PHOTONIC INTEGRATED CIRCUITS FOR PHASED-ARRAY BEAMFORMING

Size: px
Start display at page:

Download "PHOTONIC INTEGRATED CIRCUITS FOR PHASED-ARRAY BEAMFORMING"

Transcription

1 PHOTONIC INTEGRATED CIRCUITS FOR PHASED-ARRAY BEAMFORMING F.E. VAN VLIET J. STULEMEIJER # K.W.BENOIST D.P.H. MAAT # M.K.SMIT # R. VAN DIJK * * TNO Physics and Electronics Laboratory P.O. Box JG The Hague The Netherlands f.e.vanvliet@fel.tno.nl # Delft University of Technology Faculty of Electrical Engineering Mekelweg CD Delft The Netherlands J.Stulemeijer@its.tudelft.nl Photonic integration is very promising to bring down volume and weight of phased-array beamforming networks. In addition, photonics allows for increased functionality for widebandwidth systems. In this paper we demonstrate the feasibility of phase and amplitude control of a 16-element phased-array antenna with a single InP integrated circuit. The concept and design of an optical phase locked loop will be explained. Results of initial true-time delay experiments will also be shown. 1 Introduction Phased-array antennas are in widespread use since the beginning of the 70 s and are now becoming increasingly important for radar applications and in satellite and mobile communications. Phasedarray antennas have the advantage of 2-dimensional scanning without mechanical parts, accurate beampointing, and phase and amplitude control to reduce sidelobes in the overall antenna pattern. A drawback for broad application of active phased-array antennas is the voluminous and heavy RF electronic beamforming network. Photonics holds a great promise for reducing both weight and volume of these networks, by incorporating fibre optic and integrated optic components, and enables the use of antenna remoting and optical signal processing. Another advantage of the optical approach is the huge bandwidth which it offers: the response is flat from DC to tens of GHz; it is limited by the bandwidth of the photodetectors which can extend over 100 GHz. Other advantages of using photonics are the frequency independent low loss of optical fibres in comparison with coax cables, the insensitivity to electromagnetic interference (EMI) and the possibility of incorporating long true time delays, enabling large instantaneous bandwidth radar systems. A complete optical beamforming chip has been designed, realised and tested. A heterodyne detection technique is needed for the full benefits of this beamformer. Design considerations for an optical phase locked loop are presented but no results are available at this moment. Also a switched true time delay using fibre delay lines has been assembled. Measurement results are presented in paragraph 4. A.B. Smolders and M.P. van Haarlem (eds.) Perspectives on Radio Astronomy Technologies for Large Antenna Arrays Netherlands Foundation for Research in Astronomy

2 2 Optical Phase Locked Loop For the optical generation of microwave signals with high spectral purity, an Optical Phase Locked Loop (OPPL) is of interest because of its potential to significantly reduce the relative phase noise of a pair of lasers [1]. In Fig. 1 a schematic diagram of an OPLL is shown. In an OPLL the microwave signal is generated by mixing the output of two lasers onto a photodiode. This microwave signal is amplified and its phase is compared to a reference signal oscillator. The resulting phase error signal is used to tune the frequency of the slave laser, which is forced to track the master laser with a frequency offset equal to the reference signal. Using this scheme, the relative phase noise of the two lasers is significantly reduced. Figure 1: Optical phase locked loop (OPLL) An OPLL system is realized consisting of a New Focus 1.55 µm external cavity diode laser (linewidth <300 khz) operating as master laser, and a tunable 1.55 µm three section DBR laser diode (linewidth <5 MHz) acting as the slave laser in the loop. OPLLs based on semiconductor laser diodes offer the advantage of small, rugged devices but special attention is needed to the laser linewidth, tuning characteristics of the laser and total loop delay. In order to minimize the loop delay, micro-optic components are used for mixing of the optical signals and a special GaAs MMIC containing the electrical components like monolithic integrated photodiode, microwave mixer, amplifier and loop filter is designed and realised. An integrated MMIC, hence a small device, is necessary in this architecture in order to obtain the required very small loop delay. At the moment the complete OPLL system is being tested. Optical RF-signals of several GHz are realized by mixing the two lasers, additional tests are in progress. 3 Photonic Integrated Beamformer Chip Using a coherent detection scheme, phase and amplitude of an optical signal can be directly transferred to a microwave signal. In this way modulation of phase and amplitude of a microwave signal can be performed using optical phase and amplitude modulators. The bandwidth is almost unlimited because the frequency of the generated microwave signal is limited by the photodetector. Fig. 2 illustrates an integrated photonic beam control circuit for a 16-element phased-array microwave antenna which has been realized in InP, for operation in the long wavelength window (1550 nm) [2,3]. The dimensions of the chip are 8.5*8 mm 2, the optical excess loss is estimated to be 13.1 db, partly caused by erroneous processing. The chip has two inputs for two optical signals with a frequency difference equal to the radar RF signal (from an OPLL). The two inputs are fed into a 1x16 power splitting distribution network, the outputs are sorted in pairs. Each pair is connected to a phase and amplitude modulation section, after which the two signals are fed to a 3-dB-coupler. The RF-signals are obtained by coupling the signals coming out of the sixteen 3 db couplers to a series of 16 balanced detector pairs. 296

3 Figure 2: Photograph of integrated beamforming chip, dimensions 8.5*8 mm 2 The phase and amplitude of the optical signals can be controlled by using changes of the refractive index and in the absorption due to the electro-optic effect. The doping profile of the chip is chosen in such a way that the waveguiding layer gets depleted when a reverse bias is applied to the waveguide. At high voltages, the modulator acts as an electro-absorption modulator, due to the electrical field induced shift of the band edge. In the left side of Fig. 3 it can be seen that a phase shift of 180 degrees can be set with a voltage in the range of 0 to -5 V. The right side of Fig. 3b shows the attenuation as a function of the voltage. It is seen that an attenuation of over 15 db can be achieved with an applied voltage of -20V. Figure 3: Phase shift and attenuation as function of applied voltage A predefined value for amplitude and phase can be reached as follows. First the attenuation in both the interfering arms has to be set by applying the same voltage to the phase/attenuation sections in both arms. Next the phase can be adjusted by changing the voltage on both arms relative to each other with a small amount. Light from two different external cavity diode lasers was coupled into the two input waveguides of the chip. This was done by positioning two lensed fibres in front of the waveguides. The two lasers were tuned 250 MHz apart and the output level of 0 dbm was boosted to 13 dbm using erbium doped fibre amplifiers. At one of the outputs the light was coupled into a lensed fibre and guided to the detector. At the detector the light intensity was about -60 dbm. After the detector a 40 db electrical amplifier was used. 297

4 The frequency generated by mixing the two optical signals can be chosen at any frequency between a few MHz and hundreds of GHz (only limited by the detector). In our experiment the obtainable frequency was limited by the linewidth of the lasers (300 khz) and the FFT-analyzer (0.5 GHz). In this range the output level appeared to be virtually frequency independent. The SNR of the signals is very low because of the high losses which occurred in the measurement set-up in coupling light into and out of the chip. We are presently working on reducing the fibre to chip loss, by using spotsize converters, and the on-chip losses in order to reduce this problem. 4 True Time Delay Experiments To be able to realise phased array antennas with wide instantaneous bandwidth true time delay phase shifting elements are needed. Optical fibres offer the opportunity to obtain relatively long delay lines, in which the losses are independent of the size of the delay line. A 3-bit fibre optical true time delay (OTTD) architecture has been build using 4 2x2 Akzo Nobel Beambox integrated thermo-optic switches to demonstrate feasibility of fibre optic delay lines. A schematic drawing of this binary fibre optic delay line architecture is given in Fig. 4. Figure 4: Schematic drawing of a 3-bit OTTD architecture In this architecture, the optical signal is optionally routed through 3 fibre segments whose lengths increase successively by a power of 2. The required fibre segments are addresses using the 2x2 optical switches. Since each switch allows the signal to either connect or bypass a fibre segment, a delay time can be chosen between 0 T and 7 T, with increments of T. The unit time delay can be chosen as small as required because a differential phase shift between the two paths is of interest. In the OTTD experiment a delay increment T of 1.5 nsec was chosen, corresponding with a fibre segment increment of about 30 cm. In order to keep the delay line error below 5 psec, the fibre segments must be cut with mm precision. The time delays were measured using a network analyzer, the results of the second attempt are presented in Fig

5 Figure 5: Results of time delay measurement for a 3-bit OTTD component As can be seen from the figures, a time increment of exactly 1.5 nsec is achieved, with an error smaller than 5 psec. Typical optical losses of 12 db were measured, resulting from switch losses (2.5 db each) and fibre optic connector losses. With a proper waveguide system, which has sufficient low optical loss, optical delay line architectures can also be integrated on chip, offering the advantage of volume and weight reduction. 5 Conclusion Photonics offers great opportunities for phased array beamforming systems. Both coherent and incoherent techniques are of interest to antenna remoting and beamforming. To investigate its feasibility, research is carried out on optical microwave generation using an OPLL, optical integration of signal processing elements on a single InP chip, and architectures for optical true time delay lines. Phase locking of two lasers has not been achieved yet but the RF electronics and PIN photodiode has successfully been integrated onto one GaAs MMIC. The InP beamforming chip is capable of controlling phase and amplitude of 16 antenna channels. The maximum attenuation is 17 db and the phase can be adjusted to over 180. A 3-bit true time delay has been realised and tested with an architecture that exhibits an constant insertion loss for all possible states. The time delays have an error less than 5 ps. References [1] U. Gliese, T.N. Nielsen, M. Bruun, E. Lintz Christensen, K.E. Stubkjær, S. Lindgren, and B. Broberg, A Wideband Heterodyne Optical Phase-Locked Loop for Generation of 3-18 GHz Microwave Carriers, IEEE Photonics Technology Letters, Vol. 4, pp , [2] J. Stulemeijer, F.E. van Vliet, K.W. Benoist, D.H.P. Maat, M.K. Smit, Photonic Integrated Beamformer for Phased-Array Antennas, Proceedings Microwave Photonics conference MWP 98, 1998, pp ,

6 [3] J. Stulemeijer, F.E. van Vliet, K.W. Benoist, D.H.P. Maat, and M.K. Smit, Compact Photonic Integrated Phase and Amplitude Controller for Phased-Array Antennas, IEEE Photonics Technology Letters, Vol. 11, pp ,

DBR based passively mode-locked 1.5m semiconductor laser with 9 nm tuning range Moskalenko, V.; Williams, K.A.; Bente, E.A.J.M.

DBR based passively mode-locked 1.5m semiconductor laser with 9 nm tuning range Moskalenko, V.; Williams, K.A.; Bente, E.A.J.M. DBR based passively mode-locked 1.5m semiconductor laser with 9 nm tuning range Moskalenko, V.; Williams, K.A.; Bente, E.A.J.M. Published in: Proceedings of the 20th Annual Symposium of the IEEE Photonics

More information

Coherent power combination of two Masteroscillator-power-amplifier. semiconductor lasers using optical phase lock loops

Coherent power combination of two Masteroscillator-power-amplifier. semiconductor lasers using optical phase lock loops Coherent power combination of two Masteroscillator-power-amplifier (MOPA) semiconductor lasers using optical phase lock loops Wei Liang, Naresh Satyan and Amnon Yariv Department of Applied Physics, MS

More information

Optical Delay Line Application Note

Optical Delay Line Application Note 1 Optical Delay Line Application Note 1.1 General Optical delay lines system (ODL), incorporates a high performance lasers such as DFBs, optical modulators for high operation frequencies, photodiodes,

More information

Spurious-Mode Suppression in Optoelectronic Oscillators

Spurious-Mode Suppression in Optoelectronic Oscillators Spurious-Mode Suppression in Optoelectronic Oscillators Olukayode Okusaga and Eric Adles and Weimin Zhou U.S. Army Research Laboratory Adelphi, Maryland 20783 1197 Email: olukayode.okusaga@us.army.mil

More information

Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links

Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links Bruno Romeira* a, José M. L Figueiredo a, Kris Seunarine b, Charles N. Ironside b, a Department of Physics, CEOT,

More information

MICROWAVE photonics is an interdisciplinary area

MICROWAVE photonics is an interdisciplinary area 314 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 27, NO. 3, FEBRUARY 1, 2009 Microwave Photonics Jianping Yao, Senior Member, IEEE, Member, OSA (Invited Tutorial) Abstract Broadband and low loss capability of

More information

Holography Transmitter Design Bill Shillue 2000-Oct-03

Holography Transmitter Design Bill Shillue 2000-Oct-03 Holography Transmitter Design Bill Shillue 2000-Oct-03 Planned Photonic Reference Distribution for Test Interferometer The transmitter for the holography receiver is made up mostly of parts that are already

More information

EXAMINATION FOR THE DEGREE OF B.E. and M.E. Semester

EXAMINATION FOR THE DEGREE OF B.E. and M.E. Semester EXAMINATION FOR THE DEGREE OF B.E. and M.E. Semester 2 2009 101908 OPTICAL COMMUNICATION ENGINEERING (Elec Eng 4041) 105302 SPECIAL STUDIES IN MARINE ENGINEERING (Elec Eng 7072) Official Reading Time:

More information

MICRO RING MODULATOR. Dae-hyun Kwon. High-speed circuits and Systems Laboratory

MICRO RING MODULATOR. Dae-hyun Kwon. High-speed circuits and Systems Laboratory MICRO RING MODULATOR Dae-hyun Kwon High-speed circuits and Systems Laboratory Paper preview Title of the paper Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator Publication

More information

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback Song, B.; Kojima, K.; Pina, S.; Koike-Akino, T.; Wang, B.;

More information

A NOVEL SCHEME FOR OPTICAL MILLIMETER WAVE GENERATION USING MZM

A NOVEL SCHEME FOR OPTICAL MILLIMETER WAVE GENERATION USING MZM A NOVEL SCHEME FOR OPTICAL MILLIMETER WAVE GENERATION USING MZM Poomari S. and Arvind Chakrapani Department of Electronics and Communication Engineering, Karpagam College of Engineering, Coimbatore, Tamil

More information

Photonic Integrated Beamformer for Broadband Radio Astronomy

Photonic Integrated Beamformer for Broadband Radio Astronomy M. Burla, D. A. I. Marpaung, M. R. H. Khan, C. G. H. Roeloffzen Telecommunication Engineering group University of Twente, Enschede, The Netherlands P. Maat, K. Dijkstra ASTRON, Dwingeloo, The Netherlands

More information

Heterogeneously Integrated Microwave Signal Generators with Narrow- Linewidth Lasers

Heterogeneously Integrated Microwave Signal Generators with Narrow- Linewidth Lasers Heterogeneously Integrated Microwave Signal Generators with Narrow- Linewidth Lasers John E. Bowers, Jared Hulme, Tin Komljenovic, Mike Davenport and Chong Zhang Department of Electrical and Computer Engineering

More information

Module 16 : Integrated Optics I

Module 16 : Integrated Optics I Module 16 : Integrated Optics I Lecture : Integrated Optics I Objectives In this lecture you will learn the following Introduction Electro-Optic Effect Optical Phase Modulator Optical Amplitude Modulator

More information

HIGHLY INTEGRATED APPLICATION SPECIFIC MMICS FOR ACTIVE PHASED ARRAY RADAR APPLICATIONS

HIGHLY INTEGRATED APPLICATION SPECIFIC MMICS FOR ACTIVE PHASED ARRAY RADAR APPLICATIONS HIGHLY INTEGRATED APPLICATION SPECIFIC MMICS FOR ACTIVE PHASED ARRAY RADAR APPLICATIONS F.L.M. VAN DEN BOGAART TNO Physics and Electronics laboratory P.O. Box 96864 2509 JG The Hague The Netherlands E-mail:

More information

Microwave Photonics: Photonic Generation of Microwave and Millimeter-wave Signals

Microwave Photonics: Photonic Generation of Microwave and Millimeter-wave Signals 16 Microwave Photonics: Photonic Generation of Microwave and Millimeter-wave Signals Jianping Yao Microwave Photonics Research Laboratory School of Information Technology and Engineering University of

More information

The Study on the Effect Factors of Single-mode Fiber Optical Signal Transmission Time Delay Hechuan1, a

The Study on the Effect Factors of Single-mode Fiber Optical Signal Transmission Time Delay Hechuan1, a 4th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering (ICMMCCE 2015) The Study on the Effect Factors of Single-mode Fiber Optical Signal Transmission Time Delay Hechuan1,

More information

Optical Phase-Locking and Wavelength Synthesis

Optical Phase-Locking and Wavelength Synthesis 2014 IEEE Compound Semiconductor Integrated Circuits Symposium, October 21-23, La Jolla, CA. Optical Phase-Locking and Wavelength Synthesis M.J.W. Rodwell, H.C. Park, M. Piels, M. Lu, A. Sivananthan, E.

More information

Measuring Photonic, Optoelectronic and Electro optic S parameters using an advanced photonic module

Measuring Photonic, Optoelectronic and Electro optic S parameters using an advanced photonic module Measuring Photonic, Optoelectronic and Electro optic S parameters using an advanced photonic module APPLICATION NOTE This application note describes the procedure for electro-optic measurements of both

More information

Continuous-wave Terahertz Spectroscopy System Based on Photodiodes

Continuous-wave Terahertz Spectroscopy System Based on Photodiodes PIERS ONLINE, VOL. 6, NO. 4, 2010 390 Continuous-wave Terahertz Spectroscopy System Based on Photodiodes Tadao Nagatsuma 1, 2, Akira Kaino 1, Shintaro Hisatake 1, Katsuhiro Ajito 2, Ho-Jin Song 2, Atsushi

More information

- no emitters/amplifiers available. - complex process - no CMOS-compatible

- no emitters/amplifiers available. - complex process - no CMOS-compatible Advantages of photonic integrated circuits (PICs) in Microwave Photonics (MWP): compactness low-power consumption, stability flexibility possibility of aggregating optics and electronics functionalities

More information

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration 22 Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration Jun-Hyuk Seo, and Woo-Young Choi Department of Electrical and

More information

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers T. Day and R. A. Marsland New Focus Inc. 340 Pioneer Way Mountain View CA 94041 (415) 961-2108 R. L. Byer

More information

Extending the Offset Frequency Range of the D2-135 Offset Phase Lock Servo by Indirect Locking

Extending the Offset Frequency Range of the D2-135 Offset Phase Lock Servo by Indirect Locking Extending the Offset Frequency Range of the D2-135 Offset Phase Lock Servo by Indirect Locking Introduction The Vescent Photonics D2-135 Offset Phase Lock Servo is normally used to phase lock a pair of

More information

Characteristics of InP HEMT Harmonic Optoelectronic Mixers and Their Application to 60GHz Radio-on-Fiber Systems

Characteristics of InP HEMT Harmonic Optoelectronic Mixers and Their Application to 60GHz Radio-on-Fiber Systems . TU6D-1 Characteristics of Harmonic Optoelectronic Mixers and Their Application to 6GHz Radio-on-Fiber Systems Chang-Soon Choi 1, Hyo-Soon Kang 1, Dae-Hyun Kim 2, Kwang-Seok Seo 2 and Woo-Young Choi 1

More information

Datasheet SHF 100 BPP

Datasheet SHF 100 BPP SHF Communication Technologies AG Wilhelm-von-Siemens-Str. 23D 12277 Berlin Germany Phone ++49 30 / 772 05 10 Fax ++49 30 / 753 10 78 E-Mail: sales@shf.de Web: http://www.shf.de Datasheet SHF 100 BPP Broadband

More information

MICROWAVE MICROWAVE TRAINING BENCH COMPONENT SPECIFICATIONS:

MICROWAVE MICROWAVE TRAINING BENCH COMPONENT SPECIFICATIONS: Microwave section consists of Basic Microwave Training Bench, Advance Microwave Training Bench and Microwave Communication Training System. Microwave Training System is used to study all the concepts of

More information

Chapter 4 Application of OPLLs in coherent beam combining

Chapter 4 Application of OPLLs in coherent beam combining 55 Chapter 4 Application of OPLLs in coherent beam combining 4.1 Introduction of coherent beam combining 4.1.1 Spectral beam combining vs coherent beam combining High power, high brightness lasers with

More information

Optical phase-coherent link between an optical atomic clock. and 1550 nm mode-locked lasers

Optical phase-coherent link between an optical atomic clock. and 1550 nm mode-locked lasers Optical phase-coherent link between an optical atomic clock and 1550 nm mode-locked lasers Kevin W. Holman, David J. Jones, Steven T. Cundiff, and Jun Ye* JILA, National Institute of Standards and Technology

More information

Evaluation of RF power degradation in microwave photonic systems employing uniform period fibre Bragg gratings

Evaluation of RF power degradation in microwave photonic systems employing uniform period fibre Bragg gratings Evaluation of RF power degradation in microwave photonic systems employing uniform period fibre Bragg gratings G. Yu, W. Zhang and J. A. R. Williams Photonics Research Group, Department of EECS, Aston

More information

ALMA MEMO 399 Millimeter Wave Generation Using a Uni-Traveling-Carrier Photodiode

ALMA MEMO 399 Millimeter Wave Generation Using a Uni-Traveling-Carrier Photodiode ALMA MEMO 399 Millimeter Wave Generation Using a Uni-Traveling-Carrier Photodiode T. Noguchi, A. Ueda, H.Iwashita, S. Takano, Y. Sekimoto, M. Ishiguro, T. Ishibashi, H. Ito, and T. Nagatsuma Nobeyama Radio

More information

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers Keisuke Kasai a), Jumpei Hongo, Masato Yoshida, and Masataka Nakazawa Research Institute of

More information

Terahertz Photonics for Imaging. -Invited

Terahertz Photonics for Imaging. -Invited 1106 Terahertz Photonics for Imaging Peter R. Herczfeld' and Yifei Li' -Invited Abstract: This paper concerm the application of microrvuw photonic techniques for terahertz imaging. The system under investigation

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: Performance Analysis of WDM/SCM System Using EDFA Mukesh Kumar

More information

Chapter 3 Experimental study and optimization of OPLLs

Chapter 3 Experimental study and optimization of OPLLs 27 Chapter 3 Experimental study and optimization of OPLLs In Chapter 2 I have presented the theory of OPLL and identified critical issues for OPLLs using SCLs. In this chapter I will present the detailed

More information

Development of an Optical Phase-Locked Loop for 1-THz Optical Beat Signal Generation

Development of an Optical Phase-Locked Loop for 1-THz Optical Beat Signal Generation Development of an Optical Phase-Locked Loop for 1-THz Optical Beat Signal Generation by Takasaka Shigehiro*, Yasuyuki Ozeki* 2, Shu Namiki* 3, Misao Sakano* 4 and Yu Mimura * To support larger telecommunications

More information

A new picosecond Laser pulse generation method.

A new picosecond Laser pulse generation method. PULSE GATING : A new picosecond Laser pulse generation method. Picosecond lasers can be found in many fields of applications from research to industry. These lasers are very common in bio-photonics, non-linear

More information

Optically reconfigurable balanced dipole antenna

Optically reconfigurable balanced dipole antenna Loughborough University Institutional Repository Optically reconfigurable balanced dipole antenna This item was submitted to Loughborough University's Institutional Repository by the/an author. Citation:

More information

Photonic integrated circuit on InP for millimeter wave generation

Photonic integrated circuit on InP for millimeter wave generation Invited Paper Photonic integrated circuit on InP for millimeter wave generation Frederic van Dijk 1, Marco Lamponi 1, Mourad Chtioui 2, François Lelarge 1, Gaël Kervella 1, Efthymios Rouvalis 3, Cyril

More information

Performance of the Prototype NLC RF Phase and Timing Distribution System *

Performance of the Prototype NLC RF Phase and Timing Distribution System * SLAC PUB 8458 June 2000 Performance of the Prototype NLC RF Phase and Timing Distribution System * Josef Frisch, David G. Brown, Eugene Cisneros Stanford Linear Accelerator Center, Stanford University,

More information

Photonic True Time-Delay Beam Steering for Radars

Photonic True Time-Delay Beam Steering for Radars EMERGING 216 : The Eighth International Conference on Emerging Networks and Systems Intelligence Phonic True Time-Delay Beam Steering for Radars Wen Piao Lin Department of Electrical Engineering, Chang

More information

PHASE TO AMPLITUDE MODULATION CONVERSION USING BRILLOUIN SELECTIVE SIDEBAND AMPLIFICATION. Steve Yao

PHASE TO AMPLITUDE MODULATION CONVERSION USING BRILLOUIN SELECTIVE SIDEBAND AMPLIFICATION. Steve Yao PHASE TO AMPLITUDE MODULATION CONVERSION USING BRILLOUIN SELECTIVE SIDEBAND AMPLIFICATION Steve Yao Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Dr., Pasadena, CA 91109

More information

Low Phase Noise Laser Synthesizer with Simple Configuration Adopting Phase Modulator and Fiber Bragg Gratings

Low Phase Noise Laser Synthesizer with Simple Configuration Adopting Phase Modulator and Fiber Bragg Gratings ALMA Memo #508 Low Phase Noise Laser Synthesizer with Simple Configuration Adopting Phase Modulator and Fiber Bragg Gratings Takashi YAMAMOTO 1, Satoki KAWANISHI 1, Akitoshi UEDA 2, and Masato ISHIGURO

More information

Lecture 4 INTEGRATED PHOTONICS

Lecture 4 INTEGRATED PHOTONICS Lecture 4 INTEGRATED PHOTONICS What is photonics? Photonic applications use the photon in the same way that electronic applications use the electron. Devices that run on light have a number of advantages

More information

AN ADAPTIVE MOBILE ANTENNA SYSTEM FOR WIRELESS APPLICATIONS

AN ADAPTIVE MOBILE ANTENNA SYSTEM FOR WIRELESS APPLICATIONS AN ADAPTIVE MOBILE ANTENNA SYSTEM FOR WIRELESS APPLICATIONS G. DOLMANS Philips Research Laboratories Prof. Holstlaan 4 (WAY51) 5656 AA Eindhoven The Netherlands E-mail: dolmans@natlab.research.philips.com

More information

146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system

146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system 146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system M. J. Fice, 1 E. Rouvalis, 1 F. van Dijk, 2 A. Accard, 2 F. Lelarge, 2 C. C. Renaud, 1 G. Carpintero, 3,* and A. J. Seeds

More information

Lecture 9 External Modulators and Detectors

Lecture 9 External Modulators and Detectors Optical Fibres and Telecommunications Lecture 9 External Modulators and Detectors Introduction Where are we? A look at some real laser diodes. External modulators Mach-Zender Electro-absorption modulators

More information

Photonic dual RF beam reception of an X band phased array antenna using a photonic crystal fiber-based true-time-delay beamformer

Photonic dual RF beam reception of an X band phased array antenna using a photonic crystal fiber-based true-time-delay beamformer Photonic dual RF beam reception of an X band phased array antenna using a photonic crystal fiber-based true-time-delay beamformer Harish Subbaraman, 1 Maggie Yihong Chen, 2 and Ray T. Chen 1, * 1 Microelectronics

More information

21. (i) Briefly explain the evolution of fiber optic system (ii) Compare the configuration of different types of fibers. or 22. (b)(i) Derive modal eq

21. (i) Briefly explain the evolution of fiber optic system (ii) Compare the configuration of different types of fibers. or 22. (b)(i) Derive modal eq Unit-1 Part-A FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai - 625 020. [An ISO 9001:2008 Certified Institution] DEPARTMENT OF ELECTRONICS AND

More information

SHF Communication Technologies AG. Wilhelm-von-Siemens-Str. 23D Berlin Germany. Phone Fax

SHF Communication Technologies AG. Wilhelm-von-Siemens-Str. 23D Berlin Germany. Phone Fax SHF Communication Technologies AG Wilhelm-von-Siemens-Str. 23D 12277 Berlin Germany Phone +49 30 772051-0 Fax ++49 30 7531078 E-Mail: sales@shf.de Web: http://www.shf.de Datasheet SHF 100 BPP Broadband

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 OVERVIEW OF OPTICAL COMMUNICATION Optical fiber completely replaces coaxial cable and other low attenuation, free from electromagnetic interferences, comparatively less cost

More information

HIGH-PERFORMANCE microwave oscillators require a

HIGH-PERFORMANCE microwave oscillators require a IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 3, MARCH 2005 929 Injection-Locked Dual Opto-Electronic Oscillator With Ultra-Low Phase Noise and Ultra-Low Spurious Level Weimin Zhou,

More information

SHF Communication Technologies AG

SHF Communication Technologies AG SHF Communication Technologies AG Wilhelm-von-Siemens-Str. 23D 12277 Berlin Germany Phone ++49 30 / 772 05 10 Fax ++49 30 / 753 10 78 E-Mail: sales@shf.de Web: http://www.shf.de Datasheet SHF 806 E SHF

More information

Fast Widely-Tunable CW Single Frequency 2-micron Laser

Fast Widely-Tunable CW Single Frequency 2-micron Laser Fast Widely-Tunable CW Single Frequency 2-micron Laser Charley P. Hale and Sammy W. Henderson Beyond Photonics LLC 1650 Coal Creek Avenue, Ste. B Lafayette, CO 80026 Presented at: 18 th Coherent Laser

More information

Mode-locking and frequency beating in. compact semiconductor lasers. Michael J. Strain

Mode-locking and frequency beating in. compact semiconductor lasers. Michael J. Strain Mode-locking and frequency beating in Michael J. Strain Institute of Photonics Dept. of Physics University of Strathclyde compact semiconductor lasers Outline Pulsed lasers Mode-locking basics Semiconductor

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: Mach-Zehnder interferometer (MZI) phase stabilization. (a) DC output of the MZI with and without phase stabilization. (b) Performance of MZI stabilization

More information

Compact cw Terahertz Spectrometer Pumped at 1.5 μm Wavelength

Compact cw Terahertz Spectrometer Pumped at 1.5 μm Wavelength DOI 10.1007/s10762-010-9751-8 Compact cw Terahertz Spectrometer Pumped at 1.5 μm Wavelength Dennis Stanze & Anselm Deninger & Axel Roggenbuck & Stephanie Schindler & Michael Schlak & Bernd Sartorius Received:

More information

SHF Communication Technologies AG

SHF Communication Technologies AG SHF Communication Technologies AG Wilhelm-von-Siemens-Str. 23 Aufgang D 12277 Berlin Marienfelde Germany Phone ++49 30 / 772 05 10 Fax ++49 30 / 753 10 78 E-Mail: sales@shf.biz Web: http://www.shf.biz

More information

Optical Phase Lock Loop (OPLL) with Tunable Frequency Offset for Distributed Optical Sensing Applications

Optical Phase Lock Loop (OPLL) with Tunable Frequency Offset for Distributed Optical Sensing Applications Optical Phase Lock Loop (OPLL) with Tunable Frequency Offset for Distributed Optical Sensing Applications Vladimir Kupershmidt, Frank Adams Redfern Integrated Optics, Inc, 3350 Scott Blvd, Bldg 62, Santa

More information

MMA RECEIVERS: HFET AMPLIFIERS

MMA RECEIVERS: HFET AMPLIFIERS MMA Project Book, Chapter 5 Section 4 MMA RECEIVERS: HFET AMPLIFIERS Marian Pospieszalski Ed Wollack John Webber Last revised 1999-04-09 Revision History: 1998-09-28: Added chapter number to section numbers.

More information

DR-AN-40-MO 40 GHz Analog Medium Output Voltage Driver

DR-AN-40-MO 40 GHz Analog Medium Output Voltage Driver 40 GHz Analog Medium Output Voltage The DR-AN-40-MO is a wideband RF non-inverting amplifier module designed for analog applications at frequencies up to 40 GHz. The DR-AN-40-MO is characterized by a low

More information

Introduction to ixblue RF drivers and amplifiers for optical modulators

Introduction to ixblue RF drivers and amplifiers for optical modulators Introduction to ixblue RF drivers and amplifiers for optical modulators Introduction : ixblue designs, produces and commercializes optical modulators intended for a variety of applications including :

More information

Wavelength switching using multicavity semiconductor laser diodes

Wavelength switching using multicavity semiconductor laser diodes Wavelength switching using multicavity semiconductor laser diodes A. P. Kanjamala and A. F. J. Levi Department of Electrical Engineering University of Southern California Los Angeles, California 989-1111

More information

Simultaneous optical and electrical mixing in a single fast photodiode for the demodulation of weak mm-wave signals

Simultaneous optical and electrical mixing in a single fast photodiode for the demodulation of weak mm-wave signals Simultaneous optical and electrical mixing in a single fast photodiode for the demodulation of weak mm-wave signals Michele Norgia, Guido Giuliani, Riccardo Miglierina and Silvano Donati University of

More information

PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS

PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS By Jason O Daniel, Ph.D. TABLE OF CONTENTS 1. Introduction...1 2. Pulse Measurements for Pulse Widths

More information

SUPPLEMENTARY INFORMATION DOI: /NPHOTON

SUPPLEMENTARY INFORMATION DOI: /NPHOTON Supplementary Methods and Data 1. Apparatus Design The time-of-flight measurement apparatus built in this study is shown in Supplementary Figure 1. An erbium-doped femtosecond fibre oscillator (C-Fiber,

More information

Chapter 1. Overview. 1.1 Introduction

Chapter 1. Overview. 1.1 Introduction 1 Chapter 1 Overview 1.1 Introduction The modulation of the intensity of optical waves has been extensively studied over the past few decades and forms the basis of almost all of the information applications

More information

Mach Zehnder Interferometer True Time Delay Line

Mach Zehnder Interferometer True Time Delay Line Mach Zehnder Interferometer True Time Delay Line Terna Engineering College Nerul, Navi Mumbai ABSTRACT In this paper we propose an optical true time delay (TTD) line for Phased array antenna beam forming,

More information

Quantum-Well Semiconductor Saturable Absorber Mirror

Quantum-Well Semiconductor Saturable Absorber Mirror Chapter 3 Quantum-Well Semiconductor Saturable Absorber Mirror The shallow modulation depth of quantum-dot saturable absorber is unfavorable to increasing pulse energy and peak power of Q-switched laser.

More information

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade:

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade: Examination Optoelectronic Communication Technology April, 26 Name: Student ID number: OCT : OCT 2: OCT 3: OCT 4: Total: Grade: Declaration of Consent I hereby agree to have my exam results published on

More information

INTRODUCTION. LPL App Note RF IN G 1 F 1. Laser Diode OPTICAL OUT. P out. Link Length. P in OPTICAL IN. Photodiode G 2 F 2 RF OUT

INTRODUCTION. LPL App Note RF IN G 1 F 1. Laser Diode OPTICAL OUT. P out. Link Length. P in OPTICAL IN. Photodiode G 2 F 2 RF OUT INTRODUCTION RF IN Today s system designer may be faced with several technology choices for communications links for satellite microwave remoting, cellular/broadband services, or distribution of microwave

More information

Photonics and Optical Communication Spring 2005

Photonics and Optical Communication Spring 2005 Photonics and Optical Communication Spring 2005 Final Exam Instructor: Dr. Dietmar Knipp, Assistant Professor of Electrical Engineering Name: Mat. -Nr.: Guidelines: Duration of the Final Exam: 2 hour You

More information

SHF Communication Technologies AG

SHF Communication Technologies AG SHF Communication Technologies AG Wilhelm-von-Siemens-Str. 23 Aufgang D 12277 Berlin Marienfelde Germany Phone ++49 30 / 772 05 10 Fax ++49 30 / 753 10 78 E-Mail: sales@shf.biz Web: http://www.shf.biz

More information

A PORTABLE RUBIDIUM FOUNTAIN 1

A PORTABLE RUBIDIUM FOUNTAIN 1 A PORTABLE RUBIDIUM FOUNTAIN 1 P. D. Kunz Time and Frequency Division National Institute of Standards and Technology 325 Broadway, Boulder, CO 80305 kunzp@nist.gov T. P. Heavner (heavner@nist.gov) and

More information

Innovative ultra-broadband ubiquitous Wireless communications through terahertz transceivers ibrow

Innovative ultra-broadband ubiquitous Wireless communications through terahertz transceivers ibrow Project Overview Innovative ultra-broadband ubiquitous Wireless communications through terahertz transceivers ibrow Mar-2017 Presentation outline Project key facts Motivation Project objectives Project

More information

PCS-150 / PCI-200 High Speed Boxcar Modules

PCS-150 / PCI-200 High Speed Boxcar Modules Becker & Hickl GmbH Kolonnenstr. 29 10829 Berlin Tel. 030 / 787 56 32 Fax. 030 / 787 57 34 email: info@becker-hickl.de http://www.becker-hickl.de PCSAPP.DOC PCS-150 / PCI-200 High Speed Boxcar Modules

More information

Integrated receivers for mid-band SKA. Suzy Jackson Engineer, Australia Telescope National Facility

Integrated receivers for mid-band SKA. Suzy Jackson Engineer, Australia Telescope National Facility Integrated receivers for mid-band SKA Suzy Jackson Engineer, Australia Telescope National Facility ASKAP/SKA Special Technical Brief 23 rd October, 2009 Talk overview Mid band SKA receiver challenges ASKAP

More information

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber I. H. M. Nadzar 1 and N. A.Awang 1* 1 Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, Johor,

More information

FIBER OPTIC ANTENNA LINK OFW-5800/GPS. Compatible with a Wide Range of GPS Receivers Architectures. Logistically Supported with COTS Hardware

FIBER OPTIC ANTENNA LINK OFW-5800/GPS. Compatible with a Wide Range of GPS Receivers Architectures. Logistically Supported with COTS Hardware FIBER OPTIC ANTENNA LINK OFW-5800/GPS Compatible with a Wide Range of GPS Receivers Architectures Designed to Operate within the Naval Electromagnetic Environment Designed and Manufactured to Meet Naval

More information

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1 Lecture 6 Optical transmitters Photon processes in light matter interaction Lasers Lasing conditions The rate equations CW operation Modulation response Noise Light emitting diodes (LED) Power Modulation

More information

Testing with Femtosecond Pulses

Testing with Femtosecond Pulses Testing with Femtosecond Pulses White Paper PN 200-0200-00 Revision 1.3 January 2009 Calmar Laser, Inc www.calmarlaser.com Overview Calmar s femtosecond laser sources are passively mode-locked fiber lasers.

More information

New Ideology of All-Optical Microwave Systems Based on the Use of Semiconductor Laser as a Down-Converter.

New Ideology of All-Optical Microwave Systems Based on the Use of Semiconductor Laser as a Down-Converter. New Ideology of All-Optical Microwave Systems Based on the Use of Semiconductor Laser as a Down-Converter. V. B. GORFINKEL, *) M.I. GOUZMAN **), S. LURYI *) and E.L. PORTNOI ***) *) State University of

More information

! Couplers. ! Isolators/Circulators. ! Multiplexers/Filters. ! Optical Amplifiers. ! Transmitters (lasers,leds) ! Detectors (receivers) !

! Couplers. ! Isolators/Circulators. ! Multiplexers/Filters. ! Optical Amplifiers. ! Transmitters (lasers,leds) ! Detectors (receivers) ! Components of Optical Networks Based on: Rajiv Ramaswami, Kumar N. Sivarajan, Optical Networks A Practical Perspective 2 nd Edition, 2001 October, Morgan Kaufman Publishers Optical Components! Couplers!

More information

Chapter 3 OPTICAL SOURCES AND DETECTORS

Chapter 3 OPTICAL SOURCES AND DETECTORS Chapter 3 OPTICAL SOURCES AND DETECTORS 3. Optical sources and Detectors 3.1 Introduction: The success of light wave communications and optical fiber sensors is due to the result of two technological breakthroughs.

More information

High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W

High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W Joachim Sacher, Richard Knispel, Sandra Stry Sacher Lasertechnik GmbH, Hannah Arendt Str. 3-7, D-3537 Marburg,

More information

Photomixer as a self-oscillating mixer

Photomixer as a self-oscillating mixer Photomixer as a self-oscillating mixer Shuji Matsuura The Institute of Space and Astronautical Sciences, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 9-8510, Japan. e-mail:matsuura@ir.isas.ac.jp Abstract Photomixing

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/4/e1501489/dc1 Supplementary Materials for A broadband chip-scale optical frequency synthesizer at 2.7 10 16 relative uncertainty Shu-Wei Huang, Jinghui Yang,

More information

Measurements of Schottky-Diode Based THz Video Detectors

Measurements of Schottky-Diode Based THz Video Detectors Measurements of Schottky-Diode Based THz Video Detectors Hairui Liu 1, 2*, Junsheng Yu 1, Peter Huggard 2* and Byron Alderman 2 1 Beijing University of Posts and Telecommunications, Beijing, 100876, P.R.

More information

Antenna Measurements using Modulated Signals

Antenna Measurements using Modulated Signals Antenna Measurements using Modulated Signals Roger Dygert MI Technologies, 1125 Satellite Boulevard, Suite 100 Suwanee, GA 30024-4629 Abstract Antenna test engineers are faced with testing increasingly

More information

SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY SCHOOL OF ELECTRONICS AND ELECTRICAL ENGINEERING DEPARTMENT OF TCE COURSE PLAN

SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY SCHOOL OF ELECTRONICS AND ELECTRICAL ENGINEERING DEPARTMENT OF TCE COURSE PLAN SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY SCHOOL OF ELECTRONICS AND ELECTRICAL ENGINEERING DEPARTMENT OF TCE COURSE PLAN Course Code : TE1018 Course Title : Microwave Radio And Optical Fiber

More information

Delay Line Interferometers

Delay Line Interferometers w w w. k y l i a. c o m i n f o @ k y l i a. c o m Delay ine Interferometers MINT and WT-MINT 1 Description p1 2 Block diagrams.. p2 3 Absolute maximum ratings p3 4 Operating conditions. p3 5 MINT specifications

More information

HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS

HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS P. Weßels for the LZH high power laser development team Laser Zentrum Hannover, Germany 23.05.2011 OUTLINE Requirements on lasers for

More information

PRACTICAL PROBLEMS INVOLVING PHASE NOISE MEASUREMENTS

PRACTICAL PROBLEMS INVOLVING PHASE NOISE MEASUREMENTS 33rdAnnual Precise Time and Time Interval (P77 1)Meeting PRACTICAL PROBLEMS INVOLVING PHASE NOISE MEASUREMENTS Warren F. Walls Femtosecond Systems, Inc. 4894 Van Gordon St., Ste. 301-N Wheat Ridge, CO

More information

Demonstration of multi-cavity optoelectronic oscillators based on multicore fibers

Demonstration of multi-cavity optoelectronic oscillators based on multicore fibers Demonstration of multi-cavity optoelectronic oscillators based on multicore fibers Sergi García, Javier Hervás and Ivana Gasulla ITEAM Research Institute Universitat Politècnica de València, Valencia,

More information

Fibre Optic Sensors: basic principles and most common applications

Fibre Optic Sensors: basic principles and most common applications SMR 1829-21 Winter College on Fibre Optics, Fibre Lasers and Sensors 12-23 February 2007 Fibre Optic Sensors: basic principles and most common applications (PART 2) Hypolito José Kalinowski Federal University

More information

PERFORMANCE EVALUATION OF GB/S BIDIRECTIONAL DWDM PASSIVE OPTICAL NETWORK BASED ON CYCLIC AWG

PERFORMANCE EVALUATION OF GB/S BIDIRECTIONAL DWDM PASSIVE OPTICAL NETWORK BASED ON CYCLIC AWG http:// PERFORMANCE EVALUATION OF 1.25 16 GB/S BIDIRECTIONAL DWDM PASSIVE OPTICAL NETWORK BASED ON CYCLIC AWG Arashdeep Kaur 1, Ramandeep Kaur 2 1 Student, M.Tech, Department of Electronics and Communication

More information

Coherent Receivers Principles Downconversion

Coherent Receivers Principles Downconversion Coherent Receivers Principles Downconversion Heterodyne receivers mix signals of different frequency; if two such signals are added together, they beat against each other. The resulting signal contains

More information

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE Progress In Electromagnetics Research Letters, Vol. 7, 25 33, 2009 RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE H.-H. Lu, C.-Y. Li, C.-H. Lee,

More information

AN X-BAND FREQUENCY AGILE SOURCE WITH EXTREMELY LOW PHASE NOISE FOR DOPPLER RADAR

AN X-BAND FREQUENCY AGILE SOURCE WITH EXTREMELY LOW PHASE NOISE FOR DOPPLER RADAR AN X-BAND FREQUENCY AGILE SOURCE WITH EXTREMELY LOW PHASE NOISE FOR DOPPLER RADAR H. McPherson Presented at IEE Conference Radar 92, Brighton, Spectral Line Systems Ltd England, UK., October 1992. Pages

More information

EUROPEAN SURVIVABILITY WORKSHOP Threats and protection for electronically-steered array radars

EUROPEAN SURVIVABILITY WORKSHOP Threats and protection for electronically-steered array radars EUROPEAN SURVIVABILITY WORKSHOP 2008 Threats and protection for electronically-steered array radars J.P.B. Janssen, S. Monni, A.P.M. Maas and F.E. van Vliet TNO Defence, Security and Safety Oude Waalsdorperweg

More information