Polymer Interconnects for Datacom and Sensing. Department of Engineering, University of Cambridge

Size: px
Start display at page:

Download "Polymer Interconnects for Datacom and Sensing. Department of Engineering, University of Cambridge"

Transcription

1 Polymer Interconnects for Datacom and Sensing Richard Penty, Ian White, Nikos Bamiedakis, Ying Hao, Fendi Hashim Department of Engineering, University of Cambridge

2 Outline Introduction and Motivation Material and Fabrication Process Multimode Polymer Waveguide Components - Fundamental transmission studies - Waveguide bends and crossings - Y-splitters/combiners Integrated Polymer Waveguides / Optoelectronics - OE PCB Fabrication - Transceiver performance Non Communications Applications - Prototype gas sensor Conclusion 2

3 Optical Interconnects J. Bautista, Optoelectronic Integrated Circuits Vii, pp. 1-8, Optical interconnects offer significant advantages over their electrical counterparts: - large link bandwidth, reduced power consumption, EMI, thermal management issues Successful integration of photonics onto PCBs requires:` - suitable materials - cost-effective fabrication, assembly and packaging schemes compatible with existing manufacturing processes of standard PCBs 3

4 Siloxane Polymer Material Siloxane materials engineered to exhibit suitable mechanical, thermal and optical properties: are flexible exhibit high processability coating, adhesion to substrates, dicing exhibit high thermal and environmental stability withstands ~ 350 C (solder reflow) low intrinsic loss at datacommunications wavelengths: nm low birefringence offer refractive index tunability can be integrated with PCBs offer high manufacturability (photolithography or embossing techniques) are cost effective 4

5 Multimode Waveguide Components Allow relaxed alignment tolerances compatible with machine assembly But need to have high optical performance (loss, lifetime, bandwidth etc) Fabricated by conventional photolithographic techniques on various substrates: silicon, glass, FR4 Cross section of µm 2 or µm 2 Index step difference n n 0.02 Typical pitch of 250 µm to match ribbon fibre and VCSEL and photodiode array spacing Components designed and fabricated: - straight waveguides up to 125 mm m long spiral waveguides - crossing guides - bent waveguides (90 o bends, S-bends) - Y-splitters/combiners - couplers 20um top cladding n ~ 1.5 core n ~ 1.52 bottom cladding n ~ 1.5 substrate 50um 5

6 Fundamental Transmission Properties - 1 Transmission properties investigated under varying launches: SMF and MMF inputs Propagation loss nm, nm Coupling loss ~ 0.5 db for SMF inputs, ~1.5 2 db for MMF input Relaxed alignment tolerances ± 20 µm for -1 db and ± 25 µm for -3 db for SMF launch ± 13 µm for -1 db and ± 20 µm for -3 db for 50 µm MMF Propagation loss coefficient (db/cm) Wavelength (µm) Normalised Received Power (db) SMF SMF, Simulation 50 um MMF 50 um MMF, Simulation Input offset (µm) N. Bamiedakis, et al., IEEE Journal of Quantum Electronics, vol.45, pp ,

7 Fundamental Transmission Properties - 2 Mode mixing in straight waveguides assessed by far field measurements and near field images under restricted launch (SMF input) very small effect for lengths up to 100 mm Crosstalk performance assessed with arrays of parallel guides with varying pitch and under SMF and MMF launches Very low crosstalk observed for both input types even for the longest parallel guides (125 mm) and closely spaced (100 µm): < - 40 db for SMF and < - 25 db for a 50 µm MMF Normalised intensity at far field Angle (deg) 55 mm 71 mm 88 mm 99 mm Normalised received power (db) WG SMF 50 µm MMF WG X-axis offset (µm) 7

8 Waveguide Crossings offer high routing flexibility maximise usable on-board area increase achievable interconnection density Lowest reported loss: db/crossing for SMF, ~0.01 db for MMF Excellent crosstalk performance: < - 25 db even for 100 crossings Insertion Loss (db) SMF 50 µm MMF 62.5 µm MMF slope: db/crossing slope: 0.01 db/crossing Crosstalk in adjacent parallel waveguide (db) SMF 50 µm MMF 0 slope: db/crossing Number of Crossings Number of Crossings 8

9 Polymer Backplane: Design Strategy Backplane Requirements: passive routing scalable architecture low loss & low crosstalk Exploit existing technology ribbon fiber and connectors VCSEL 850 nm photo-diode arrays Mount /Rx arrays on line cards incremental costs as cards added dedicated link from each VCSEL in transmit array to every other card address appropriate in array oncard Line cards Backplane architecture passive shuffle scheme dedicated point-to-point links strict non-blocking card connections at board edge no mid-board or out-of-plane connectors 9

10 10 Card Optical Backplane Card interfaces (10 waveguides each) J. Beals, et al., Applied Physics A, vol. 95, pp , Rx Rx Rx Rx Rx 2.25 U (10 cm) Rx Rx Rx Rx Rx Schematic of 10-card backplane layout 100 waveguides single 90 bend per waveguide 90 crossings or less per waveguide Input Type Insertion Loss Worst-case Crosstalk 50 µm MMF 2 to 8 db < -35 db SMF 1 to 4 db < -45 db Terabit capacity enabled by 100 waveguides, 10 Gb/s in multicast mode 10

11 Data Transmission Bit Er rror Rate Gb/s link transmission Link 1 Back to Back 1 Link 2 Back to Back db penalty for a bit-error-rate of 10-9 Real Gigabit Ethernet Traffic Across Backplane links with highest loss and greatest crosstalk full line-rate data transmission no dropped packets Received Pow er (dbm) (back to back) (received) 20 ps/div 20 ps/div Dell PowerEdge 2850 servers for GbE tests 11

12 Optical Backplanes: Widespread Industry Interest numerous demonstrations of simple point-to-point on-board polymer links appealing commercial application space Intel optical chip-to-chip link Mohammed et al, Intel Tech. J. 8 (2004) Fujitsu Labs optical backplane Glebov et al, Opt. Eng. 46 (2007) Asperation Perlos Co/Vtt Electronics Immonen et al, IEEE Trans. Elect. Pack. Manuf. 28 (2005) Daimler Chrysler Moisel et al, Opt. Eng. 39 (2000) Fraunhofer/Siemens et al Schroder et al, Opt Int. Circ. VIII, Proc.SPIE 6124 (2006) IBM Terabus Optocard Schares et al, IEEE J. Sel. Top. Q. Elect. 12 (2007) 12

13 Optical Coupling Schemes ` Optical coupling achieved either by: - out-of-plane coupling using beam-turning elements + simplifies assembly and electrical connection of active devices - requires additional fabrication steps Cost and fabrication issues arise - end-fired coupling + eliminates the need for additional optical structures - requires embedding the OE devices in the board and efficiently routing the electrical signal from the board surface to the devices typically, pin-based assembly (MT-ferrules) used for alignment - not space-efficient unless employed at board-edge - not compatible with pick-and-place assembly and/or flexible PCBs to route electrical signals - minimum bending radius - increased number of electrical interfaces Papakonstantinou I. et al, ECTC, ,

14 Integration Concept Motivation: Produce a low complexity/low cost OE PCB simplify optical layer / eliminate the need for beam-turning elements or micro-lenses end-fired optical coupling schemes minimise the number of different types of electrical substrates (flex PCBs/FR4) and electrical interfaces use one substrate allow compatibility with pick-and-place assembly remove space restrictions: allow electro-optic interface anywhere on the board connector with VCSEL/PD mounted active device (VCSEL or PD) mounted connector with VCSEL/PD waveguide light output/input waveguide optical layer electrical layer FR4 FR4 metal tracks and electrical components electrical via connector slot electrical via connector slot 14

15 Waveguide PCB Integration Board design based on low-cost single-layered double-sided FR4 substrate Top side: electronic components and power plane Bottom side: ground plane and optical waveguides Through-board slots produced to allow endfire optical coupling electronic components ground vias I/O signal SMA connectors through-board connector slot pin connectors power plane electrical layer power plane FR4 ground plane optical layer polymer layers waveguide facets N. Bamiedakis, et al., Photonics West, San Francisco,

16 OE PCB Fabrication (i) produce electrical layout on FR4 (plated vias and uniform bottom solder mask) (ii) fabricate waveguides on the bottom board surface (iii) attach the electronic components using solder reflow process, (iv) mill through-board slots to expose waveguide facets. electronic component upper solder mask plated-through via ground track signal track ground plane electrical layer FR4 FR4 optical layer bottom cladding waveguide core top cladding bottom solder mask through-board trench 16

17 Electro-Optic L-Connectors Electro-optic connectors to: accommodate active OE devices interface electrical with optical layer L-Connector shape and size allows pick-and-place assembly (no pins) can be positioned anywhere on the board allows electrical connection to the back of the connector L shape facilitates vertical and angular alignment: inside surface reference planes electronic component 7 mm 1.6 mm active components 5 mm copper tracks plated-through via through-board connector FR4 FR4 bottom solder mask bottom cladding waveguide core top cladding upper solder mask ground plane light I/O 0.4 mm signal vias optoelectronic component 17

18 Optical Transceiver Proof-of-principle demonstrator Integrates and Rx electronic modules with polymer Y-splitter on a 1-mm single-layered FR4 board front view Voltage regulators I/O data SMA Rx module module LD OE PCB PD Y-splitter planar view 18

19 Tolerancing Y-splitter insertion losses ~ 6.6 and 6.5 db for VCSEL and PD arms Input/output coupling losses ~ 3.5 db and 2 db Main loss component: facet quality (Milled not polished) optimisation of milling process (tool type, spindle speed, feed rate) Alignment tolerances: VCSEL arm: x= ± 8 µm, y= ± 15 µm, z= 70 µm PD arm : x, y= ± 25 µm, z= 120 µm - 1 db points connector slot x,y and z offset VCSEL x,y and z offset PD Y-splitter OE PCB Y-splitter OE PCB connector slot x10 Broad area detector 50 µm MMF VCSEL Normalised received power (db) X-axis Y-axis XY-axis offset (µm) Normalised received power (db).. 0 VCSEL PD z X-axis Y-axis XY-axis offset (µm) Normalised Received Power (db) PD arm LD arm Z-axis offset (µm) 19

20 Optical Transceiver Performance Transmit mode 10 Gb/s PD Y-splitter VOA a RF amplifier Pattern generator 10x 10x BER Tester Receive mode Pattern generator VCSEL VCSEL 10x VOA 10x OE PCB Y-splitter High-speed receiver a PD BER Tester 10 Gb/s OE PCB VCSEL 10-3 module Rx module Error-free operation (BER < ) achieved for both directions at 10 Gb/s Bit Error Rate Received optical power at point a (dbm) 20

21 Parallel Optical Interconnects Integration of 1x4 VCSEL and PD arrays with on-board optical waveguides - improve RF performance of L-connectors for device arrays electronics OE PCB Rx electronics 1x4 VCSEL Array 10.6 mm Design and test of and Rx electronic circuits for 1x4 parallel links intial layouts on low-cost FR4 substrates with L-connectors 5.6 mm 10 Gb/s Normalised Received Power (dbe) S21 Comparison Exp - CH1-30 Exp - CH2-40 Model - CH1-50 Model - CH CH1 CH Frequency (GHz) 10 Gb/s Transmission driver Rx driver Rx Bit Error Rate PRBS7 PRBS7 Rx Received Power (dbm)

22 Conclusions Polymer siloxane materials satisfy necessary requirements for low-cost and large-scale integration onto PCBs A wide range of useful multimode waveguide components demonstrated with excellent transmission properties Automatic assembly compatible integration technique for multi-layer PCB board developed Prototype transceiver and on-board links successfully developed for 10Gb/s operation Applications in gas and bio sensing being developed Initial early studies towards printed waveguides Multimode Siloxane Waveguides : a promising technology for use in high-speed short-reach optical interconnection applications 22

High-Speed Board-Level Polymer Optical Sub- Systems

High-Speed Board-Level Polymer Optical Sub- Systems High-Speed Board-Level Polymer Optical Sub- Systems I. H. White, N. Bamiedakis, J. Chen, and R. V. Penty Department of Engineering, University of Cambridge, UK Motivation 3 Motivation - exponential growth

More information

4-Channel Optical Parallel Transceiver. Using 3-D Polymer Waveguide

4-Channel Optical Parallel Transceiver. Using 3-D Polymer Waveguide 4-Channel Optical Parallel Transceiver Using 3-D Polymer Waveguide 1 Description Fujitsu Component Limited, in cooperation with Fujitsu Laboratories Ltd., has developed a new bi-directional 4-channel optical

More information

Optical Bus for Intra and Inter-chip Optical Interconnects

Optical Bus for Intra and Inter-chip Optical Interconnects Optical Bus for Intra and Inter-chip Optical Interconnects Xiaolong Wang Omega Optics Inc., Austin, TX Ray T. Chen University of Texas at Austin, Austin, TX Outline Perspective of Optical Backplane Bus

More information

160-Gb/s Bidirectional Parallel Optical Transceiver Module for Board-Level Interconnects

160-Gb/s Bidirectional Parallel Optical Transceiver Module for Board-Level Interconnects 160-Gb/s Bidirectional Parallel Optical Transceiver Module for Board-Level Interconnects Fuad Doany, Clint Schow, Jeff Kash C. Baks, D. Kuchta, L. Schares, & R. John IBM T. J. Watson Research Center doany@us.ibm.com

More information

Development of Optical Interconnect PCBs for High-Speed Electronic Systems Fabricator s View

Development of Optical Interconnect PCBs for High-Speed Electronic Systems Fabricator s View Development of Optical Interconnect PCBs for High-Speed Electronic Systems Fabricator s View 2011 IBM Printed Circuit Board Symposium Raleigh, NC, USA November 16 th 2011, Time: 10:00-10:30am Speaker:

More information

Characterization of Parallel Optical-interconnect Waveguides Integrated on a Printed Circuit Board

Characterization of Parallel Optical-interconnect Waveguides Integrated on a Printed Circuit Board RZ 343 (# 99) 4/12/4 Mathematics & Physics 8 pages Research Report Characterization of Parallel Optical-interconnect Waveguides Integrated on a Printed Circuit Board G.L. Bona, 1 B.J. Offrein, 1 U. Bapst,

More information

WDM board-level optical communications

WDM board-level optical communications MIT Microphotonics Center Spring Meeting, May 22 nd WDM board-level optical communications Jürgen Schrage Siemens AG,, Germany Outline Introduction to board-level optical communications, WDM motivation

More information

Graded-Index Core Polymer Optical Waveguide for High-bandwidth-density On-Board Interconnect

Graded-Index Core Polymer Optical Waveguide for High-bandwidth-density On-Board Interconnect European Cluster for Optical Interconnects (ECO) Workshop Sep. 25, 2013 Graded-Index Core Polymer Optical Waveguide for High-bandwidth-density On-Board Interconnect Takaaki Ishigure Faculty of Science

More information

Zukunftstechnologie Dünnglasbasierte elektrooptische. Research Center of Microperipheric Technologies

Zukunftstechnologie Dünnglasbasierte elektrooptische. Research Center of Microperipheric Technologies Zukunftstechnologie Dünnglasbasierte elektrooptische Baugruppenträger Dr. Henning Schröder Fraunhofer IZM, Berlin, Germany Today/Overview Motivation: external roadmaps High Bandwidth and Channel Density

More information

Chip Scale Package Fiber Optic Transceiver Integration for Harsh Environments

Chip Scale Package Fiber Optic Transceiver Integration for Harsh Environments Chip Scale Package Fiber Optic Transceiver Integration for Harsh Environments Chuck Tabbert and Charlie Kuznia Ultra Communications, Inc. 990 Park Center Drive, Suite H Vista, CA, USA, 92081 ctabbert@

More information

A 24-Channel 300 Gb/s 8.2 pj/bit Full-Duplex Fiber-Coupled Optical Transceiver Module Based on a Single Holey CMOS IC

A 24-Channel 300 Gb/s 8.2 pj/bit Full-Duplex Fiber-Coupled Optical Transceiver Module Based on a Single Holey CMOS IC A 24-Channel 300 Gb/s 8.2 pj/bit Full-Duplex Fiber-Coupled Optical Transceiver Module Based on a Single Holey CMOS IC A. Rylyakov, C. Schow, F. Doany, B. Lee, C. Jahnes, Y. Kwark, C.Baks, D. Kuchta, J.

More information

Presentation Overview

Presentation Overview Low-cost WDM Transceiver Technology for 10-Gigabit Ethernet and Beyond Brian E. Lemoff, Lisa A. Buckman, Andrew J. Schmit, and David W. Dolfi Agilent Laboratories Hot Interconnects 2000 Stanford, CA August

More information

inemi OPTOELECTRONICS ROADMAP FOR 2004 Dr. Laura J. Turbini University of Toronto SMTA International September 26, 2005

inemi OPTOELECTRONICS ROADMAP FOR 2004 Dr. Laura J. Turbini University of Toronto SMTA International September 26, 2005 inemi OPTOELECTRONICS ROADMAP FOR 2004 0 Dr. Laura J. Turbini University of Toronto SMTA International September 26, 2005 Outline Business Overview Traditional vs Jisso Packaging Levels Optoelectronics

More information

WWDM Transceiver Module for 10-Gb/s Ethernet

WWDM Transceiver Module for 10-Gb/s Ethernet WWDM Transceiver Module for 10-Gb/s Ethernet Brian E. Lemoff Hewlett-Packard Laboratories lemoff@hpl.hp.com IEEE 802.3 HSSG Interim Meeting Coeur d Alene, Idaho June 1-3, 1999 Why pursue WWDM for the LAN?

More information

NEXT GENERATION SILICON PHOTONICS FOR COMPUTING AND COMMUNICATION PHILIPPE ABSIL

NEXT GENERATION SILICON PHOTONICS FOR COMPUTING AND COMMUNICATION PHILIPPE ABSIL NEXT GENERATION SILICON PHOTONICS FOR COMPUTING AND COMMUNICATION PHILIPPE ABSIL OUTLINE Introduction Platform Overview Device Library Overview What s Next? Conclusion OUTLINE Introduction Platform Overview

More information

Multi-gigabit intra-satellite interconnects employing multi-core fibers and optical engines

Multi-gigabit intra-satellite interconnects employing multi-core fibers and optical engines VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD at ICSO conference 19 Oct 2016 Multi-gigabit intra-satellite interconnects employing multi-core fibers and optical engines Mikko Karppinen et al. VTT P. Westbergh,

More information

A 3.9 ns 8.9 mw 4 4 Silicon Photonic Switch Hybrid-Integrated with CMOS Driver

A 3.9 ns 8.9 mw 4 4 Silicon Photonic Switch Hybrid-Integrated with CMOS Driver A 3.9 ns 8.9 mw 4 4 Silicon Photonic Switch Hybrid-Integrated with CMOS Driver A. Rylyakov, C. Schow, B. Lee, W. Green, J. Van Campenhout, M. Yang, F. Doany, S. Assefa, C. Jahnes, J. Kash, Y. Vlasov IBM

More information

PLC-based integrated devices for advanced modulation formats

PLC-based integrated devices for advanced modulation formats ECOC 2009 workshop 7-5 Sep. 20, 2009 PLC-based integrated devices for advanced modulation formats Y. Inoue NTT Photonics Labs. NTT Corporation NTT Photonics Laboratories Hybrid integration of photonics

More information

Comparison of Bandwidth Limits for On-card Electrical and Optical Interconnects for 100 Gb/s and Beyond

Comparison of Bandwidth Limits for On-card Electrical and Optical Interconnects for 100 Gb/s and Beyond Invited Paper Comparison of Bandwidth Limits for On-card Electrical and Optical Interconnects for 1 Gb/s and Beyond Petar Pepeljugoski *, Mark Ritter, Jeffrey A. Kash, Fuad Doany, Clint Schow, Young Kwark,

More information

Silicon Photonics: A Platform for Integration, Wafer Level Assembly and Packaging

Silicon Photonics: A Platform for Integration, Wafer Level Assembly and Packaging Silicon Photonics: A Platform for Integration, Wafer Level Assembly and Packaging M. Asghari Kotura Inc April 27 Contents: Who is Kotura Choice of waveguide technology Challenges and merits of Si photonics

More information

Optical Local Area Networking

Optical Local Area Networking Optical Local Area Networking Richard Penty and Ian White Cambridge University Engineering Department Trumpington Street, Cambridge, CB2 1PZ, UK Tel: +44 1223 767029, Fax: +44 1223 767032, e-mail:rvp11@eng.cam.ac.uk

More information

IBM T. J. Watson Research Center IBM Corporation

IBM T. J. Watson Research Center IBM Corporation Broadband Silicon Photonic Switch Integrated with CMOS Drive Electronics B. G. Lee, J. Van Campenhout, A. V. Rylyakov, C. L. Schow, W. M. J. Green, S. Assefa, M. Yang, F. E. Doany, C. V. Jahnes, R. A.

More information

Integrated electro-optical waveguide based devices with liquid crystals on a silicon backplane

Integrated electro-optical waveguide based devices with liquid crystals on a silicon backplane Integrated electro-optical waveguide based devices with liquid crystals on a silicon backplane Florenta Costache Group manager Smart Micro-Optics SMO/AMS Fraunhofer Institute for Photonic Microsystems,

More information

Pitch Reducing Optical Fiber Array Two-Dimensional (2D)

Pitch Reducing Optical Fiber Array Two-Dimensional (2D) PROFA Pitch Reducing Optical Fiber Array Two-Dimensional (2D) Pitch Reducing Optical Fiber Arrays (PROFAs) provide low loss coupling between standard optical fibers and photonic integrated circuits. Unlike

More information

Fiber-Optic Transceivers for High-speed Digital Interconnects in Satellites

Fiber-Optic Transceivers for High-speed Digital Interconnects in Satellites Photo: ESA Fiber-Optic Transceivers for High-speed Digital Interconnects in Satellites ICSO conference, 9 Oct 2014 Mikko Karppinen (mikko.karppinen@vtt.fi), V. Heikkinen, K. Kautio, J. Ollila, A. Tanskanen

More information

Opportunities and challenges of silicon photonics based System-In-Package

Opportunities and challenges of silicon photonics based System-In-Package Opportunities and challenges of silicon photonics based System-In-Package ECTC 2014 Panel session : Emerging Technologies and Market Trends of Silicon Photonics Speaker : Stéphane Bernabé (Leti Photonics

More information

Scalable Electro-optical Assembly Techniques for Silicon Photonics

Scalable Electro-optical Assembly Techniques for Silicon Photonics Scalable Electro-optical Assembly Techniques for Silicon Photonics Bert Jan Offrein, Tymon Barwicz, Paul Fortier OIDA Workshop on Manufacturing Trends for Integrated Photonics Outline Broadband large channel

More information

Application Bulletin 240

Application Bulletin 240 Application Bulletin 240 Design Consideration CUSTOM CAPABILITIES Standard PC board fabrication flexibility allows for various component orientations, mounting features, and interconnect schemes. The starting

More information

Integrated Optoelectronic Chips for Bidirectional Optical Interconnection at Gbit/s Data Rates

Integrated Optoelectronic Chips for Bidirectional Optical Interconnection at Gbit/s Data Rates Bidirectional Optical Data Transmission 77 Integrated Optoelectronic Chips for Bidirectional Optical Interconnection at Gbit/s Data Rates Martin Stach and Alexander Kern We report on the fabrication and

More information

High-speed free-space based reconfigurable card-to-card optical interconnects with broadcast capability

High-speed free-space based reconfigurable card-to-card optical interconnects with broadcast capability High-speed free-space based reconfigurable card-to-card optical interconnects with broadcast capability Ke Wang, 1,2,* Ampalavanapillai Nirmalathas, 1,2 Christina Lim, 2 Efstratios Skafidas, 1,2 and Kamal

More information

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade:

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade: Examination Optoelectronic Communication Technology April, 26 Name: Student ID number: OCT : OCT 2: OCT 3: OCT 4: Total: Grade: Declaration of Consent I hereby agree to have my exam results published on

More information

Silicon Photonics Photo-Detector Announcement. Mario Paniccia Intel Fellow Director, Photonics Technology Lab

Silicon Photonics Photo-Detector Announcement. Mario Paniccia Intel Fellow Director, Photonics Technology Lab Silicon Photonics Photo-Detector Announcement Mario Paniccia Intel Fellow Director, Photonics Technology Lab Agenda Intel s Silicon Photonics Research 40G Modulator Recap 40G Photodetector Announcement

More information

Single-mode Glass Waveguide Platform for DWDM Chip-to-Chip Interconnects

Single-mode Glass Waveguide Platform for DWDM Chip-to-Chip Interconnects Single-mode Glass Waveguide Platform for DWDM Chip-to-Chip Interconnects Lars Brusberg 1), Henning Schröder 1), Marco Queisser 2), Klaus-Dieter Lang 2) 1) Fraunhofer Institute for Reliability and Microintegration,

More information

Trends in Optical Transceivers:

Trends in Optical Transceivers: Trends in Optical Transceivers: Light sources for premises networks Peter Ronco Corning Optical Fiber Asst. Product Line Manager Premises Fibers January 24, 2006 Outline: Introduction: Transceivers and

More information

INTEGRATED OPTICAL AND ELECTRONIC INTERCONNECT PCB MANUFACTURING (OPCB)

INTEGRATED OPTICAL AND ELECTRONIC INTERCONNECT PCB MANUFACTURING (OPCB) INTEGRATED OPTICAL AND ELECTRONIC INTERCONNECT PCB MANUFACTURING (OPCB) IeMRC FLAGSHIP PROJECT IeMRC Annual Conference Loughborough 4 th July 2008 PROJECT OBJECTIVES 1. Enhance fabrication techniques for

More information

Integrated Photonics using the POET Optical InterposerTM Platform

Integrated Photonics using the POET Optical InterposerTM Platform Integrated Photonics using the POET Optical InterposerTM Platform Dr. Suresh Venkatesan CIOE Conference Shenzhen, China Sept. 5, 2018 POET Technologies Inc. TSXV: PUBLIC POET PTK.V Technologies Inc. PUBLIC

More information

AWG OPTICAL DEMULTIPLEXERS: FROM DESIGN TO CHIP. D. Seyringer

AWG OPTICAL DEMULTIPLEXERS: FROM DESIGN TO CHIP. D. Seyringer AWG OPTICAL DEMULTIPLEXERS: FROM DESIGN TO CHIP D. Seyringer Research Centre for Microtechnology, Vorarlberg University of Applied Sciences, Hochschulstr. 1, 6850 Dornbirn, Austria, E-mail: dana.seyringer@fhv.at

More information

A Fully Integrated 20 Gb/s Optoelectronic Transceiver Implemented in a Standard

A Fully Integrated 20 Gb/s Optoelectronic Transceiver Implemented in a Standard A Fully Integrated 20 Gb/s Optoelectronic Transceiver Implemented in a Standard 0.13 µm CMOS SOI Technology School of Electrical and Electronic Engineering Yonsei University 이슬아 1. Introduction 2. Architecture

More information

Ultra-Low-Loss Athermal AWG Module with a Large Number of Channels

Ultra-Low-Loss Athermal AWG Module with a Large Number of Channels Ultra-Low-Loss Athermal AWG Module with a Large Number of Channels by Junichi Hasegawa * and Kazutaka Nara * There is an urgent need for an arrayed waveguide grating (AWG), the device ABSTRACT that handles

More information

System demonstrator for board-to-board level substrate-guided wave optoelectronic interconnections

System demonstrator for board-to-board level substrate-guided wave optoelectronic interconnections Header for SPIE use System demonstrator for board-to-board level substrate-guided wave optoelectronic interconnections Xuliang Han, Gicherl Kim, Hitesh Gupta, G. Jack Lipovski, and Ray T. Chen Microelectronic

More information

Convergence Challenges of Photonics with Electronics

Convergence Challenges of Photonics with Electronics Convergence Challenges of Photonics with Electronics Edward Palen, Ph.D., P.E. PalenSolutions - Optoelectronic Packaging Consulting www.palensolutions.com palensolutions@earthlink.net 415-850-8166 October

More information

Design Rules per November Figure 1. Generic Package G5-rev 2.0

Design Rules per November Figure 1. Generic Package G5-rev 2.0 General Design Rules G5 rev 2.0 Generic Test Package Design Rules per November 2017 Receiver Public Author I.C. (Elvis) Wan Tech Authorization V. Docter Admin Authorization P. Kat Reference G5-rev1_0-design

More information

Polymer optical waveguide based bi-directional optical bus architecture for high speed optical backplane

Polymer optical waveguide based bi-directional optical bus architecture for high speed optical backplane Polymer optical waveguide based bi-directional optical bus architecture for high speed optical backplane Xiaohui Lin a, Xinyuan Dou a, Alan X. Wang b and Ray T. Chen 1,*, Fellow, IEEE a Department of Electrical

More information

Design Rules for Silicon Photonic Packaging at Tyndall Institute

Design Rules for Silicon Photonic Packaging at Tyndall Institute Design Rules for Silicon Photonic Packaging at Tyndall Institute January 2015 About Tyndall Institute Established with a mission to support industry and academia in driving research to market, Tyndall

More information

Hybrid Integration Technology of Silicon Optical Waveguide and Electronic Circuit

Hybrid Integration Technology of Silicon Optical Waveguide and Electronic Circuit Hybrid Integration Technology of Silicon Optical Waveguide and Electronic Circuit Daisuke Shimura Kyoko Kotani Hiroyuki Takahashi Hideaki Okayama Hiroki Yaegashi Due to the proliferation of broadband services

More information

Silicon Photonics Technology Platform To Advance The Development Of Optical Interconnects

Silicon Photonics Technology Platform To Advance The Development Of Optical Interconnects Silicon Photonics Technology Platform To Advance The Development Of Optical Interconnects By Mieke Van Bavel, science editor, imec, Belgium; Joris Van Campenhout, imec, Belgium; Wim Bogaerts, imec s associated

More information

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI Lecture: Integration of silicon photonics with electronics Prepared by Jean-Marc FEDELI CEA-LETI Context The goal is to give optical functionalities to electronics integrated circuit (EIC) The objectives

More information

Microphotonics Readiness for Commercial CMOS Manufacturing. Marco Romagnoli

Microphotonics Readiness for Commercial CMOS Manufacturing. Marco Romagnoli Microphotonics Readiness for Commercial CMOS Manufacturing Marco Romagnoli MicroPhotonics Consortium meeting MIT, Cambridge October 15 th, 2012 Passive optical structures based on SOI technology Building

More information

Photo-Electronic Crossbar Switching Network for Multiprocessor Systems

Photo-Electronic Crossbar Switching Network for Multiprocessor Systems Photo-Electronic Crossbar Switching Network for Multiprocessor Systems Atsushi Iwata, 1 Takeshi Doi, 1 Makoto Nagata, 1 Shin Yokoyama 2 and Masataka Hirose 1,2 1 Department of Physical Electronics Engineering

More information

Integration of Optoelectronic and RF Devices for Applications in Optical Interconnect and Wireless Communication

Integration of Optoelectronic and RF Devices for Applications in Optical Interconnect and Wireless Communication Integration of Optoelectronic and RF Devices for Applications in Optical Interconnect and Wireless Communication Zhaoran (Rena) Huang Assistant Professor Department of Electrical, Computer and System Engineering

More information

Faster than a Speeding Bullet

Faster than a Speeding Bullet BEYOND DESIGN Faster than a Speeding Bullet by Barry Olney IN-CIRCUIT DESIGN PTY LTD AUSTRALIA In a previous Beyond Design column, Transmission Lines, I mentioned that a transmission line does not carry

More information

PHOTONIC INTEGRATED CIRCUITS FOR PHASED-ARRAY BEAMFORMING

PHOTONIC INTEGRATED CIRCUITS FOR PHASED-ARRAY BEAMFORMING PHOTONIC INTEGRATED CIRCUITS FOR PHASED-ARRAY BEAMFORMING F.E. VAN VLIET J. STULEMEIJER # K.W.BENOIST D.P.H. MAAT # M.K.SMIT # R. VAN DIJK * * TNO Physics and Electronics Laboratory P.O. Box 96864 2509

More information

64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array

64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array 64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array 69 64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array Roland Jäger and Christian Jung We have designed and fabricated

More information

Highly flexible polymeric optical waveguide for out-of-plane optical interconnects

Highly flexible polymeric optical waveguide for out-of-plane optical interconnects Highly flexible polymeric optical waveguide for out-of-plane optical interconnects Xinyuan Dou 1, Xiaolong Wang, Xiaohui Lin 1, Duo Ding 1, David Z. Pan 1 and Ray T. Chen 1*, IEEE Fellow 1 Department of

More information

Soft-lithography-based Inter-chip Optical Interconnects

Soft-lithography-based Inter-chip Optical Interconnects PIERS ONLINE, VOL. 4, NO. 8, 2008 871 Soft-lithography-based Inter-chip Optical Interconnects Wei Ni 1, Rubing Shao 1, Jing Wu 2, and X. Wu 1 1 State Key Laboratory of Modern Optical Instrumentation, Department

More information

Si Photonics Technology Platform for High Speed Optical Interconnect. Peter De Dobbelaere 9/17/2012

Si Photonics Technology Platform for High Speed Optical Interconnect. Peter De Dobbelaere 9/17/2012 Si Photonics Technology Platform for High Speed Optical Interconnect Peter De Dobbelaere 9/17/2012 ECOC 2012 - Luxtera Proprietary www.luxtera.com Overview Luxtera: Introduction Silicon Photonics: Introduction

More information

Loss and Bandwidth Studies on Multimode Polymer Waveguide Components for On-Board High-Speed Optical Interconnects

Loss and Bandwidth Studies on Multimode Polymer Waveguide Components for On-Board High-Speed Optical Interconnects > REPLCE THIS LINE WITH YOUR PPER IDENTIFICTION NUMER (DOULE-CLICK HERE TO EDIT) < 1 Loss and andwidth Studies on Multimode Polymer Waveguide Components for On-oard High-Speed Optical Interconnects Jian

More information

A novel tunable diode laser using volume holographic gratings

A novel tunable diode laser using volume holographic gratings A novel tunable diode laser using volume holographic gratings Christophe Moser *, Lawrence Ho and Frank Havermeyer Ondax, Inc. 85 E. Duarte Road, Monrovia, CA 9116, USA ABSTRACT We have developed a self-aligned

More information

MODELING AND EVALUATION OF CHIP-TO-CHIP SCALE SILICON PHOTONIC NETWORKS

MODELING AND EVALUATION OF CHIP-TO-CHIP SCALE SILICON PHOTONIC NETWORKS 1 MODELING AND EVALUATION OF CHIP-TO-CHIP SCALE SILICON PHOTONIC NETWORKS Robert Hendry, Dessislava Nikolova, Sébastien Rumley, Keren Bergman Columbia University HOTI 2014 2 Chip-to-chip optical networks

More information

Modeling, Design, and Demonstration of 2.5D Glass Interposers for 16-Channel 28 Gbps Signaling Applications

Modeling, Design, and Demonstration of 2.5D Glass Interposers for 16-Channel 28 Gbps Signaling Applications Modeling, Design, and Demonstration of 2.5D Glass Interposers for 16-Channel 28 Gbps Signaling Applications Brett Sawyer, Bruce C. Chou, Saumya Gandhi, Jack Mateosky, Venky Sundaram, and Rao Tummala 3D

More information

UNIT Write notes on broadening of pulse in the fiber dispersion?

UNIT Write notes on broadening of pulse in the fiber dispersion? UNIT 3 1. Write notes on broadening of pulse in the fiber dispersion? Ans: The dispersion of the transmitted optical signal causes distortion for both digital and analog transmission along optical fibers.

More information

The Development of the 1060 nm 28 Gb/s VCSEL and the Characteristics of the Multi-mode Fiber Link

The Development of the 1060 nm 28 Gb/s VCSEL and the Characteristics of the Multi-mode Fiber Link Special Issue Optical Communication The Development of the 16 nm 28 Gb/s VCSEL and the Characteristics of the Multi-mode Fiber Link Tomofumi Kise* 1, Toshihito Suzuki* 2, Masaki Funabashi* 1, Kazuya Nagashima*

More information

Photonic Integrated Circuits Made in Berlin

Photonic Integrated Circuits Made in Berlin Fraunhofer Heinrich Hertz Institute Photonic Integrated Circuits Made in Berlin Photonic integration Workshop, Columbia University, NYC October 2015 Moritz Baier, Francisco M. Soares, Norbert Grote Fraunhofer

More information

High-Power Semiconductor Laser Amplifier for Free-Space Communication Systems

High-Power Semiconductor Laser Amplifier for Free-Space Communication Systems 64 Annual report 1998, Dept. of Optoelectronics, University of Ulm High-Power Semiconductor Laser Amplifier for Free-Space Communication Systems G. Jost High-power semiconductor laser amplifiers are interesting

More information

First Demonstration of Single-mode Polymer Optical Waveguides with Circular Cores for Fiber-to-waveguide Coupling in 3D Glass Photonic Interposers

First Demonstration of Single-mode Polymer Optical Waveguides with Circular Cores for Fiber-to-waveguide Coupling in 3D Glass Photonic Interposers First Demonstration of Single-mode Polymer Optical Waveguides with Circular Cores for Fiber-to-waveguide Coupling in 3D Glass Photonic Interposers Rui Zhang^, Fuhan Liu, Venky Sundaram, and Rao Tummala

More information

Optically reconfigurable balanced dipole antenna

Optically reconfigurable balanced dipole antenna Loughborough University Institutional Repository Optically reconfigurable balanced dipole antenna This item was submitted to Loughborough University's Institutional Repository by the/an author. Citation:

More information

Opto-VLSI-based reconfigurable photonic RF filter

Opto-VLSI-based reconfigurable photonic RF filter Research Online ECU Publications 29 Opto-VLSI-based reconfigurable photonic RF filter Feng Xiao Mingya Shen Budi Juswardy Kamal Alameh This article was originally published as: Xiao, F., Shen, M., Juswardy,

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #3 is due today No class Monday, Feb 26 Pre-record

More information

Silicon photonics on 3 and 12 μm thick SOI for optical interconnects Timo Aalto VTT Technical Research Centre of Finland

Silicon photonics on 3 and 12 μm thick SOI for optical interconnects Timo Aalto VTT Technical Research Centre of Finland Silicon photonics on 3 and 12 μm thick SOI for optical interconnects Timo Aalto VTT Technical Research Centre of Finland 5th International Symposium for Optical Interconnect in Data Centres in ECOC, Gothenburg,

More information

Application Interest Group (AIG) Process Overview. Dr. Robert C. Pfahl Director of Roadmapping

Application Interest Group (AIG) Process Overview. Dr. Robert C. Pfahl Director of Roadmapping Application Interest Group (AIG) Process Overview Dr. Robert C. Pfahl Director of Roadmapping Outline Overview of IPSR AIG Process Roadmapping Technical Planning Application Interest Group (AIG) Formation

More information

Long-wavelength VCSELs ready to benefit 40/100-GbE modules

Long-wavelength VCSELs ready to benefit 40/100-GbE modules Long-wavelength VCSELs ready to benefit 40/100-GbE modules Process technology advances now enable long-wavelength VCSELs to demonstrate the reliability needed to fulfill their promise for high-speed module

More information

Electronic-Photonic ICs for Low Cost and Scalable Datacenter Solutions

Electronic-Photonic ICs for Low Cost and Scalable Datacenter Solutions Electronic-Photonic ICs for Low Cost and Scalable Datacenter Solutions Christoph Theiss, Director Packaging Christoph.Theiss@sicoya.com 1 SEMICON Europe 2016, October 27 2016 Sicoya Overview Spin-off from

More information

Realization of Polarization-Insensitive Optical Polymer Waveguide Devices

Realization of Polarization-Insensitive Optical Polymer Waveguide Devices 644 Realization of Polarization-Insensitive Optical Polymer Waveguide Devices Kin Seng Chiang,* Sin Yip Cheng, Hau Ping Chan, Qing Liu, Kar Pong Lor, and Chi Kin Chow Department of Electronic Engineering,

More information

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University Photonics Group Department of Micro- and Nanosciences Aalto University Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Last Lecture Topics Course introduction Ray optics & optical

More information

Organic Optical Waveguide Fabrication in a Manufacturing Environment

Organic Optical Waveguide Fabrication in a Manufacturing Environment Organic Optical Waveguide Fabrication in a Manufacturing Environment Benson Chan, How Lin, Chase Carver, Jianzhuang Huang, Jessie Berry Endicott Interconnect Technologies 1093 Clark Street, Endicott NY

More information

10GBASE-S Technical Feasibility

10GBASE-S Technical Feasibility 10GBASE-S Technical Feasibility Picolight Cielo IEEE P802.3ae Los Angeles, October 2001 Interim meeting 1 10GBASE-S Feasibility Supporters Petar Pepeljugoski, IBM Tom Lindsay, Stratos Lightwave Bob Grow,

More information

Figure 1 Basic waveguide structure

Figure 1 Basic waveguide structure Recent Progress in SOI Nanophotonic Waveguides D. Van Thourhout, P. Dumon, W. Bogaerts, G. Roelkens, D. Taillaert, G. Priem, R. Baets IMEC-Ghent University, Department of Information Technology, St. Pietersnieuwstraat

More information

Silicon photonics with low loss and small polarization dependency. Timo Aalto VTT Technical Research Centre of Finland

Silicon photonics with low loss and small polarization dependency. Timo Aalto VTT Technical Research Centre of Finland Silicon photonics with low loss and small polarization dependency Timo Aalto VTT Technical Research Centre of Finland EPIC workshop in Tokyo, 9 th November 2017 VTT Technical Research Center of Finland

More information

APSUNY PDK: Overview and Future Trends

APSUNY PDK: Overview and Future Trends APSUNY PDK: Overview and Future Trends Erman Timurdogan Analog Photonics, 1 Marina Park Drive, Suite 205, Boston, MA, 02210 erman@analogphotonics.com Silicon Photonics Integrated Circuit Process Design

More information

Introduction of 25 Gb/s VCSELs

Introduction of 25 Gb/s VCSELs Introduction of 25 Gb/s VCSELs IEEE P802.3.ba 40Gb/s and 100Gb/s Ethernet Task Force May 2008, Munich Kenichiro Yashiki - NEC Hikaru Kouta - NEC 1 Contributors and Supporters Jim Tatum - Finisar Akimasa

More information

Specification for 100GBASE-DR4. Piers Dawe

Specification for 100GBASE-DR4. Piers Dawe Specification for 100GBASE-DR4 Piers Dawe IEEE P802.3bm, July 2013, Geneva IEEE P802.3bm, July 2013, Geneva Specification for 100GBASE-DR4 1 Supporters Arlon Martin Kotura IEEE P802.3bm, July 2013, Geneva

More information

2 in the multipath dispersion of the optical fibre. (b) Discuss the merits and drawbacks of cut bouls method of measurement of alternation.

2 in the multipath dispersion of the optical fibre. (b) Discuss the merits and drawbacks of cut bouls method of measurement of alternation. B.TECH IV Year I Semester (R09) Regular Examinations, November 2012 1 (a) Derive an expression for multiple time difference tt 2 in the multipath dispersion of the optical fibre. (b) Discuss the merits

More information

Si CMOS Technical Working Group

Si CMOS Technical Working Group Si CMOS Technical Working Group CTR, Spring 2008 meeting Markets Interconnects TWG Breakouts Reception TWG reports Si CMOS: photonic integration E-P synergy - Integration - Standardization - Cross-market

More information

Progress Towards Computer-Aided Design For Complex Photonic Integrated Circuits

Progress Towards Computer-Aided Design For Complex Photonic Integrated Circuits Department of Electrical and Computer Engineering Progress Towards Computer-Aided Design For Complex Photonic Integrated Circuits Wei-Ping Huang Department of Electrical and Computer Engineering McMaster

More information

A tunable Si CMOS photonic multiplexer/de-multiplexer

A tunable Si CMOS photonic multiplexer/de-multiplexer A tunable Si CMOS photonic multiplexer/de-multiplexer OPTICS EXPRESS Published : 25 Feb 2010 MinJae Jung M.I.C.S Content 1. Introduction 2. CMOS photonic 1x4 Si ring multiplexer Principle of add/drop filter

More information

TDM Photonic Network using Deposited Materials

TDM Photonic Network using Deposited Materials TDM Photonic Network using Deposited Materials ROBERT HENDRY, GILBERT HENDRY, KEREN BERGMAN LIGHTWAVE RESEARCH LAB COLUMBIA UNIVERSITY HPEC 2011 Motivation for Silicon Photonics Performance scaling becoming

More information

CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING

CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING Siti Aisyah bt. Ibrahim and Chong Wu Yi Photonics Research Center Department of Physics,

More information

Putting PICs in Products A Practical Guideline. Katarzyna Ławniczuk

Putting PICs in Products A Practical Guideline. Katarzyna Ławniczuk Putting PICs in Products A Practical Guideline Katarzyna Ławniczuk k.lawniczuk@brightphotonics.eu Outline Product development considerations Selecting PIC technology Design flow and design tooling considerations

More information

An integrated recirculating optical buffer

An integrated recirculating optical buffer An integrated recirculating optical buffer Hyundai Park, John P. Mack, Daniel J. Blumenthal, and John E. Bowers* University of California, Santa Barbara, Department of Electrical and Computer Engineering,

More information

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER As we discussed in chapter 1, silicon photonics has received much attention in the last decade. The main reason is

More information

Chapter 5 5.1 What are the factors that determine the thickness of a polystyrene waveguide formed by spinning a solution of dissolved polystyrene onto a substrate? density of polymer concentration of polymer

More information

Silicon Photonics for Mid-Board Optical Modules Marc Epitaux

Silicon Photonics for Mid-Board Optical Modules Marc Epitaux Silicon Photonics for Mid-Board Optical Modules Marc Epitaux Chief Architect at Samtec, Inc Outline Interconnect Solutions Mid-Board Optical Modules Silicon Photonics o Benefits o Challenges DragonFly

More information

VCSEL Based 10 Gigabit Serial Solutions

VCSEL Based 10 Gigabit Serial Solutions VCSEL Based 10 Gigabit Serial Solutions 802.3ae Plenary Meeting March 2000 Jack Jewell jljewell@picolight.com 303-530-3189 Introduction Objectives: 1) Assess the PHY links 1, 2, 3 proposed by Vipul Bhatt

More information

This writeup is adapted from Fall 2002, final project report for by Robert Winsor.

This writeup is adapted from Fall 2002, final project report for by Robert Winsor. Optical Waveguides in Andreas G. Andreou This writeup is adapted from Fall 2002, final project report for 520.773 by Robert Winsor. September, 2003 ABSTRACT This lab course is intended to give students

More information

PERFORMANCE EVALUATION OF GB/S BIDIRECTIONAL DWDM PASSIVE OPTICAL NETWORK BASED ON CYCLIC AWG

PERFORMANCE EVALUATION OF GB/S BIDIRECTIONAL DWDM PASSIVE OPTICAL NETWORK BASED ON CYCLIC AWG http:// PERFORMANCE EVALUATION OF 1.25 16 GB/S BIDIRECTIONAL DWDM PASSIVE OPTICAL NETWORK BASED ON CYCLIC AWG Arashdeep Kaur 1, Ramandeep Kaur 2 1 Student, M.Tech, Department of Electronics and Communication

More information

Chip-Scale Package Fiber Optic Transceiver Integration for Harsh Environments. Chuck Tabbert

Chip-Scale Package Fiber Optic Transceiver Integration for Harsh Environments. Chuck Tabbert Chip-Scale Package Fiber Optic Transceiver Integration for Harsh Environments Chuck Tabbert ctabbert@ultracomm-inc.com (505) 823-1293 Agenda Corporate Overview Motivation Background Technology Wide Temperature

More information

Modulators. Digital Intensity Modulators. Analogue Intensity Modulators. 2.5Gb/sec...Page Gb/sec Small Form Factor...Page 3

Modulators. Digital Intensity Modulators. Analogue Intensity Modulators. 2.5Gb/sec...Page Gb/sec Small Form Factor...Page 3 Date Created: 1/12/4 Modulators Digital Intensity Modulators Modulators 2.Gb/sec.....................Page 2 2.Gb/sec Small Form Factor.......Page 3 2.Gb/sec with Attenuator.........Page 4 12.Gb/sec Integrated

More information

IST IP NOBEL "Next generation Optical network for Broadband European Leadership"

IST IP NOBEL Next generation Optical network for Broadband European Leadership DBR Tunable Lasers A variation of the DFB laser is the distributed Bragg reflector (DBR) laser. It operates in a similar manner except that the grating, instead of being etched into the gain medium, is

More information

1310NM FP LASER FOR 10GBASE-LRM SC AND LC TOSA

1310NM FP LASER FOR 10GBASE-LRM SC AND LC TOSA DATA SHEET 1310NM FP LASER FOR 10GBASE-LRM SC AND LC TOSA FP-1310-10LRM-X FEATURES: 1310nm FP laser Very low power dissipation SC and LC optical receptacles 10Gbps direct modulation Impedance matching

More information

Fast, Two-Dimensional Optical Beamscanning by Wavelength Switching T. K. Chan, E. Myslivets, J. E. Ford

Fast, Two-Dimensional Optical Beamscanning by Wavelength Switching T. K. Chan, E. Myslivets, J. E. Ford Photonics Systems Integration Lab University of California San Diego Jacobs School of Engineering Fast, Two-Dimensional Optical Beamscanning by Wavelength Switching T. K. Chan, E. Myslivets, J. E. Ford

More information