V IN V OUT. Assembly Material Handling Code Temperature Range Package Code

Size: px
Start display at page:

Download "V IN V OUT. Assembly Material Handling Code Temperature Range Package Code"

Transcription

1 Synchronous Buck PWM Controller Features Single Power Supply Required 0.6 Reference with % Accuracy Shutdown and Soft-Start Function Programmable Frequency Range from 50 khz to 000kHz oltage Mode PWM Control Design Up to 00% Duty Cycle Under-oltage Protection (UP) Over-Current Protection (OCP) SOP-4 Package Lead Free and Green Devices Available (RoHS Compliant) Typical Application Circuit R FS C SS APW707 R OCSET L IN OUT General Description The APW707 is a voltage mode, synchronous PWM controller which drives dual N-channel MOSFETs. The device integrates all of the control, monitoring and protecting functions into a single package, provides one controlled power output with under-voltage and over-current protections. The APW707 provides excellent regulation for output load variation. The internal 0.6 temperature-compensated reference voltage is designed to meet the requirement of low output voltage applications. The device includes a 00kHz free-running triangle-wave oscillator that is adjustable from 50kHz to 000kHz. The APW707 has been equipped with excellent protection functions: POR, OCP, and UP. The Power-On-Reset (POR) circuit can monitor the CC, EN, and OCSET voltage to make sure the supply voltage exceeds their threshold voltage while the controller is running. The Over-Current Protection (OCP) monitors the output current by using the voltage drop across the upper MOSFET s R DS(ON). When the output current reaches the trip point, the controller will run the soft-start function until the fault events are removed. The Under-oltage Protection (UP) monitors the voltage at FB pin ( FB ) for short-circuit protection. When the FB is less than 50% of REF, the controller will shutdown the IC directly. Ordering and Marking Information APW707 Assembly Material Handling Code Temperature Range Package Code Applications Graphic Cards Package Code K : SOP - 4 Operating Ambient Temperature Range E : -0 to 70 C Handling Code TR : Tape & Reel Assembly Material L : Lead Free Device G : Halogen and Lead Free Device APW707 K : APW707 XXXXX XXXXX - Date Code Note : ANPEC lead-free products contain molding compounds/die attach materials and 00% matte tin plate termination finish; which are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD- 00C for MSL classification at lead-free peak reflow temperature. ANPEC defines Green to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 500ppm by weight). ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders.

2 Pin Configuration RT OCSET SS COMP 4 FB 5 EN 6 GND 7 SOP-4 4 CC PCC LGATE PGND 0 BOOT 9 UGATE 8 PHASE Absolute Maximum Ratings (Note ) Symbol Parameter Rating Unit CC, PCC CC, PCC to GND -0. to +6 BOOT BOOT to PHASE -0. to +6 UGATE LGATE UGATE to PHASE <400ns pulse width >400ns pulse width LGATE to PGND <400ns pulse width >400ns pulse width PHASE PHASE to GND <400ns pulse width >400ns pulse width -5 to BOOT to BOOT to PCC to PCC to to 6 RT, OCSET RT, OCSET to GND CC +0. FB, COMP FB, COMP to GND -0. to 7 PGND PGND to GND -0. to +0. T J Junction Temperature Range -0 to 50 C T STG Storage Temperature -65 to 50 C T SDR Maximum Lead Soldering Temperature, 0 Seconds 60 C Note : Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Thermal Characteristics (Note ) Symbol Parameter Typical alue Unit θ JA Junction-to-Ambient Thermal Resistance in Free Air o C/W SOP-4 60 Note: θ JA is measured with the component mounted on a high effective the thermal conductivity test board in free air. The exposed pad of package is soldered directly on the PCB. Recommended Operating Conditions Symbol Parameter Rating Unit CC, PCC IC Supply oltage 0.8 to. IN Converter Input oltage. to. OUT Converter Output oltage 0.6 to 5 I OUT Converter Output Current 0 to 0 A T A Ambient Temperature Range -0 to 70 C T J Junction Temperature Range -0 to 5 C

3 Electrical Characteristics Unless otherwise specified, these specifications apply over CC, and T A -0~70 C. Typical values are at T A 5 C. Symbol Parameter Test Conditions INPUT SUPPLY CURRENT I CC POWER-ON-RESET OSCILLATOR APW707 Min. Typ. Max. CC Supply Current (Shutdown Mode) UGATE, LGATE and EN GND ma CC Supply Current UGATE and LGATE Open ma Rising CC Threshold Falling CC Threshold Rising OCSET Threshold -. - OCSET Hysteresis oltage Rising EN threshold oltage -. - EN Hysteresis oltage Accuracy % F OSC Free Running Frequency RT open khz Adjustment Range RT pin: resistor to GND; Resistor to CC Unit khz OSC Ramp Amplitude (nominal.5 to.95) Duty Duty Cycle Range 0-00 % REFERENCE REF Reference oltage Reference oltage Tolerance % PWM ERROR AMPLIFIER Gain Open Loop Gain R L 0k, C L 0pF (Note ) db GBWP Open Loop Bandwidth R L 0k, C L 0pF (Note ) MHz SR Slew Rate R L 0k, C L 0pF (Note ) /us FB Input Current FB µa COMP COMP High oltage COMP COMP Low oltage I COMP COMP Source Current COMP ma I COMP COMP Sink Current COMP ma GATE DRIERS I UGATE Upper Gate Source Current BOOT, UGATE - PHASE A R UGATE Upper Gate Sink Impedance BOOT, I UGATE 0.A Ω I LGATE Lower Gate Source Current PCC, LGATE A R LGATE Lower Gate Sink Impedance PCC, I LGATE 0.A Ω T D Dead Time ns PROTECTION FB Under oltage Level Percent of REF % I OCSET OCSET Source Current OCSET µa ENABLE/SOFT-START I SS Soft-Start Charge Current µa Note : Guaranteed by design

4 Typical Operating Characteristics UGATE Source Current (A) UGATE Source Current vs. UGATE oltage BOOT PHASE 0 UGATE Sink Current (A) UGATE Sink Current vs. UGATE oltage BOOT PHASE UGATE oltage () UGATE oltage () LGATE Source Current vs. LGATE oltage 6.5 LGATE Sink Current vs. LGATE oltage LGATE Source Current (A) 5 4 PCC LGATE Sink Current (A) PCC LGATE oltage () Switching Frequency vs. Junction Temperature LGATE oltage() Reference oltage vs. Junction Temperature 0.60 Switching Frequency(KHz) Reference oltage() Junction Temperature ( C) Junction Temperature ( C) 4

5 Operating Waveforms Power On Power Off cc, in OUT.5, LuH cc, in OUT.5, LuH CH: CC CH: SS (/div) CH: OUT (/div) Time: 0ms/div CH: CC CH: SS (/div) CH: OUT (/div) Time: ms/div EN ( EN CC ) Shutdown ( EN GND ) cc, in OUT.5, LuH cc, in OUT.5, LuH CH: EN CH: SS CH: OUT (/div) Time: 0ms/div CH: EN CH: SS CH: OUT (/div) Time: 0ms/div 5

6 Operating Waveforms (Cont.) UGATE Rising UGATE Falling cc, in OUT.5, LuH cc, in OUT.5, LuH CH: UGATE (0/div) CH: LGATE CH: PHASE (0/div) Time: 50ns/div CH: UGATE (0/div) CH: LGATE CH: PHASE (0/div) Time: 50ns/div Load Transient Response Under oltage Protection cc, in OUT.5, LuH cc, in OUT.5, LuH CH: OUT (500m/div) CH4: I OUT (5A/div) Time: 00us/div 4 CH: SS CH: I OUT (5A/div) CH: OUT (/div) CH4: UGATE (0/div) Time: 0ms/div 6

7 Operating Waveforms (Cont.) Over Current Protection Short Test cc, in, OUT.5, LuH R OCSET K, R DS(ON) 8m cc, in OUT.5, LuH 4 4 CH: SS CH: IL (0A/div) CH: OUT (/div) CH4: UGATE (0/div) Time: 0ms/div CH: SS CH: IL (0A/div) CH: OUT (/div) CH4: UGATE (0/div) Time: 0ms/div 7

8 Function Pin Description CC Power supply input pin. Connect a nominal power supply to this pin. The power-on-reset function monitors the input voltage by this pin. It is recommended that a decoupling capacitor ( to 0µF) be connected to the GND for noise decoupling. PCC This pin provides a supply voltage for the lower gate drive, connect this pin to the CC pin in normal use. BOOT This pin provides the bootstrap voltage to the upper gate driver for driving the N-channel MOSFET. PHASE This pin is the return path for the upper gate driver. Connect this pin to the upper MOSFET source. This pin is also used to monitor the voltage drop across the MOSFET for over-current protection. GND This pin is the signal ground pin. Connect the GND pin to a good ground plane. PGND This pin is the power ground pin for the lower gate driver. It should be tied to the GND pin on the board. COMP This pin is the output of PWM error amplifier. It is used to set the compensation components. FB This pin is the inverting input of the PWM error amplifier. It is used to set the output voltage and the compensation components. This pin is also monitored for undervoltage protection. If the FB voltage is under 50% of reference voltage, the device will be shut down. LGATE This pin is the gate driver for the lower MOSFET of PWM output. SS Connect a capacitor to the GND and a 0µA current source charges this capacitor to set the soft-start time. OCSET This pin serves two functions: a shutdown control and the setting of over current limit threshold. Pulling this pin below. will shutdown the controller, forcing the UGATE and LGATE signals to be low. A resistor (Rocset) connected between this pin and the drain of the high side MOSFET will determine the over current limit. An internal 00µA current source will flow through this resistor, creating a voltage drop, which will be compared with the voltage across the high side MOSFET. The threshold of the over current limit is therefore given by: I PEAK I OCSET (00uA) R R DS(ON) OCSET EN Pull this pin above. to enable the device and pull this pin below. to disable the device. In shutdown, the SS is discharged and the UGATE and LGATE pins are held low. Note that don t leave this pin open. RT This pin allows adjusting the switching frequency. Connect a resistor from RT pin to the ground to increase the switching frequency. Conversely, connect a resistor from RT to the CC to decrease the switching frequency. UGATE This pin is the gate driver for the upper MOSFET of PWM output. 8

9 Block Diagram CC OCSET GND EN Power-On- Reset I OCSET 00µA BOOT UGATE SS I SS 0µA Soft Start O.C.P Comparator 5kΩ PHASE 50% REF U..P Comparator PCC REF Error Amp PWM Comparator Gate Control 5kΩ LGATE PGND Oscillator Sawtooth Wave FB COMP Typical Application Circuit RT 5. µf Zener 5 PCC CC OCSET N448 nf IN NC NC RT BOOT. 0.µF K µf 0µF 0µF 500µFx ON OFF 0.µF 0nF nf EN SS COMP FB GND UGATE PHASE LGATE PGND.. APM50 APM556 APM50 APM556 7.µH nf. OUT µf 00µFx.k 8.k.8k.k 0nF 9

10 Function Description Power-On-Reset (POR) The Power-On-Reset (POR) function of APW707 continually monitors the input supply voltage ( CC ), the enable (EN) pin, and OCSET pin. The supply voltage ( CC ) must exceed its rising POR threshold voltage. The voltage at OCSET pin is equal to IN less a fixed voltage drop ( OCSET IN - ROCSET ). EN pin can be pulled high with connecting a resistor to CC. The POR function initiates soft-start operation after CC, EN, and OCSET voltages exceed their POR thresholds. For operation with a single + power source, IN and cc are equivalent and the + power source must exceed the rising CC threshold. The POR function inhibits operation at disabled status (EN pin low). With both input supplies above their POR thresholds, the device initiates a soft-start interval. Soft-Start/EN The SS/EN pins control the soft-start and enable or disable the controller. Connect a soft-start capacitor from SS pin to GND to set the soft-start interval. Figure. shows the soft-start interval. When CC reaches its Power- On-Reset threshold (9.5), internal 0µA current source starts to charge the capacitor. When the SS reaches the enabled threshold about.8, the internal 0.6 reference starts to rise and follow the SS ; the error amplifier output ( COMP ) suddenly raises to.5, which is the valley of the triangle wave of the oscillator, leads the OUT to start-up. Until the SS reaches about 4., the internal reference completes the soft-start interval and reaches to 0.6; and then the OUT is in regulation. The SS still rises to 5.5 and then stops. CSS TSoft Start t t.4 I SS Where: C SS external Soft-Start capacitor I SS Soft-Start current0µa oltage 4..8 Figure. Soft-Start Internal Over-Current Protection (monitor upper MOSFET) The APW707 monitors the voltage across the upper MOSFET and uses the OCSET pin to set the over-current trip point. A resistor (R OCSET ) connected between OCSET pin and the drain of the upper MOSFET will determine the over current limit. An internal 00µA current source will flow through this resistor, creating a voltage drop, which will be compared with the voltage across the upper MOSFET. When the voltage across the upper MOSFET exceeds the voltage drop across the R OCSET, an over-current will be detected. The threshold of the over current limit is therefore given by: I t0 LIMIT I OCSET t t R RDS( ON) OCSET For the over-current is never occurred in the normal operating load range; the variation of all parameters in the above equation should be determined. OUT Time - The MOSFET s R DS(ON) is varied by temperature and gate to source voltage, the user should determine the maximum R DS(ON) in manufacturer s datasheet. SS - The minimum I OCSET (70µA) and minimum R OCSET should be used in the above equation. - Note that the I LIMIT is the current flow through the upper MOSFET; I LIMIT must be greater than maximum output current add the half of inductor ripple current. 0

11 Function Description (Cont.) Over-Current Protection (Cont.) An over current condition will shut down the device and discharge the C SS with a 0µA sink current and then initiates the soft-start sequence. If the over current condition is not removed during the soft-start interval, the device will be shut down while the over current is detected and the SS still rises to 4 to complete its cycle. The soft-start function will be cycled until the over current condition is removed. Both over-current protections have the same behavior while an over current condition is detected. Under-oltage Protection The FB pin is monitored during converter operation by their own Under oltage (U) comparator. If the FB voltage drops below 50% of the reference voltage (50% of ), a fault signal is internally generated, and the device turns off both high-side and low-side MOSFET and the converter s output is latched to be floating. Switching Frequency The APW707 provides the oscillator switching frequency adjustment. The device includes a 00kHz free-running triangle wave oscillator. If operating in higher frequency than 00kHz, connect a resistor from RT pin to the ground to increase the switching frequency. Conversely, if operating in lower frequency than 00kHz, connect a resistor from RT to the CC to decrease the switching frequency. Figure. shows how to select the resistor for the desired frequency. Figure. shows more detail for the higher frequencies and Figure 4 shows the lower frequency detail. RT Resistance (KΩ) RT Resistance (KΩ) RT Resistance (KΩ) Frequency (khz) Figure. Oscillator Frequency vs. RT Resistance Frequency (khz) Figure. Oscillator Frequency vs. RT Resistance (High Frequency) Frequency (khz) Figure4. Oscillator Frequency vs. RT Resistance (Low Frequency)

12 Application Information Output oltage Selection The output voltage can be programmed with a resistive divider. Use % or better resistors for the resistive divider is recommended. The FB pin is the inverter input of the error amplifier, and the reference voltage is 0.6. The output voltage is determined by: R R OUT OUT GND Where R OUT is the resistor connected from OUT to FB and R GND is the resistor connected from FB to the GND. Output Inductor Selection The inductor value determines the inductor ripple current and affects the load transient response. Higher inductor value reduces the inductor s ripple current and induces lower output ripple voltage. The ripple current and ripple voltage can be approximated by: IN OUT I RIPPLE FS L OUT IN OUT IRIPPLE ESR where Fs is the switching frequency of the regulator. Although increase of the inductor value and frequency reduces the ripple current and voltage, a tradeoff will exist between the inductor s ripple current and the regulator load transient response time. A smaller inductor will give the regulator a faster load transient response at the expense of higher ripple current. Increasing the switching frequency (F S ) also reduces the ripple current and voltage, but it will increase the switching loss of the MOSFET and the power dissipation of the converter. The maximum ripple current occurs at the maximum input voltage. A good starting point is to choose the ripple current to be approximately 0% of the maximum output current. Once the inductance value has been chosen, select an inductor is capable of carrying the required peak current without going into saturation. In some types of inductors, especially core that is made of ferrite, the ripple current will increase abruptly when it saturates. This will result in a larger output ripple voltage. Output Capacitor Selection Higher capacitor value and lower ESR reduce the output ripple and the load transient drop. Therefore, selecting high performance low ESR capacitors is intended for switching regulator applications. In some applications, multiple capacitors have to be parallel to achieve the desired ESR value. A small decoupling capacitor in parallel for bypassing the noise is also recommended, and the voltage rating of the output capacitors also must be considered. If tantalum capacitors are used, make sure they are surge tested by the manufactures. If in doubt, consult the capacitors manufacturer. Input Capacitor Selection The input capacitor is chosen based on the voltage rating and the RMS current rating. For reliable operation, select the capacitor voltage rating to be at least. times higher than the maximum input voltage. The maximum RMS current rating requirement is approximately I OUT /, where I OUT is the load current. During power up, the input capacitors have to handle large amount of surge current. If tantalum capacitors are used, make sure they are surge tested by the manufactures. If in doubt, consult the capacitors manufacturer. For high frequency decoupling, a ceramic capacitor µf can be connected between the drain of upper MOSFET and the source of lower MOSFET. MOSFET Selection The selection of the N-channel power MOSFETs are determined by the R DS(ON), reverse transfer capacitance (C RSS ) and maximum output current requirement. There are two components of loss in the MOSFETs: conduction loss and transition loss. For the upper and lower MOSFET, the losses are approximately given by the following equations: P UPPER I OUT ( + TC)(R DS(ON) )D + (0.5)( I OUT )( IN )( t SW )F S P LOWER I OUT (+ TC)(R DS(ON) )(-D) Where I OUT is the load current TC is the temperature dependency of R DS(ON) F S is the switching frequency t SW is the switching interval D is the duty cycle

13 Application Information (Cont.) MOSFET Selection (Cont.) Note that both MOSFETs have conduction loss while the upper MOSFET includes an additional transition loss. The switching internal, t SW, is the function of the reverse transfer capacitance C RSS. The (+TC) term is to factor in the temperature dependency of the R DS(ON) and can be extracted from the R DS(ON) vs Temperature curve of the power MOSFET. PWM Compensation The output LC filter of a step down converter introduces a double pole, which contributes with -40dB/decade gain slope and 80 degrees phase shift in the control loop. A compensation network among COMP, FB, and OUT should be added. The compensation network is shown in Figure 8. The output LC filter consists of the output inductor and output capacitors. The transfer function of the LC filter is given by: FESR π ESR C OUT The F LC is the double poles of the LC filter, and F ESR is the zero introduced by the ESR of the output capacitor. PHASE L OUT GAIN (db) Figure 5. The Output LC Filter F LC -40dB/dec F ESR C OUT ESR -0dB/dec The PWM modulator is shown in Figure 7. The input is the output of the error amplifier and the output is the PHASE node. The transfer function of the PWM modulator is given by: GAIN OSC PWM Output of Error Amplifier IN OSC OSC PWM Comparator Driver Driver Figure 7. The PWM Modulator IN PHASE The compensation network is shown in Figure 8. It provides a close loop transfer function with the highest zero crossover frequency and sufficient phase margin. The transfer function of error amplifier is given by: GAIN s + s + ( ) R+ R R C R+ R C R R C C+ C s s + s + R C C R C The poles and zeros of the transfer function are: F F F F Z Z P P AMP COMP OUT π R C π ( R+ R) C C C π R C+ C π R C // R + sc sc R// R + sc C R C R C Frequency(Hz) Figure 6. The LC Filter GAIN and Frequency OUT R FB REF Figure 8. Compensation Network COMP

14 Application Information (Cont.) PWM Compensation (Cont.) The closed loop gain of the converter can be written as: GAIN LC X GAIN PWM X GAIN AMP Figure 9. shows the asymptotic plot of the closed loop converter gain, and the following guidelines will help to design the compensation network. Using the below guidelines should give a compensation similar to the curve plotted. A stable closed loop has a -0dB/ decade slope and a phase margin greater than 45 degree. The poles and zero of this transfer functions are: F LC R π L C R F S F LC C π R F S OUT. Choose a value for R, usually between K and 5K.. Select the desired zero crossover frequency F Z F Z F P F P F O : (/5 ~ /0) X F S >F O >F ESR Use the following equation to calculate R: OSC FO R R F IN LC. Place the first zero F Z before the output LC filter double pole frequency F LC. F Z 0.75 X F LC Calculate the C by the equation: C π R F 0.75 LC 4. Set the pole at the ESR zero frequency F ESR : GAIN (db) 0log (R /R ) F LC F ESR PWM & Filter Gain Compensation Gain 0log ( IN / OSC ) Frequency(Hz) Converter Gain Figure 9. Converter Gain and Frequency F P F ESR Calculate the C by the equation: C C π R C F ESR 5. Set the second pole F P at the half of the switching frequency and also set the second zero F Z at the output LC filter double pole F LC. The compensation gain should not exceed the error amplifier open loop gain, check the compensation gain at F P with the capabilities of the error amplifier. F P 0.5 X F S F Z F LC Combine the two equations will get the following component calculations: + s ESR COUT GAINLC s L C + s ESR C + OUT OUT 4

15 Layout Consideration Layout Consideration In any high switching frequency converter, a correct layout is important to ensure proper operation of the regulator. With power devices switching at 00kHz,the resulting current transient will cause voltage spike across the interconnecting impedance and parasitic circuit elements. As an example, consider the turn-off transition of the PWM MOSFET. Before turn-off, the MOSFET is carrying the full load current. During turn-off, current stops flowing in the MOSFET and is free-wheeling by the lower MOSFET and parasitic diode. Any parasitic inductance of the circuit generates a large voltage spike during the switching interval. In general, using short and wide printed circuit traces should minimize interconnecting impedances and the magnitude of voltage spike. And signal and power grounds are to be kept separating till combined using the ground plane construction or single point grounding. Figure 0 illustrates the layout, with bold lines indicating high current paths; these traces must be short and wide. Components along the bold lines should be placed lose together. Below is a checklist for your layout: the loads. The input capacitor GND should be close to the output capacitor GND and the lower MOSFET GND. - The drain of the MOSFETs ( IN and PHASE nodes) should be a large plane for heat sinking. APW707 CC PCC BOOT UGATE PHASE LGATE IN Figure 0. Layout Guidelines OUT L O A D - Keep the switching nodes (UGATE, LGATE, and PHASE) away from sensitive small signal nodes since these nodes are fast moving signals. Therefore, keep traces to these nodes as short as possible. - The traces from the gate drivers to the MOSFETs (UGATE, LGATE) should be short and wide. - Place the source of the high-side MOSFET and the drain of the low-side MOSFET as close as possible. Minimizing the impedance with wide layout plane between the two pads reduces the voltage bounce of the node. - Decoupling capacitor, compensation component, the resistor dividers, boot capacitors, and SS capacitors should be close their pins. (For example, place the decoupling ceramic capacitor near the drain of the high-side MOSFET as close as possible. The bulk capacitors are also placed near the drain). - The input capacitor should be near the drain of the upper MOSFET; the output capacitor should be near 5

16 Package Information SOP 4 D SEE IEW A E E h X 45 e b c A A A IEW A L 0.5 GAUGE PLANE SEATING PLANE S Y M SOP-4 B O L MIN. MAX. MIN. A.75 A MAX A b c D E E e.7 BSC BSC h L MILLIMETERS INCHES Note:. Follow JEDEC MS-0 AB.. Dimension D does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side.. Dimension E does not include inter-lead flash or protrusions. Inter-lead flash and protrusions shall not exceed 0 mil per side. 6

17 Carrier Tape & Reel Dimensions OD0 P0 P P A E OD B A T B0 W F K0 B A0 SECTION A-A SECTION B-B d H A T Application A H T C d D W E F MIN MIN. 0. MIN SOP-4 P0 P P D0 D T A0 B0 K MIN (mm) Devices Per Unit Package Type Unit Quantity SOP- 4 Tape & Reel 500 7

18 Taping Direction Information SOP 4 USER DIRECTION OF FEED Reflow Condition (IR/Convection or PR Reflow) T P Ramp-up tp Critical Zone T L to T P Temperature T L Tsmax Tsmin ts Preheat t L Ramp-down 5 t 5 C to Peak Reliability Test Program Time Test item Method Description SOLDERABILITY MIL-STD-88D C, 5 sec HOLT MIL-STD-88D Hrs C PCT JESD--B, A0 68 Hrs, 00%RH, C TST MIL-STD-88D C~50 C, 00 Cycles ESD MIL-STD-88D-05.7 HBM > K, MM > 00 Latch-Up JESD 78 0ms, tr > 00mA 8

19 Classification Reflow Profiles Profile Feature Sn-Pb Eutectic Assembly Pb-Free Assembly Average ramp-up rate (T L to T P ) C/second max. C/second max. Preheat 00 C 50 C - Temperature Min (Tsmin) - Temperature Max (Tsmax) 50 C 00 C 60-0 seconds seconds - Time (min to max) (ts) Time maintained above: - Temperature (T L ) - Time (t L ) 8 C seconds 7 C seconds Peak/Classification Temperature (Tp) See table See table Time within 5 C of actual Peak Temperature (tp) 0-0 seconds 0-40 seconds Ramp-down Rate 6 C/second max. 6 C/second max. Time 5 C to Peak Temperature 6 minutes max. 8 minutes max. Notes: All temperatures refer to topside of the package. Measured on the body surface. Table. SnPb Eutectic Process Package Peak Reflow Temperatures Package Thickness olume mm <50 olume mm 50 <.5 mm 40 +0/-5 C 5 +0/-5 C.5 mm 5 +0/-5 C 5 +0/-5 C Table. Pb-free Process Package Classification Reflow Temperatures Package Thickness olume mm <50 olume mm olume mm >000 <.6 mm C* C* C*.6 mm.5 mm C* C* C*.5 mm C* C* C* *Tolerance: The device manufacturer/supplier shall assure process compatibility up to and including the stated classification temperature (this means Peak reflow temperature +0 C. For example 60 C+0 C) at the rated MSL level. Customer Service Anpec Electronics Corp. Head Office : No.6, Dusing st Road, SBIP, Hsin-Chu, Taiwan Tel : Fax : Taipei Branch : F, No., Lane 8, Sec Jhongsing Rd., Sindian City, Taipei County 46, Taiwan Tel : Fax :

General Description. Features. Applications. Simplified Application Circuit. Pin Configuration. 5V to 12V Synchronous Buck Controller

General Description. Features. Applications. Simplified Application Circuit. Pin Configuration. 5V to 12V Synchronous Buck Controller 5V to V Synchronous Buck Controller Features Wide Operation Supply Voltage from 5V to V Power-On-Reset Monitoring on VCC Excellent Reference Voltage Regulations - 0.8V Internal Reference - ±% Over-Temperature

More information

V OUT. Speed control voltage (V SET. Package Code. K : SOP-8 Operating Ambient Temperature Range I : -40 to 85 C Handling Code TR : Tape & Reel

V OUT. Speed control voltage (V SET. Package Code. K : SOP-8 Operating Ambient Temperature Range I : -40 to 85 C Handling Code TR : Tape & Reel Low Dropout 6mA Linear Regulator for DC Fan Control Features Low Dropout Voltage: mv (typical) @ 6mA Low Quiescent Current: 4mA Selectable Adjustable/Full Speed Mode O/I Voltage Ratio in Adjustable Mode

More information

Features. Ordering and Marking Information. Dual Enhancement Mode MOSFET (N- and P-Channel)

Features. Ordering and Marking Information. Dual Enhancement Mode MOSFET (N- and P-Channel) Dual Enhancement Mode MOSFET (N- and ) Features Pin Description N-Channel 4V/6.5A, R DS(ON) = mω (typ.) @ = V R DS(ON) = 8mΩ (typ.) @ = 4.5V -4V/-5A, R DS(ON) = 35mΩ (typ.) @ =-V R DS(ON) = 48mΩ (typ.)

More information

Features. General Description. Applications. Simplified Application Circuit. Pin Configuration. 5V to 12V Synchronous Buck Controller

Features. General Description. Applications. Simplified Application Circuit. Pin Configuration. 5V to 12V Synchronous Buck Controller APW765 5V to V Synchronous Buck Controller Features Wide Operation Supply Voltage from 5V to V Power-On-Reset Monitoring on VCC Excellent Reference Voltage Regulations - 0.8V Internal Reference - ±% Over

More information

OUT2 1 IN- Package Code X : MSOP - 8. Temperature Range. I : -40 to 105 C Handling Code TR : Tape & Reel. Handling Code.

OUT2 1 IN- Package Code X : MSOP - 8. Temperature Range. I : -40 to 105 C Handling Code TR : Tape & Reel. Handling Code. Single-Phase Full-Wave Motor Driver for Silent Fan Motor Features Single Phase Full Wave Fan Driver Silent Driver Low Supply Current Built-in Lock Protection and Auto Restart Function (External Capacitor

More information

General Description. Features. Applications. Pin Configuration. 1A Low Dropout, Fast Response Fixed Voltage Regulator APL1565A. Front View for SOP-8

General Description. Features. Applications. Pin Configuration. 1A Low Dropout, Fast Response Fixed Voltage Regulator APL1565A. Front View for SOP-8 1A Low Dropout, Fast Response Fixed Voltage Regulator Features General Description Guaranteed Output Voltage Accuracy within 2% Fast Transient Response Load Regulation : 1mV Typ. Line Regulation : 4mV

More information

Pin Description. Features. Ordering and Marking Information. Dual Enhancement Mode MOSFET (N- and P-Channel) N-Channel 20V/8A, R DS(ON)

Pin Description. Features. Ordering and Marking Information. Dual Enhancement Mode MOSFET (N- and P-Channel) N-Channel 20V/8A, R DS(ON) Dual Enhancement Mode MOSFET (N- and ) Features Pin Description V/8A, R DS(ON) =mω(typ.) @ =.5V R DS(ON) =3mΩ(typ.) @ =.5V -V/-.3A, R DS(ON) =8mΩ(typ.) @ =-.5V R DS(ON) =5mΩ(typ.) @ =-.5V Super High Dense

More information

APM8005K. Pin Description. Features. Applications. Ordering and Marking Information. Dual N-Channel Enhancement Mode MOSFET 80V/4.

APM8005K. Pin Description. Features. Applications. Ordering and Marking Information. Dual N-Channel Enhancement Mode MOSFET 80V/4. Dual N-Channel Enhancement Mode MOSFET Features Pin Description 80V/4.7A, R DS(ON) =45mΩ (Typ.) @ V GS = 10V R DS(ON) =55mΩ (Typ.) @ V GS = 5V Reliable and Rugged Lead Free and Green Devices Available

More information

Features. General Description. Applications. 8-PIN Synchronous Buck PWM Controller

Features. General Description. Applications. 8-PIN Synchronous Buck PWM Controller 8-PIN Synchronous Buck PWM Controller Features General Description Operating with Single 5V or 1V Input Drives N-Channel MOSFETs Simple Single-Loop Control Design - Voltage-Mode PWM Control - Full 0% to

More information

General Description. Simplified Application Circuit. Applications. Single Buck Voltage Mode PWM Controller

General Description. Simplified Application Circuit. Applications. Single Buck Voltage Mode PWM Controller Single Buck Voltage Mode PWM Controller Features Wide 5V to 12V Supply Voltage Power-On-Reset Monitoring on VCC Excellent Output Voltage Regulations - 0.5V Internal Reference for APW8720-0.8V Internal

More information

General Description. Features. Applications. Simplified Application Circuit. Dual Channel Synchronous Buck PWM Controller for SMPS

General Description. Features. Applications. Simplified Application Circuit. Dual Channel Synchronous Buck PWM Controller for SMPS APW759A Dual Channel Synchronous Buck PWM Controller for SMPS Features Single V Power Supply Required Excellent Output Voltage Regulation -.0V±0.8% Internal Reference Over Line and Temperature Simple Single

More information

EUP V/12V Synchronous Buck PWM Controller DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit. 1

EUP V/12V Synchronous Buck PWM Controller DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit. 1 5V/12V Synchronous Buck PWM Controller DESCRIPTION The is a high efficiency, fixed 300kHz frequency, voltage mode, synchronous PWM controller. The device drives two low cost N-channel MOSFETs and is designed

More information

Ultra-Low-Noise, High PSRR, Low-Dropout, 300mA Linear Regulator V IN. Enable VIN 1 GND 2 SHDN 3

Ultra-Low-Noise, High PSRR, Low-Dropout, 300mA Linear Regulator V IN. Enable VIN 1 GND 2 SHDN 3 Ultra-Low-Noise, High PSRR, Low-Dropout, 300mA Linear Regulator Features General Description Wide Operating Voltage: 2.5~6V Low Dropout Voltage: 290mV@3V/300mA Fixed Output Voltages: 1.2~3.6V with Step

More information

RT9209/A. Synchronous Buck PWM DC-DC with Enable & PGOOD. Preliminary. Features. General Description. Applications. Ordering Information

RT9209/A. Synchronous Buck PWM DC-DC with Enable & PGOOD. Preliminary. Features. General Description. Applications. Ordering Information Preliminary Synchronous Buck PWM DC-DC with Enable & PGOOD General Description The is a single power supply PWM DC-DC converter controller designed to drive N-Channel MOSFET in a synchronous buck topology.

More information

Package Code. QF : VTDFN3x3-10 Operating Ambient Temperature Range I : -40 to 105 o C Handling Code TR : Tape & Reel. Handling Code Temperature Range

Package Code. QF : VTDFN3x3-10 Operating Ambient Temperature Range I : -40 to 105 o C Handling Code TR : Tape & Reel. Handling Code Temperature Range Three-Phase Sensor-Less Fan Motor Driver Features General Description Three-Phase Full-Wave Sensor-Less Drive Method Adjustable Forced Commutation Frequency (for Start-up) Built-In External PWM Speed Control

More information

General Description. Applications 16 PGND OUT2 2 OUT OUT1 VCC 3 MIN 4 SET 5 NC 2 VCC 3 MIN 4 SET 5 14 SGND 13 CT 12 NC OSC 6 FG 7 OSC 6 FG 7

General Description. Applications 16 PGND OUT2 2 OUT OUT1 VCC 3 MIN 4 SET 5 NC 2 VCC 3 MIN 4 SET 5 14 SGND 13 CT 12 NC OSC 6 FG 7 OSC 6 FG 7 Direct PWM Variable Speed Fan Motor Driver Features General Description Single Phase Full Wave Fan Driver Low Supply Current Built-In Variable Speed Function Include Hall Bias Circuit Built-In Lock Protection

More information

High Input Voltage, Low Quiescent Current, 150mA LDO Regulator

High Input Voltage, Low Quiescent Current, 150mA LDO Regulator High Input Voltage, Low Quiescent Current, 150mA LDO Regulator Features Wide Input Voltage Range: 5.4V to 25V Ultra Low Ground Current: 10mA High Output Accuracy: ±2.5% Excellent Load/Line Transient Low

More information

General Description. Pin Configuration. Applications. Three-Terminal Low Current Positive Voltage Regulator

General Description. Pin Configuration. Applications. Three-Terminal Low Current Positive Voltage Regulator Three-Terminal Low Current Positive Voltage Regulator Features Three-Terminal Regulators Maximum Input Voltage : 30V Output Voltages of 5V, 12V Output Current Up to 100m No External Components Internal

More information

Features. Ordering and Marking Information. P-Channel Enhancement Mode MOSFET

Features. Ordering and Marking Information. P-Channel Enhancement Mode MOSFET P-Channel Enhancement Mode MOSFET Features Pin Description -2V/-4, =48mΩ(typ.) @ V GS =-4.5V =85mΩ(typ.) @ V GS =-2.5V =135mΩ(typ.) @ V GS =-1.8V Super High Dense Cell Design Reliable and Rugged Lead Free

More information

Assembly Material. Handling Code Temperature Range Package Code

Assembly Material. Handling Code Temperature Range Package Code Dual Enhancement Mode MOSFET (N- and P-Channel) Features Pin Description N-Channel 20V/3A, R DS(ON) =50mΩ(typ.) @ =4.5V R DS(ON) =65mΩ(typ.) @ =2.5V P-Channel -20V/-2A, R DS(ON) =90mΩ(typ.) @ =-4.5V R

More information

Features. General Description. Applications. Pin Configuration. Ordering and Marking Information. Hall Effect Micro Switch IC

Features. General Description. Applications. Pin Configuration. Ordering and Marking Information. Hall Effect Micro Switch IC Hall Effect Micro Switch IC Features General Description Micro Power Operation for Battery Applications Chopper Stabilized Amplifier Independent of North or South Pole Magnet, Easy for Manufacture Small

More information

General Description. Features. Applications. 3A, Ultra Low Dropout (0.23V Typical) Linear Regulator

General Description. Features. Applications. 3A, Ultra Low Dropout (0.23V Typical) Linear Regulator 3A, Ultra Low Dropout (0.23V Typical) Linear Regulator Features Compatible with APL593 Ultra Low Dropout - 0.23V(typical) at 3A Output Current Low ESR Output Capacitor (Multi-layer Chip Capacitors (MLCC))

More information

Features. N-Channel Enhancement Mode MOSFET

Features. N-Channel Enhancement Mode MOSFET N-Channel Enhancement Mode MOSFET Features Pin Description V/5, R DS(ON) = 35mΩ (Typ.) @ V GS = V R DS(ON) = 45mΩ (Typ.) @ V GS = 4.5V R DS(ON) = mω (Typ.) @ V GS =.5V Super High Dense Cell Design Reliable

More information

General Description. APW7104 BT Mouse PND Instrument V OUT (MLCC)

General Description. APW7104 BT Mouse PND Instrument V OUT (MLCC) 1.5MHz, 1A Synchronous Buck Regulator Features General Description 1A Output Current Wide 2.7V~6.0V Input Voltage Fixed 1.5MHz Switching Frequency Low Dropout Operating at 100% Duty Cycle 25mA Quiescent

More information

General Description. Features. Simplified Application Circuit. Applications. Pin Configuration. 2A, Ultra Low Dropout (0.24V Typical) Linear Regulator

General Description. Features. Simplified Application Circuit. Applications. Pin Configuration. 2A, Ultra Low Dropout (0.24V Typical) Linear Regulator 2A, Ultra Low Dropout (0.2V Typical) Linear Regulator Features Ultra Low Dropout - 0.2V (Typical) at 2A Output Current 0.8V Reference Voltage High Output Accuracy -.5% Over Line, Load, and Temperature

More information

Features. N-Channel Enhancement Mode MOSFET 40V/57A, R DS(ON) =10V

Features. N-Channel Enhancement Mode MOSFET 40V/57A, R DS(ON) =10V PM41NU N-Channel Enhancement Mode MOSFET Features Pin Description 4V/57, R DS(ON) =8.2mΩ (typ.) @ V GS =1V R DS(ON) =13mΩ (typ.) @ V GS =5V Super High Dense Cell Design Reliable and Rugged Lead Free and

More information

Source and Sink, 2A, Fast Transient Response Linear Regulator

Source and Sink, 2A, Fast Transient Response Linear Regulator Source and Sink, A, Fast Transient Response Linear Regulator Features General Description Provide Bi-direction Current The APL57 linear regulator is designed to provide a - Sourcing or Sinking Current

More information

Single-Phase Full-Wave Motor Driver with Built-in Hall Sensor. General Description

Single-Phase Full-Wave Motor Driver with Built-in Hall Sensor. General Description Single-Phase Full-Wave Motor Driver with uilt-in Hall Sensor Features On-chip Hall Sensor High Sensitivity Hall Effect Sensor IC: ±15G(Typ.) uilt-in Lock Protection and Auto Restart Function Speed Controllable

More information

Preliminary. Synchronous Buck PWM DC-DC Controller FP6329/A. Features. Description. Applications. Ordering Information.

Preliminary. Synchronous Buck PWM DC-DC Controller FP6329/A. Features. Description. Applications. Ordering Information. Synchronous Buck PWM DC-DC Controller Description The is designed to drive two N-channel MOSFETs in a synchronous rectified buck topology. It provides the output adjustment, internal soft-start, frequency

More information

Temperature Range Package Code

Temperature Range Package Code N-Channel Enhancement Mode MOSFET Features Pin Description 3V/5, R DS(ON) =4.8mΩ (typ.) @ V GS =V R DS(ON) =7mΩ (typ.) @ V GS =4.5V Super High Dense Cell Design Reliable and Rugged Lead Free and Green

More information

Features. Ordering and Marking Information. Dual N-Channel Enhancement Mode MOSFET

Features. Ordering and Marking Information. Dual N-Channel Enhancement Mode MOSFET Dual N-Channel Enhancement Mode MOSFET Features Pin Description 60V/5, R DS(ON) =38mΩ(Typ.) @ = V R DS(ON) =55mΩ(Typ.) @ = 4.5V Super High Dense Cell Design Reliable and Rugged Lead Free and Green Devices

More information

Features. N-Channel Enhancement Mode MOSFET 25V/60A, R DS(ON) =10V

Features. N-Channel Enhancement Mode MOSFET 25V/60A, R DS(ON) =10V N-Channel Enhancement Mode MOSFET Features Pin Description 25V/6, R DS(ON) =4.5mΩ (typ.) @ V GS =V R DS(ON) =7.5mΩ (typ.) @ V GS =4.5V Super High Dense Cell Design Reliable and Rugged Lead Free and Green

More information

N-Channel Enhancement Mode MOSFET

N-Channel Enhancement Mode MOSFET N-Channel Enhancement Mode MOSFET Features Pin Description 25V/5, R DS(ON) =8.5mΩ (typ.) @ V GS =1V R DS(ON) =15mΩ (typ.) @ V GS =4.5V Super High Dense Cell Design valanche Rated Reliable and Rugged Lead

More information

Features. General Description. Simplified Application Circuit. Applications. Pin Configuration. 2A, Ultra Low Dropout (0.24V Typical) Linear Regulator

Features. General Description. Simplified Application Circuit. Applications. Pin Configuration. 2A, Ultra Low Dropout (0.24V Typical) Linear Regulator 2A, Ultra Low Dropout (0.24V Typical) Linear Regulator Features Ultra Low Dropout - 0.24V (typical) at 2A Output Current 0.8V Reference Voltage High Output Accuracy - 1.5% Over Line, Load, and Temperature

More information

APM9948K. Pin Description. Features. Applications. Ordering and Marking Information. Dual N-Channel Enhancement Mode MOSFET 60V/4A, R DS(ON) = 10V

APM9948K. Pin Description. Features. Applications. Ordering and Marking Information. Dual N-Channel Enhancement Mode MOSFET 60V/4A, R DS(ON) = 10V ual N-Channel Enhancement Mode MOSFET Features 60V/4, R S(ON) = 60mΩ(typ.) @ V GS = 0V R S(ON) = 72mΩ(typ.) @ V GS = 4.5V Super High ense Cell esign Reliable and Rugged Lead Free and Green evices vailable

More information

Package Code. Temperature Range. I : -40 to 85 C. Handling Code. TR : Tape & Reel. Assembly Material

Package Code. Temperature Range. I : -40 to 85 C. Handling Code. TR : Tape & Reel. Assembly Material Single Step-up DC/DC Controller Features General Description 2.5 to 5.5V Input Voltage Range Adjustable Frequency: Maximum 1MHZ Incorporates Soft-Start Function Built-in Short-Circuit Detection Circuit

More information

General Description. Features. Simplified Application Circuit. Applications. 3A, Ultra Low Dropout (0.23V Typical) Linear Regulator

General Description. Features. Simplified Application Circuit. Applications. 3A, Ultra Low Dropout (0.23V Typical) Linear Regulator 3A, Ultra Low Dropout (0.23V Typical) Linear Regulator Features Compatible with APL5913 Ultra Low Dropout - 0.23V(typical) at 3A Output Current Low ESR Output Capacitor (Multi-layer Chip Capacitors (MLCC))

More information

APX9200. Features. General Description. Applications. Pin Configuration. Single-Phase Full-Wave Motor Driver for Fan Motor

APX9200. Features. General Description. Applications. Pin Configuration. Single-Phase Full-Wave Motor Driver for Fan Motor Single-Phase Full-Wave Motor Driver for Fan Motor Features Single Phase Full Wave Fan Driver Built-in Reverse oltage Protection Circuit Built-in ariable Speed Curve Function. It can compensate motors whose

More information

RT9202. Single Synchronous Buck PWM DC-DC Controller. General Description. Features. Applications. Ordering Information. Pin Configurations

RT9202. Single Synchronous Buck PWM DC-DC Controller. General Description. Features. Applications. Ordering Information. Pin Configurations Single Synchronous Buck PWM DC-DC Controller General Description The is a single power supply PWM DC-DC converter controller designed to drive N-Channel MOSFET in a synchronous buck topology. The IC integrates

More information

General Description. Simplified Application Circuit Applications

General Description. Simplified Application Circuit Applications 3A 5V MHz Synchronous Buck Converter Features High Efficiency up to 95% - Automatic PFM/PWM Mode Operation Adjustable Output Voltage from 0.6V to V PVDD Integrated 65mW High Side / 55mW Low Side MOSFETs

More information

Features. P-Channel Enhancement Mode MOSFET

Features. P-Channel Enhancement Mode MOSFET P-Channel Enhancement Mode MOSFET Features Pin Description -20V/-3 R DS(ON) = 56mΩ (typ.) @ V GS = -4.5V R DS(ON) = 85mΩ (typ.) @ V GS = -2.5V R DS(ON) = 135mΩ (typ.) @ V GS = -1.8V Super High Dense Cell

More information

General Description. 5V Adapter or USB IN

General Description. 5V Adapter or USB IN Li+ Charger Protection IC Features Input Over-Voltage Protection Programmable Input Over-Current Protection Battery Over-Voltage Protection Over-Temperature Protection High Immunity of False Triggering

More information

General Description. Lead Free and Green Device Available (RoHS Compliant) Pin Configuration

General Description. Lead Free and Green Device Available (RoHS Compliant) Pin Configuration Single-Phase digital calibration Motor Pre-Driver for Fan Motor Features General Description Single Phase Fan Pre-Driver Easy digital programming (EDP.) Built-in direct PWM input terminal Built-in soft

More information

Applications VIN LX APW8825 NC FB PGND AGND

Applications VIN LX APW8825 NC FB PGND AGND 3A 5V 1MHz Synchronous Buck Converter Features High Efficiency up to 95% - Automatic Skip/PWM Mode Operation Adjustable Output Voltage from 0.6V to VIN Integrated 110mW High side 80mW Low Side MOSFET Low

More information

Applications. C VCC 1uF VCC VIN PVCC APW8703 APW8706 APW8707 LX PWM PGND AGND

Applications. C VCC 1uF VCC VIN PVCC APW8703 APW8706 APW8707 LX PWM PGND AGND High-Performance, High-Current DrMOS Power Module Features 4.5V ~ 5.5V Input Range for VCC & PVCC 4.5V ~ 25V Input Range for Power-On-Reset Monitoring on VCC Pin APW8703-Up to 10A (peak), 8A (continuous)

More information

Applications. Simplified Application Circuit. Pin Configuration. Power-Distribution Switches with Soft Start SOP-8P. (Top View)

Applications. Simplified Application Circuit. Pin Configuration. Power-Distribution Switches with Soft Start SOP-8P. (Top View) Power-Distribution Switches with Soft Start Features 84mW High Side MOSFET Soft Start Time Programmable by External Capacitor Wide Supply Voltage Range: 4.5V to 4V Current Limit Protections Under Voltage

More information

General Description OFF POK

General Description OFF POK Low Dropout Linear Regulator Controller Features General Description Wide Supply Voltage Range from 4.5 to 13.5V High Output Accuracy Over Operating Temperature and Loading Ranges Fast Transient Response

More information

AIC1340 High Performance, Triple-Output, Auto- Tracking Combo Controller

AIC1340 High Performance, Triple-Output, Auto- Tracking Combo Controller High Performance, Triple-Output, Auto- Tracking Combo Controller FEATURES Provide Triple Accurate Regulated Voltages Optimized Voltage-Mode PWM Control Dual N-Channel MOSFET Synchronous Drivers Fast Transient

More information

AIC2858 F. 3A 23V Synchronous Step-Down Converter

AIC2858 F. 3A 23V Synchronous Step-Down Converter 3A 23V Synchronous Step-Down Converter FEATURES 3A Continuous Output Current Programmable Soft Start 00mΩ Internal Power MOSFET Switches Stable with Low ESR Output Ceramic Capacitors Up to 95% Efficiency

More information

Features. General Description. Applications. 4A, 26V, 380kHz, Asynchronous Step-Down Converter

Features. General Description. Applications. 4A, 26V, 380kHz, Asynchronous Step-Down Converter 4A, 6V, 380kHz, Asynchronous Step-Down Converter Features Wide Input Voltage from 4.5V to 6V Output Current up to 4A Adjustable Output Voltage from 0.8V to 90% - 0.8V Reference Voltage -.5% System Accuracy

More information

SR A, 30V, 420KHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION

SR A, 30V, 420KHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION SR2026 5A, 30V, 420KHz Step-Down Converter DESCRIPTION The SR2026 is a monolithic step-down switch mode converter with a built in internal power MOSFET. It achieves 5A continuous output current over a

More information

2A, 23V, 380KHz Step-Down Converter

2A, 23V, 380KHz Step-Down Converter 2A, 23V, 380KHz Step-Down Converter General Description The is a buck regulator with a built-in internal power MOSFET. It achieves 2A continuous output current over a wide input supply range with excellent

More information

Package Code. Handling Code Temperature Range. Assembly Material

Package Code. Handling Code Temperature Range. Assembly Material Step-Up Converter for 4 Series White LEDs Driver Features General Description.5 V to 6V Input Voltage Range 400mA Internal Switch Current Up to MHz Switching Frequency 70mA Typical No Load Quiescent Current

More information

3A, 23V, 380KHz Step-Down Converter

3A, 23V, 380KHz Step-Down Converter 3A, 23V, 380KHz Step-Down Converter General Description The is a buck regulator with a built in internal power MOSFET. It achieves 3A continuous output current over a wide input supply range with excellent

More information

EM5301. Pin Assignment

EM5301. Pin Assignment 5V/2V Synchronous Buck PWM Controller General Description is a synchronous rectified PWM controller operating with 5V or 2V supply voltage. This device operates at 200/300/500 khz and provides an optimal

More information

MP2307 3A, 23V, 340KHz Synchronous Rectified Step-Down Converter

MP2307 3A, 23V, 340KHz Synchronous Rectified Step-Down Converter The Future of Analog IC Technology TM TM MP307 3A, 3, 340KHz Synchronous Rectified Step-Down Converter DESCRIPTION The MP307 is a monolithic synchronous buck regulator. The device integrates 00mΩ MOSFETS

More information

1.2A, 23V, 1.4MHz Step-Down Converter

1.2A, 23V, 1.4MHz Step-Down Converter 1.2A, 23, 1.4MHz Step-Down Converter General Description The is a buck regulator with a built-in internal power MOSFET. It can provide 1.2A continuous output current over a wide input supply range with

More information

MP2494 2A, 55V, 100kHz Step-Down Converter

MP2494 2A, 55V, 100kHz Step-Down Converter The Future of Analog IC Technology MP2494 2A, 55V, 100kHz Step-Down Converter DESCRIPTION The MP2494 is a monolithic step-down switch mode converter. It achieves 2A continuous output current over a wide

More information

Package Code S : SOP-8. Date Code YYXXX WW

Package Code S : SOP-8. Date Code YYXXX WW N-Channel Enhancement Mode MOSFET Features 100 V/8 A R DS(ON) = 20 m Ω (typ.) @ V GS =10V Avalanche Rated Reliable and Rugged Lead Free and Green DevicesAvailable (RoHS Compliant) Pin Description D D D

More information

23V 3A Step-Down DC/DC Converter

23V 3A Step-Down DC/DC Converter 23V 3A Step-Down DC/DC Converter FEATURES 3A Continuous Output Current Programmable Soft Start 100mΩ Internal Power MOSFET Switch Stable with Low ESR Output Ceramic Capacitors Up to 95% Efficiency 22µA

More information

RT A, 2MHz, Synchronous Step-Down Converter. General Description. Features. Applications. Ordering Information. Pin Configurations

RT A, 2MHz, Synchronous Step-Down Converter. General Description. Features. Applications. Ordering Information. Pin Configurations 4A, 2MHz, Synchronous Step-Down Converter General Description The is a high efficiency synchronous, step-down DC/DC converter. Its input voltage range is from 2.7V to 5.5V and provides an adjustable regulated

More information

Features. N-Channel Enhancement Mode MOSFET 30V/50A, R DS(ON) =10V

Features. N-Channel Enhancement Mode MOSFET 30V/50A, R DS(ON) =10V N-Channel Enhancement Mode MOSFET Features Pin Description 3V/5, R DS(ON) =7.5mΩ (typ.) @ =V R DS(ON) =12mΩ (typ.) @ =4.5V Super High Dense Cell Design Reliable and Rugged valanche Rated D G S Top View

More information

SGM6130 3A, 28.5V, 385kHz Step-Down Converter

SGM6130 3A, 28.5V, 385kHz Step-Down Converter GENERAL DESCRIPTION The SGM6130 is a current-mode step-down regulator with an internal power MOSFET. This device achieves 3A continuous output current over a wide input supply range from 4.5 to 28.5 with

More information

APW7101. Applications. 1.5MHz, 600mA, Synchronous Buck Regulator

APW7101. Applications. 1.5MHz, 600mA, Synchronous Buck Regulator .5MHz, 6mA, Synchronous Buck Regulator Features General Description 6mA Output Current.5V to 5.5V Input Voltage Range.5MHz Constant Frequency Operation Low Dropout Operation at % Duty Cycle Synchronous

More information

Features. General Description. Applications. Pin Configuration. Simplified Application Circuit. Li+ Charger Protection IC with Integrated P-MOSFET

Features. General Description. Applications. Pin Configuration. Simplified Application Circuit. Li+ Charger Protection IC with Integrated P-MOSFET Li+ Charger Protection IC with Integrated P-MOSFET Features Input Over-Voltage Protection Input Over-Current Protection Battery Over-Voltage Protection High Immunity of False Triggering High Accuracy Protection

More information

APL3512. General Description. Features. Applications. Simplified Application Circuit. Power-Distribution Switches with Soft Start

APL3512. General Description. Features. Applications. Simplified Application Circuit. Power-Distribution Switches with Soft Start Power-Distribution Switches with Soft Start Features 90mW High Side MOSFET 2A Continuous Current Soft-Start Time Programmable by External Capacitor Wide Supply Voltage Range: 2.7V to 5.5V Current-Limit

More information

RT9228. Advanced PWM and Dual Fixed Linear Power Controller. Features. General Description. Applications. Pin Configurations

RT9228. Advanced PWM and Dual Fixed Linear Power Controller. Features. General Description. Applications. Pin Configurations Advanced PWM and Dual Fixed Linear Power Controller General Description The RT9228 is a 3inone power controller optimized for highperformance microprocessor and computer applications. The IC integrates

More information

2A, 23V, 340KHz Synchronous Step-Down Converter

2A, 23V, 340KHz Synchronous Step-Down Converter 2A, 23, 340KHz Synchronous Step-Down Converter FP6188 General Description The FP6188 is a synchronous buck regulator with integrated two 0.13Ω power MOSFETs. It achieves 2A continuous output current over

More information

Low-Noise 4.5A Step-Up Current Mode PWM Converter

Low-Noise 4.5A Step-Up Current Mode PWM Converter Low-Noise 4.5A Step-Up Current Mode PWM Converter FP6298 General Description The FP6298 is a current mode boost DC-DC converter. It is PWM circuitry with built-in 0.08Ω power MOSFET make this regulator

More information

RT A, 2MHz, High Efficiency Synchronous Step-Down Converter. General Description. Features. Applications. Ordering Information

RT A, 2MHz, High Efficiency Synchronous Step-Down Converter. General Description. Features. Applications. Ordering Information RT8073 6A, 2MHz, High Efficiency Synchronous Step-Down Converter General Description The RT8073 is a high efficiency PWM step-down converter and capable of delivering 6A output current over a wide input

More information

AME. 40V CC/CV Buck Converter AME5244. n General Description. n Typical Application. n Features. n Functional Block Diagram.

AME. 40V CC/CV Buck Converter AME5244. n General Description. n Typical Application. n Features. n Functional Block Diagram. 5244 n General Description n Typical Application The 5244 is a specific 40 H buck converter that operates in either C/CC mode supports an put voltage range of 0.8 to 2 and support constant put current

More information

FP kHz 7A High Efficiency Synchronous PWM Boost Converter

FP kHz 7A High Efficiency Synchronous PWM Boost Converter 500kHz 7A High Efficiency Synchronous PWM Boost Converter General Description The FP6277 is a current mode boost DC-DC converter with PWM/PSM control. Its PWM circuitry with built-in 30mΩ high side switch

More information

EM5812/A. 12A 5V/12V Step-Down Converter. Applications. General Description. Pin Configuration. Ordering Information. Typical Application Circuit

EM5812/A. 12A 5V/12V Step-Down Converter. Applications. General Description. Pin Configuration. Ordering Information. Typical Application Circuit 12A 5V/12V Step-Down Converter General Description is a synchronous rectified PWM controller with a built in high-side power MOSFET operating with 5V or 12V supply voltage. It achieves 10A continuous output

More information

Applications. Pin Configuration. Ordering and Marking Information. Hall Effect Micro Switch IC

Applications. Pin Configuration. Ordering and Marking Information. Hall Effect Micro Switch IC Hall Effect Micro Switch IC Features Micro Power Operation for Battery pplications Chopper Stabilized mplifier Independent of North or South Pole Magnet, Easy for Manufacture Small Size Package Lead Free

More information

Ultra-Low On-Resistance, Power Load Switch with Soft Start V OUT

Ultra-Low On-Resistance, Power Load Switch with Soft Start V OUT Ultra-Low On-Resistance, Power Load Switch with Soft Start Features General Description Ultra-Low On-Resistance: 5mW(typical) Low Quiescent Current: 0mA(max) Soft Start Time Programmable by External Capacitor

More information

RT A, 2MHz, High Efficiency Synchronous Step-Down Converter. General Description. Features. Applications. Ordering Information

RT A, 2MHz, High Efficiency Synchronous Step-Down Converter. General Description. Features. Applications. Ordering Information RT8072 5A, 2MHz, High Efficiency Synchronous Step-Down Converter General Description The RT8072 is a high efficiency PWM step-down converter and capable of delivering 5A output current over a wide input

More information

22μH. C1 1μF. C2 1μF 10 strings

22μH. C1 1μF. C2 1μF 10 strings Fixed 600kHz Step-UP Converter for White LEDs Features General Description Wide Input Voltage from 2.7V to 6V Fixed 600kHz Switching Frequency Reference Voltage : 0.2V PWM brightness control with wide

More information

FP6276B 500kHz 6A High Efficiency Synchronous PWM Boost Converter

FP6276B 500kHz 6A High Efficiency Synchronous PWM Boost Converter 500kHz 6A High Efficiency Synchronous PWM Boost Converter General Description The is a current mode boost DC-DC converter with PWM/PSM control. Its PWM circuitry with built-in 40mΩ high side switch and

More information

10A Current Mode Non-Synchronous PWM Boost Converter

10A Current Mode Non-Synchronous PWM Boost Converter 10A Current Mode Non-Synchronous PWM Boost Converter General Description The is a current mode boost DC-DC converter. It is PWM circuitry with built-in 15mΩ power MOSFET make this regulator highly power

More information

up6161q Preliminary Single 12V Input Supply Dual Regulator - Synchronous-Buck-PWM and Linear-Regulator Controller General Description Applications

up6161q Preliminary Single 12V Input Supply Dual Regulator - Synchronous-Buck-PWM and Linear-Regulator Controller General Description Applications Single 12 Input Supply Dual Regulator SynchronousBuckPWM and LinearRegulator Controller Power Supplies for Microprocessors or Subsystem Power Supplies Cable Modems, Set Top Boxes, and DSL Modems Industrial

More information

RT9603. Synchronous-Rectified Buck MOSFET Drivers. General Description. Features. Applications. Ordering Information. Pin Configurations

RT9603. Synchronous-Rectified Buck MOSFET Drivers. General Description. Features. Applications. Ordering Information. Pin Configurations Synchronous-Rectified Buck MOSFET Drivers General Description The RT9603 is a high frequency, dual MOSFET drivers specifically designed to drive two power N-MOSFETs in a synchronous-rectified buck converter

More information

RT9607/A Dual Channel Synchronous-Rectified Buck MOSFET Driver General Description Features Drives Four N-MOSFETs Adaptive Shoot-Through Protection

RT9607/A Dual Channel Synchronous-Rectified Buck MOSFET Driver General Description Features Drives Four N-MOSFETs Adaptive Shoot-Through Protection Dual Channel Synchronous-Rectified Buck MOSFET Driver General Description The RT9607/A is a dual power channel MOSFET driver specifically designed to drive four power N-MOSFETs in a synchronous-rectified

More information

RT8474. High Voltage Multiple-Topology LED Driver with Dimming Control. Features. General Description. Applications. Ordering Information

RT8474. High Voltage Multiple-Topology LED Driver with Dimming Control. Features. General Description. Applications. Ordering Information RT8474 High oltage Multiple-Topology LED Driver with Dimming Control General Description The RT8474 is a current-mode LED driver supporting wide input voltage range from 4.5 to 50 and output voltage up

More information

Features. Ordering and Marking Information. Dual Enhancement Mode MOSFET (N- and P-Channel) N-Channel 20V/3A, R DS(ON)

Features. Ordering and Marking Information. Dual Enhancement Mode MOSFET (N- and P-Channel) N-Channel 20V/3A, R DS(ON) Dual Enhancement Mode MOSFET (N- and P-Channel) Features Pin Description N-Channel 20V/3A, =50mΩ(typ.) @ =4.5V =65mΩ(typ.) @ =2.5V P-Channel -20V/-2A, =90mΩ(typ.) @ =-4.5V =30mΩ(typ.) @ =-2.5V Reliable

More information

RT9270 High Performance, Low Noise Boost Converter General Description Features 90% Efficiency IN Operating Range: 2.3V to 5.5V 1.9A, 0.

RT9270 High Performance, Low Noise Boost Converter General Description Features 90% Efficiency IN Operating Range: 2.3V to 5.5V 1.9A, 0. High Performance, Low Noise Boost Converter General Description The is a high performance, low noise, fixed frequency step up DC-DC Converter. The converters input voltage ranging.3v to 5.5V into output

More information

FP A Current Mode Non-Synchronous PWM Boost Converter

FP A Current Mode Non-Synchronous PWM Boost Converter 10A Current Mode Non-Synchronous PWM Boost Converter General Description The is a current mode boost DC-DC converter. It is PWM circuitry with built-in 15mΩ power MOSFET make this regulator highly power

More information

RT8474A. High Voltage Multiple-Topology LED Driver with Open Detection. General Description. Features. Ordering Information.

RT8474A. High Voltage Multiple-Topology LED Driver with Open Detection. General Description. Features. Ordering Information. RT8474A High oltage Multiple-Topology LED Driver with Open Detection General Description The RT8474A is a current-mode LED driver supporting wide input voltage range from 4.5 to 50 in multiple topologies.

More information

RT A, 2MHz, Synchronous Step-Down Converter. Features. General Description. Applications. Ordering Information. Marking Information

RT A, 2MHz, Synchronous Step-Down Converter. Features. General Description. Applications. Ordering Information. Marking Information RT8064 2A, 2MHz, Synchronous Step-Down Converter General Description The RT8064 is a high efficiency synchronous, step-down DC/DC converter. Its input voltage range is from 2.7V to 5.5V and provides an

More information

MP1570 3A, 23V Synchronous Rectified Step-Down Converter

MP1570 3A, 23V Synchronous Rectified Step-Down Converter Monolithic Power Systems MP570 3A, 23 Synchronous Rectified Step-Down Converter FEATURES DESCRIPTION The MP570 is a monolithic synchronous buck regulator. The device integrates 00mΩ MOSFETS which provide

More information

APW7075. Features. General Description. Pin Configuration. Applications. Step-Up Converter and LDO Combo

APW7075. Features. General Description. Pin Configuration. Applications. Step-Up Converter and LDO Combo Step-Up Converter and LDO Combo Features General Description Built-In a 5mA LDO and Synchronous Step-Up DC-DC Converter Built-In PWM/PFM Operating Mode Provided Dual Input Power Sources Connect FB to OUT

More information

APL431L. General Description. Applications. Symbol. Functional Diagram. Low Voltage Adjustable Precision Shunt Regulator

APL431L. General Description. Applications. Symbol. Functional Diagram. Low Voltage Adjustable Precision Shunt Regulator Low Voltage Adjustable Precision Shunt Regulator Features Precise Reference Voltage to 1.24V Guaranteed.5% or 1% Reference Voltage Tolerance Sink Current Capability, 8uA to 1mA Quick Turn-on Adjustable

More information

Techcode TD1720. Single Buck Voltage Mode PWM Controller. Features. General Description. Applications DATASHEET

Techcode TD1720. Single Buck Voltage Mode PWM Controller. Features. General Description. Applications DATASHEET General Description Features The is a voltage mode, fixed 300kHz switching frequency, synchronous buck converter. The allows wide input voltage that is either a single 5~12V or two supply voltage(s) for

More information

AME. High Voltage CC/CV Buck Converter AME5265. n Features. n General Description. n Applications. n Typical Application. n Functional Block Diagram

AME. High Voltage CC/CV Buck Converter AME5265. n Features. n General Description. n Applications. n Typical Application. n Functional Block Diagram 5265 n General Description The 5265 is a specific 40 maximum rating H buck converter that operates in either C/CC mode supports adjustable put voltage and support constant put current at 20KHz switching

More information

EUP A,40V,200KHz Step-Down Converter

EUP A,40V,200KHz Step-Down Converter 3A,40V,200KHz Step-Down Converter DESCRIPTION The is current mode, step-down switching regulator capable of driving 3A continuous load with excellent line and load regulation. The operates with an input

More information

USB Controller OCB 1 GND 2 EN 3 5 VOUT 4 VIN OCB 1 GND 2 5 VOUT ENB 3 4 VIN SOT-23-5 APL3550B/D/F. (Top View)

USB Controller OCB 1 GND 2 EN 3 5 VOUT 4 VIN OCB 1 GND 2 5 VOUT ENB 3 4 VIN SOT-23-5 APL3550B/D/F. (Top View) Power-Distribution Switches Features 7mW (MSOP-8) High Side MOSFET Wide Supply Voltage Range:.7V to 5.5V Current-Limit and Short-Circuit Protections Over-Temperature Protection Fault Indication Output

More information

5V/12V Synchronous Buck PWM Controller EM5303/A

5V/12V Synchronous Buck PWM Controller EM5303/A Page No. : 1/12 5V/12V Synchronous Buck PWM Controller EM5303/A General Description EM5303/A is a synchronous rectified PWM controller operating with 5V or 12V supply voltage. This device operates at 200/300

More information

n Application l Notebook Systems and I/O Power l Digital Set Top Boxes l LCD Display, TV l Networking, XDSL Modem n Typical Application VIN 4.

n Application l Notebook Systems and I/O Power l Digital Set Top Boxes l LCD Display, TV l Networking, XDSL Modem n Typical Application VIN 4. 5297 n General Description The 5297 is a high frequency synchronous stepdown DC-DC converter with built internal power MOSFETs. That provides wide 4.5 to 18 input voltage range and 3A continuous load current

More information

Non-Synchronous PWM Boost Controller for LED Driver

Non-Synchronous PWM Boost Controller for LED Driver Non-Synchronous PWM Boost Controller for LED Driver General Description The is boost topology switching regulator for LED driver. It provides built-in gate driver pin for driving external N-MOSFET. The

More information

MP A, 36V, 700KHz Step-Down Converter with Programmable Output Current Limit

MP A, 36V, 700KHz Step-Down Converter with Programmable Output Current Limit The Future of Analog IC Technology MP2490 1.5A, 36V, 700KHz Step-Down Converter with Programmable Output Current Limit DESCRIPTION The MP2490 is a monolithic step-down switch mode converter with a programmable

More information

Features. Ordering and Marking Information. N-Channel Enhancement Mode MOSFET

Features. Ordering and Marking Information. N-Channel Enhancement Mode MOSFET N-Channel Enhancement Mode MOFET Features Pin Description 3V/7, R D(ON) =4.5mΩ (typ.) @ V G = V R D(ON) =6mΩ (typ.) @ V G = 4.5V uper High Dense Cell Design valanche Rated Reliable and Rugged Lead Free

More information