014, Issue No. 32 ROBOTICS AT OUR FINGERTIPS FALL 2014 Issue No. 32 12 CYBERSECURITY SOLUTION NSF taps UCLA Engineering to take lead in encryption research. Cover Photo: Joanne Leung 6MAN AND MACHINE

More information

Technifutur. Maarten Daemen Sales Engineer / KUKA Automatisering + Robots NV KUKA LBR iiwa M. Daemen

Technifutur. Maarten Daemen Sales Engineer / KUKA Automatisering + Robots NV KUKA LBR iiwa M. Daemen Technifutur Maarten Daemen Sales Engineer / KUKA Automatisering + Robots NV 2016-11-28 page: 1 ii invite you page: 2 LBR iiwa LBR stands for Leichtbauroboter (German for lightweight robot), iiwa for intelligent

More information

A Machine Tool Controller using Cascaded Servo Loops and Multiple Feedback Sensors per Axis

A Machine Tool Controller using Cascaded Servo Loops and Multiple Feedback Sensors per Axis A Machine Tool Controller using Cascaded Servo Loops and Multiple Sensors per Axis David J. Hopkins, Timm A. Wulff, George F. Weinert Lawrence Livermore National Laboratory 7000 East Ave, L-792, Livermore,

More information

ROBOTIC AUTOMATION Imagine Your Business...better. Automate Virtually Anything

ROBOTIC AUTOMATION Imagine Your Business...better. Automate Virtually Anything John Henry Foster ROBOTIC AUTOMATION Imagine Your Business...better. Automate Virtually Anything 800.582.5162 John Henry Foster 800.582.5162 At John Henry Foster, we re devoted to bringing safe, flexible,

More information

Introduction of Research Activity in Mechanical Systems Design Laboratory (Takeda s Lab) in Tokyo Tech

Introduction of Research Activity in Mechanical Systems Design Laboratory (Takeda s Lab) in Tokyo Tech Introduction of Research Activity in Mechanical Systems Design Laboratory (Takeda s Lab) in Tokyo Tech Kinematic design of asymmetrical position-orientation decoupled parallel mechanism with 5 dof Pipe

More information

Peter Berkelman. ACHI/DigitalWorld

Peter Berkelman. ACHI/DigitalWorld Magnetic Levitation Haptic Peter Berkelman ACHI/DigitalWorld February 25, 2013 Outline: Haptics - Force Feedback Sample devices: Phantoms, Novint Falcon, Force Dimension Inertia, friction, hysteresis/backlash

More information

On Observer-based Passive Robust Impedance Control of a Robot Manipulator

On Observer-based Passive Robust Impedance Control of a Robot Manipulator Journal of Mechanics Engineering and Automation 7 (2017) 71-78 doi: 10.17265/2159-5275/2017.02.003 D DAVID PUBLISHING On Observer-based Passive Robust Impedance Control of a Robot Manipulator CAO Sheng,

More information

Gael Force FRC Team 126

Gael Force FRC Team 126 Gael Force FRC Team 126 2018 FIRST Robotics Competition 2018 Robot Information and Specs Judges Information Packet Gael Force is proof that one team from a small town can have an incredible impact on many

More information

Robot: icub This humanoid helps us study the brain

Robot: icub This humanoid helps us study the brain ProfileArticle Robot: icub This humanoid helps us study the brain For the complete profile with media resources, visit: http://education.nationalgeographic.org/news/robot-icub/ Program By Robohub Tuesday,

More information

Robotic Polishing of Streamline Co-Extrusion Die: A Case Study

Robotic Polishing of Streamline Co-Extrusion Die: A Case Study Proceedings of the 2017 International Conference on Industrial Engineering and Operations Management (IEOM) Bristol, UK, July 24-25, 2017 Robotic Polishing of Streamline Co-Extrusion Die: A Case Study

More information

Dipartimento di Elettronica Informazione e Bioingegneria Robotics

Dipartimento di Elettronica Informazione e Bioingegneria Robotics Dipartimento di Elettronica Informazione e Bioingegneria Robotics Behavioral robotics @ 2014 Behaviorism behave is what organisms do Behaviorism is built on this assumption, and its goal is to promote

More information

Shape Memory Alloy Actuator Controller Design for Tactile Displays

Shape Memory Alloy Actuator Controller Design for Tactile Displays 34th IEEE Conference on Decision and Control New Orleans, Dec. 3-5, 995 Shape Memory Alloy Actuator Controller Design for Tactile Displays Robert D. Howe, Dimitrios A. Kontarinis, and William J. Peine

More information

PRODUCTS AND LAB SOLUTIONS

PRODUCTS AND LAB SOLUTIONS PRODUCTS AND LAB SOLUTIONS Answering the most challenging academic questions with innovative technology and methods Quanser is the global leader in the design and manufacture of lab solutions and products

More information

Technical Cognitive Systems

Technical Cognitive Systems Part XII Actuators 3 Outline Robot Bases Hardware Components Robot Arms 4 Outline Robot Bases Hardware Components Robot Arms 5 (Wheeled) Locomotion Goal: Bring the robot to a desired pose (x, y, θ): (position

More information

RISE WINTER 2015 UNDERSTANDING AND TESTING SELF SENSING MCKIBBEN ARTIFICIAL MUSCLES

RISE WINTER 2015 UNDERSTANDING AND TESTING SELF SENSING MCKIBBEN ARTIFICIAL MUSCLES RISE WINTER 2015 UNDERSTANDING AND TESTING SELF SENSING MCKIBBEN ARTIFICIAL MUSCLES Khai Yi Chin Department of Mechanical Engineering, University of Michigan Abstract Due to their compliant properties,

More information

PICK AND PLACE HUMANOID ROBOT USING RASPBERRY PI AND ARDUINO FOR INDUSTRIAL APPLICATIONS

PICK AND PLACE HUMANOID ROBOT USING RASPBERRY PI AND ARDUINO FOR INDUSTRIAL APPLICATIONS PICK AND PLACE HUMANOID ROBOT USING RASPBERRY PI AND ARDUINO FOR INDUSTRIAL APPLICATIONS Bernard Franklin 1, Sachin.P 2, Jagadish.S 3, Shaista Noor 4, Rajashekhar C. Biradar 5 1,2,3,4,5 School of Electronics

More information

Introduction to Servo Control & PID Tuning

Introduction to Servo Control & PID Tuning Introduction to Servo Control & PID Tuning Presented to: Agenda Introduction to Servo Control Theory PID Algorithm Overview Tuning & General System Characterization Oscillation Characterization Feed-forward

More information

I like to call this robot a rover, as I tried to pattern it after NASA s designs. Figure 1-1 shows the general outline of the finished rover.

I like to call this robot a rover, as I tried to pattern it after NASA s designs. Figure 1-1 shows the general outline of the finished rover. 1 The task of building a robot is unlike any other in computer science. It s a strange amalgamation of computer, electrical, and mechanical engineering. Being able to program is great (and necessary),

More information

Why Humanoid Robots?*

Why Humanoid Robots?* Why Humanoid Robots?* AJLONTECH * Largely adapted from Carlos Balaguer s talk in IURS 06 Outline Motivation What is a Humanoid Anyway? History of Humanoid Robots Why Develop Humanoids? Challenges in Humanoids

More information

Active Inceptor Systems

Active Inceptor Systems Active Inceptor Systems The world leader in active inceptor systems BAE Systems is the world leader in active inceptor systems. These systems reduce pilot workload while ensuring that the pilot remains

More information

Active Vibration Isolation of an Unbalanced Machine Tool Spindle

Active Vibration Isolation of an Unbalanced Machine Tool Spindle Active Vibration Isolation of an Unbalanced Machine Tool Spindle David. J. Hopkins, Paul Geraghty Lawrence Livermore National Laboratory 7000 East Ave, MS/L-792, Livermore, CA. 94550 Abstract Proper configurations

More information

CS545 Contents XIV. Components of a Robotic System. Signal Processing. Reading Assignment for Next Class

CS545 Contents XIV. Components of a Robotic System. Signal Processing. Reading Assignment for Next Class CS545 Contents XIV Components of a Robotic System Power Supplies and Power Amplifiers Actuators Transmission Sensors Signal Processing Linear filtering Simple filtering Optimal filtering Reading Assignment

More information

Wearable Robotics Funding Opportunities and Commercialization of Robotics and Mobility Systems Bruce Floersheim, Ph.D., P.E.

Wearable Robotics Funding Opportunities and Commercialization of Robotics and Mobility Systems Bruce Floersheim, Ph.D., P.E. Wearable Robotics Funding Opportunities and Commercialization of Robotics and Mobility Systems Bruce Floersheim, Ph.D., P.E. www.wearablerobotics.com Help shape a global future leveraging technology in

More information

Information and Program

Information and Program Robotics 1 Information and Program Prof. Alessandro De Luca Robotics 1 1 Robotics 1 2017/18! First semester (12 weeks)! Monday, October 2, 2017 Monday, December 18, 2017! Courses of study (with this course

More information

Introduction to robotics. Md. Ferdous Alam, Lecturer, MEE, SUST

Introduction to robotics. Md. Ferdous Alam, Lecturer, MEE, SUST Introduction to robotics Md. Ferdous Alam, Lecturer, MEE, SUST Hello class! Let s watch a video! So, what do you think? It s cool, isn t it? The dedication is not! A brief history The first digital and

More information

Motion Solutions for Digital Pathology. White Paper

Motion Solutions for Digital Pathology. White Paper Motion Solutions for Digital Pathology White Paper Design Considerations for Digital Pathology Instruments With an ever increasing demand on throughput, pathology scanning applications are some of the

More information

An Introduction To Plug-and- Play Motion Subsystems

An Introduction To Plug-and- Play Motion Subsystems An Introduction To Plug-and- Play Motion Subsystems Embedding mechanical motion subsystems into machines improves performance and reduces cost. If you build machines, you probably work with actuators and

More information

Chapter 2 Introduction to Haptics 2.1 Definition of Haptics

Chapter 2 Introduction to Haptics 2.1 Definition of Haptics Chapter 2 Introduction to Haptics 2.1 Definition of Haptics The word haptic originates from the Greek verb hapto to touch and therefore refers to the ability to touch and manipulate objects. The haptic

More information

Touching and Walking: Issues in Haptic Interface

Touching and Walking: Issues in Haptic Interface Touching and Walking: Issues in Haptic Interface Hiroo Iwata 1 1 Institute of Engineering Mechanics and Systems, University of Tsukuba, 80, Tsukuba, 305-8573 Japan iwata@kz.tsukuba.ac.jp Abstract. This

More information

Engineering Support for the Design of Electrohydraulic Drive Systems.

Engineering Support for the Design of Electrohydraulic Drive Systems. Engineering Support for the Design of Electrohydraulic Drive Systems. Engineering Support. Designing electrohydraulic drive systems requires optimum coordination between hydraulic, electronic and mechanical

More information

Robotics. Lecturer: Dr. Saeed Shiry Ghidary

Robotics. Lecturer: Dr. Saeed Shiry Ghidary Robotics Lecturer: Dr. Saeed Shiry Ghidary Email: autrobotics@yahoo.com Outline of Course We will study fundamental algorithms for robotics with: Introduction to industrial robots and Particular emphasis

More information

A Compliant Five-Bar, 2-Degree-of-Freedom Device with Coil-driven Haptic Control

A Compliant Five-Bar, 2-Degree-of-Freedom Device with Coil-driven Haptic Control 2004 ASME Student Mechanism Design Competition A Compliant Five-Bar, 2-Degree-of-Freedom Device with Coil-driven Haptic Control Team Members Felix Huang Audrey Plinta Michael Resciniti Paul Stemniski Brian

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction It is appropriate to begin the textbook on robotics with the definition of the industrial robot manipulator as given by the ISO 8373 standard. An industrial robot manipulator is

More information

2014 Market Trends Webinar Series

2014 Market Trends Webinar Series Robotic Industries Association 2014 Market Trends Webinar Series Watch live or archived at no cost Learn about the latest innovations in robotics Sponsored by leading robotics companies 1 2014 Calendar

More information

Robots Learning from Robots: A proof of Concept Study for Co-Manipulation Tasks. Luka Peternel and Arash Ajoudani Presented by Halishia Chugani

Robots Learning from Robots: A proof of Concept Study for Co-Manipulation Tasks. Luka Peternel and Arash Ajoudani Presented by Halishia Chugani Robots Learning from Robots: A proof of Concept Study for Co-Manipulation Tasks Luka Peternel and Arash Ajoudani Presented by Halishia Chugani Robots learning from humans 1. Robots learn from humans 2.

More information

Chapter 1. Robot and Robotics PP

Chapter 1. Robot and Robotics PP Chapter 1 Robot and Robotics PP. 01-19 Modeling and Stability of Robotic Motions 2 1.1 Introduction A Czech writer, Karel Capek, had first time used word ROBOT in his fictional automata 1921 R.U.R (Rossum

More information

FLL Coaches Clinic Chassis and Attachments. Patrick R. Michaud

FLL Coaches Clinic Chassis and Attachments. Patrick R. Michaud FLL Coaches Clinic Chassis and Attachments Patrick R. Michaud pmichaud@pobox.com Erik Jonsson School of Engineering and Computer Science University of Texas at Dallas September 23, 2017 Presentation Outline

More information

Les apports de la robotique collaborative en santé

Les apports de la robotique collaborative en santé Les apports de la robotique collaborative en santé Guillaume Morel Institut des Systèmes Intelligents et de Robotique Université Pierre et Marie Curie, CNRS UMR 7222 INSERM U1150 Assistance aux Gestes

More information

Reach Out and Touch Someone

Reach Out and Touch Someone Reach Out and Touch Someone Understanding how haptic feedback can improve interactions with the world. The word haptic means of or relating to touch. Haptic feedback involves the use of touch to relay

More information

Haptic interaction. Ruth Aylett

Haptic interaction. Ruth Aylett Haptic interaction Ruth Aylett Contents Haptic definition Haptic model Haptic devices Measuring forces Haptic Technologies Haptics refers to manual interactions with environments, such as sensorial exploration

More information

HexGen HEX HL Hexapod Six-DOF Positioning System

HexGen HEX HL Hexapod Six-DOF Positioning System HexGen HE300-230HL Hexapods and Robotics HexGen HE300-230HL Hexapod Six-DOF Positioning System Six degree-of-freedom positioning with linear travels to 60 mm and angular travels to 30 Precision design

More information

sin( x m cos( The position of the mass point D is specified by a set of state variables, (θ roll, θ pitch, r) related to the Cartesian coordinates by:

sin( x m cos( The position of the mass point D is specified by a set of state variables, (θ roll, θ pitch, r) related to the Cartesian coordinates by: Research Article International Journal of Current Engineering and Technology ISSN 77-46 3 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijcet Modeling improvement of a Humanoid

More information

Robotics. In Textile Industry: Global Scenario

Robotics. In Textile Industry: Global Scenario Robotics In Textile Industry: A Global Scenario By: M.Parthiban & G.Mahaalingam Abstract Robotics In Textile Industry - A Global Scenario By: M.Parthiban & G.Mahaalingam, Faculty of Textiles,, SSM College

More information

COMPARISON BETWEEN CONVENTIONAL MILLING AND CLIMB MILLING IN ROBOTIC DEBURRING OF PLASTIC PARTS

COMPARISON BETWEEN CONVENTIONAL MILLING AND CLIMB MILLING IN ROBOTIC DEBURRING OF PLASTIC PARTS Proceedings in Manufacturing Systems, Volume 11, Issue 3, 2016, 165 170 ISSN 2067-9238 COMPARISON BETWEEN CONVENTIONAL MILLING AND CLIMB MILLING IN ROBOTIC DEBURRING OF PLASTIC PARTS Andrei Mario IVAN

More information

DIGITAL SPINDLE DRIVE TECHNOLOGY ADVANCEMENTS AND PERFORMANCE IMPROVEMENTS

DIGITAL SPINDLE DRIVE TECHNOLOGY ADVANCEMENTS AND PERFORMANCE IMPROVEMENTS DIGITAL SPINDLE DRIVE TECHNOLOGY ADVANCEMENTS AND PERFORMANCE IMPROVEMENTS Ty Safreno and James Mello Trust Automation Inc. 143 Suburban Rd Building 100 San Luis Obispo, CA 93401 INTRODUCTION Industry

More information

Load application in load cells - Tips for users

Load application in load cells - Tips for users Load application in load cells - Tips for users Correct load application on the load cells is a prerequisite for precise weighing results. Be it load direction, support structure or mounting aids load

More information

Sensors and Sensing Motors, Encoders and Motor Control

Sensors and Sensing Motors, Encoders and Motor Control Sensors and Sensing Motors, Encoders and Motor Control Todor Stoyanov Mobile Robotics and Olfaction Lab Center for Applied Autonomous Sensor Systems Örebro University, Sweden todor.stoyanov@oru.se 05.11.2015

More information

Robot: Robonaut 2 The first humanoid robot to go to outer space

Robot: Robonaut 2 The first humanoid robot to go to outer space ProfileArticle Robot: Robonaut 2 The first humanoid robot to go to outer space For the complete profile with media resources, visit: http://education.nationalgeographic.org/news/robot-robonaut-2/ Program

More information

GEARS-IDS Invention and Design System Educational Objectives and Standards

GEARS-IDS Invention and Design System Educational Objectives and Standards GEARS-IDS Invention and Design System Educational Objectives and Standards The GEARS-IDS Invention and Design System is a customizable science, math and engineering, education tool. This product engages

More information