LESSON PLAN. SUBJECT: LINEAR IC S AND APPLICATION NO OF HOURS: 52 FACULTY NAME: Mr. Lokesh.L, Hema. B DEPT: ECE. Portions to be covered

Size: px
Start display at page:

Download "LESSON PLAN. SUBJECT: LINEAR IC S AND APPLICATION NO OF HOURS: 52 FACULTY NAME: Mr. Lokesh.L, Hema. B DEPT: ECE. Portions to be covered"

Transcription

1 LESSON PLAN SUBJECT: LINEAR IC S AND APPLICATION SUB CODE: 15EC46 NO OF HOURS: 52 FACULTY NAME: Mr. Lokesh.L, Hema. B DEPT: ECE Class# Chapter title/reference literature Portions to be covered MODULE I - Operational Amplifier Fundamentals 1 2 T2, chapter 1-1.2,chapter2-2.5,chapter3-3.6 Basic op-amp circuit, parameters-i/p and o/p voltage CMRR&PSRR, offset voltages & current, I /P & O/P impedances 3 Slew rate & Frequency limitations, opamps as DC amplifiers 4 Biasing op-amps, direct coupled voltage followers, 5 Non inverting,inverting, difference summing amplifier 6-7 Problems MODULE II - Op-Amps as AC Amplifiers 8 T1, chapter 4 Capacitor coupled voltage follower, High input impedance-capacitor coupled voltage follower, 9 Capacitor coupled non-inverting amplifiers, High input impedance- Capacitor coupled non inverting amplifier 10 Capacitor coupled inverting amplifier, setting the upper cut off frequency 11 Capacitor coupled difference amplifier 12 Use of a single polarity supply Problems MODULE III Op-Amps Applications % Of portions covered Ref Cumu chap lative T1, chapter 6- Current amplifiers, instrumentation 6.1,6.2,6.4,6.8 amplifiers Chapter 7- Precision rectifiers, Limiting circuits ,7.2,7.3 problems

2 More applications T1, chapter 7-7.4,7.5,7.6 Chapter T2,chapter 4.5,4.8,4.9 Clamping circuits, peak detectors, sample & hold circuits V to I & I to V converters, Log and antilog amplifiers Multiplier and divider wave generators 30 Triangular/Rectangular wave generators Wave form generator design, phase shift oscillator 33 Wein bridge oscillator 34 Problems MODULE IV -Non linear circuit application 35 T1, chapter 9- Crossing detectors 36,37 9.2,9.3,9.5,9.6 Inverting Schmitt trigger circuit 38,39 Chapter 11- Monostable and astable multivibrator ,11.3,11.4,11.5 Active filter 41, 42 First order and second order low pass filter 43 High pass filter 44 Problems MODULE V - Voltage regulators& other linear IC application T2, chapter 6 chapter chapter chapter Introduction, Series Op-amp,IC voltage regulator 723 general purpose, switching regulator Basic 555 timer circuit,555timer as astable & monostable multivibrator 51 PLL operating principles, Schmitt trigger, phase detector/comparator VCO 52 Basic DAC techniques, D/A & A/D converters, AD converters Book type Code Title and Author Publication information Edition Publication Year Text T1 Operational Amplifiers and Linear IC s -David A.Bell 2nd PHI 2004 Text T2 Linear Integrated circuits - D.Roy Choudhury & shail B.Jain Reference R1 Op- Amps and Linear Integrated circuit s - Ramakant A.Gayakwad Reference R4 Design with Op-Amps & analog IC s- Sergio Franco 2nd New age international th PHI rd TMH 2005

3 Questions Module I : Operational amplifiers fundamentals 1. What is an op-amp? Draw the basic circuit of an op-amp 2. Briefly discuss the input bias current, input impedance, output impedance and voltage gain of op-amp 3. Explain the limitations on input and output voltage range of an operational amplifier with necessary circuit diagram 4. Explain common mode voltage, common mode voltage gain and common mode rejection ratio for op-amp 5. Discuss supply voltage rejection in op-amp and state a typical supply voltage rejection ratio 6. Explain the input offset voltage and state typical offset voltage level for an opamp 7. Explain the input offset current and state typical offset current level for an opamp 8. Write the equation for input and output impedance of an op-amp using negative feedback 9. Sketch an illustration to show the effect of operational amplifier slew rate and explain. 10. Explain why the two input terminals of op-amp should be equal in value 11. Sketch an op-amp voltage follower with a potential divider biasing and explain 12. Draw the circuit of direct coupled voltage follower and how the value of feedback resistor should be determined. 13. Draw the circuit of two input inverting summing amplifier and difference amplifier explain the operation. Module II : Op-amps as AC amplifiers 1. Explain the operation of high input impedance capacitor coupled voltage follower. Prove that its Zin is ideally very large. 2. Sketch the circuit of capacitor coupled non-inverting amplifier and explain the operation 3. Develop the equation for Z in for a high input impedance capacitor coupled noninverting amplifier 4. Write the equations for calculating the capacitance values for a capacitor coupled inverting amplifier 5. Explain the operation of capacitor coupled inverting amplifier and define its input impedance 6. Briefly discuss the upper cutoff frequency for an op-amp circuit and show how it can be set for inverting, non-inverting and difference amplifier 7. Sketch the circuit of capacitor coupled difference amplifier and explain how to determine capacitor values 8. Sketch circuit of high input impedance capacitor coupled voltage follower using single polarity supply and explain. 9. Sketch the circuit of capacitor coupled non-inverting amplifier using single polarity supply and explain. 10. Sketch the circuit of capacitor coupled inverting amplifier using single polarity supply and explain. Module III: Op-amp applications 1. Draw the circuit of precision voltage source using op-amp and zener diode. Explain the circuit operation and derive equation relating Vo and Vz

4 2. Explain the circuit of current source for floating load and grounded load using op-amp and bipolar transistor 3. Sketch a current sink circuit using BJT & MOSFET, show typical voltage levels and explain its operation 4. Draw the circuit of current amplifier with a floating load and explain its operation 5. Explain the circuit of differential input and output amplifier and derive the equation for differential voltage gain 6. Discuss the advantage of a precision rectifier over ordinary diode circuit 7. Sketch the circuit of non-saturating half wave precision rectifier draw the i/p & o/p waveforms and explain the operations 8. Draw the circuit of high input impedance full-wave precision rectifier and explain with the appropriate equations 9. Sketch a zener diode peak clipper circuit with the adjustable output voltage limit. Explain the operation and the equation for upper and lower limit of o/p voltage 10. Explain what a dead zone circuit does. Sketch an op-amp dead zone circuit, show the waveform and explain its operation. 11. Draw the circuit of an instrumentation amplifier and derive and expression for the gain. More application 1. Sketch an op-amp precision clamping circuit, draw the input and output waveforms, explain the operation. 2. Draw an op-amp precision rectifier peak detector circuit, draw the input and output waveforms, explain the operation 3. Explain the voltage follower type peak detector with the corresponding circuit 4. Draw an op-amp sample and hold circuit, sketch the signal, control and output voltage waveforms 5. Explain the circuit of triangular/rectangular waveforms generator and draw the waveforms 6. Draw the circuit of RC phase shift oscillator. Sketch the output and feedback voltage and explain the operation. 7. State Barkhausen criteria and explain how it is fulfilled in the phase shift oscillator 8. Discuss the design procedure for Wein bridge oscillator and show how the diodes may be used for output amplitude stabilization. 9. Draw the circuit of voltage to current converter if the load is floating and grounded and explain Draw the circuit of log amplifiers using two op-amps and explain its operation Draw and explain an op-amp sample and hold circuit with signal, control and output waveforms. Module IV :Non-linear circuit applications 1. Sketch the circuit of op-amp employed as non-inverting zero crossing detector and briefly explain the input and output waveforms 2. Draw the circuit of capacitor coupled zero crossing detector, show the waveform and explain its operation 3. Draw an op-amp inverting Schmitt trigger circuit, explain its operation by sketching its input and output waveforms 4. Explain the circuit of op-amp astable multivibrator. show the voltage waveform at various points in the circuit 5. Explain the circuit of op-amp monostable multivibrator. show the voltage

5 waveform at various points in the circuit 6. Explain the circuit of first order low pass and high pass filter with its frequency response 7. Discuss the circuit design procedure for first order active high pass filter 8. Explain the circuit of second order low pass and high pass filter with its frequency response 9. Using 741 op-amp design a first order active low pass filter to have a cut off frequency of 1khz Design a second order low pass filter to have a cut off frequency of 5khz. What are the advantages of active filters over passive filters? Module 5 : Voltage regulator & other linear application 1 Explain the function of voltage regulator and series regulated power supply using discrete components 2 List and explain the characteristics of three terminal IC regulator 3 Explain how the fixed regulator used as adjustable regulator 4 Draw the functional diagram of 723 regulator and explain its operation 5 Explain the current limiting feature of 723 regulator 6 Explain current fold back characteristics 7 What is the principle of switch mode power supplies? Discuss its advantages and disadvantages 8 Draw and explain the functional diagram of 555 timer 9 Derive the expression of time delay of a Monostable multivibrator 10 Discuss some application of timer in Monostable mode 11 How is an Astable Multivibrator connected into pulse position modulator? 12 Explain the circuit of Schmitt trigger using 555 timer 13 Explain different types of resistive techniques used in digital to analog converter 14 Explain parallel comparator A/D converter with its circuit 15 Explain the operating principle of PLL 16 Explain the phase detector of PLL with its VCO output waveform 17 Explain the operation of voltage controlled oscillator 18 Briefly explain the standard representation / configuration of 78XX type regulators 19 Briefly explain the working of a 4-bit binary weighted resistor DAC. 20 Explain the functional diagram of dual slope ADC and show the integrated output waveform. 21 Define lock-in range and capture range with reference to PLLS. 22 Explain the operation of a successive approximation ADC using a simplified block-diagram. 23 Explain the terms line regulation, load regulation and ripple rejection for a dc voltage regulator. 24 Explain the following with neat diagrams and waveforms Dual-slope ADC. R-2R ladder DAC.

LINEAR IC APPLICATIONS

LINEAR IC APPLICATIONS 1 B.Tech III Year I Semester (R09) Regular & Supplementary Examinations December/January 2013/14 1 (a) Why is R e in an emitter-coupled differential amplifier replaced by a constant current source? (b)

More information

KINGS COLLEGE OF ENGINEERING* DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING* DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING* DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : LINEAR INTEGRATED CIRCUITS SUB CODE: EC1254 YEAR / SEMESTER : II / IV UNIT- I IC FABRICATION

More information

EC0206 LINEAR INTEGRATED CIRCUITS

EC0206 LINEAR INTEGRATED CIRCUITS SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY SCHOOL OF ELECTRONICS AND ELECTRICAL ENGINEERING DEPARTMENT OF ECE COURSE PLAN Course Code : EC0206 Course Title : Linear Integrated Circuits Semester

More information

Question Paper Code: 21398

Question Paper Code: 21398 Reg. No. : Question Paper Code: 21398 B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013 Fourth Semester Electrical and Electronics Engineering EE2254 LINEAR INTEGRATED CIRCUITS AND APPLICATIONS (Regulation

More information

1 2 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2010 Fourth Semester Electrical and Electronics Engineering EE 2254 LINEAR INTEGRATED CIRCUITS AND APPLICATIONS (Common to Instrumentation and Control

More information

EE2254 LINEAR INTEGRATED CIRCUITS UNIT-I IC FABRICATION

EE2254 LINEAR INTEGRATED CIRCUITS UNIT-I IC FABRICATION DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Question bank EE2254 LINEAR INTEGRATED CIRCUITS UNIT-I IC FABRICATION 1. Mention the advantages of integrated circuits. 2. Write down the various processes

More information

Linear Integrated Circuits and Applications

Linear Integrated Circuits and Applications Dhanalakshmi Srinivasan Engineering College - Perambalur Department of EEE QUESTION BANK Linear Integrated Circuits and Applications UNIT-I ICs FABRICATION 1. Mention the advantages of integrated circuits.

More information

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING QUESTION BANK SUBJECT : EC6404 LINEAR INTEGRATED CIRCUITS SEM / YEAR: IV / II year

More information

Summer 2015 Examination

Summer 2015 Examination Summer 2015 Examination Subject Code: 17445 Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

More information

Hours / 100 Marks Seat No.

Hours / 100 Marks Seat No. 17445 21415 3 Hours / 100 Seat No. Instructions (1) All Questions are Compulsory. (2) Illustrate your answers with neat sketches wherever necessary. (3) Figures to the right indicate full marks. (4) Assume

More information

Scheme I Sample Question Paper

Scheme I Sample Question Paper Sample Question Paper Marks : 70 Time: 3 Hrs. Q.1) Attempt any FIVE of the following. 10 Marks a) Classify configuration of differential amplifier. b) Draw equivalent circuit of an OPAMP c) Suggest and

More information

EC0206 Linear Integrated Circuits Fourth Semester, (even semester)

EC0206 Linear Integrated Circuits Fourth Semester, (even semester) COURSE HANDOUT Course (catalog) description SRM University Faculty of Engineering and Technology Department of Electronics and Communication Engineering EC0206 Linear Integrated Circuits Fourth Semester,

More information

R (a) Explain characteristics and limitations of op-amp comparators. (b) Explain operation of free running Multivibrator using op-amp.

R (a) Explain characteristics and limitations of op-amp comparators. (b) Explain operation of free running Multivibrator using op-amp. Set No: 1 1. (a) Draw the equivalent circuits of emitter coupled differential amplifier from which calculate Ad. (b) Draw the block diagram of four stage cascaded amplifier. Explain the function of each

More information

GUJARAT TECHNOLOGICAL UNIVERSITY. INSTRUMENTATION & CONTROL ENGINEERING (17) ANALOG SIGNAL PROCESSING SUBJECT CODE: B.E.

GUJARAT TECHNOLOGICAL UNIVERSITY. INSTRUMENTATION & CONTROL ENGINEERING (17) ANALOG SIGNAL PROCESSING SUBJECT CODE: B.E. GUJARAT TECHNOLOGICAL UNIVERSITY INSTRUMENTATION & CONTROL ENGINEERING (17) ANALOG SIGNAL PROCESSING SUBJECT CODE: 2141706 B.E. 4 th Semester Type of course: Core Engineering Prerequisite: 1. Fundamental

More information

explain its operation with clearly indicating the protection mechanisms indicated. [Marks 16] (Nov/dec 2010) Ic 741 Op Amp Of Output Stage Protection

explain its operation with clearly indicating the protection mechanisms indicated. [Marks 16] (Nov/dec 2010) Ic 741 Op Amp Of Output Stage Protection PANDIAN SARASWATH YADAV ENGINEERING COLLEGE ARASANOOR-SIVAGANGAI. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGNIEERING EC6404-linear integrated circuits 16 MARK UNIVERSITY QUESTIONS WITH KEY UNIT-1

More information

Minnesota State College Southeast ELEC 2260: Linear Integrated Circuits

Minnesota State College Southeast ELEC 2260: Linear Integrated Circuits Minnesota State College Southeast ELEC 2260: Linear Integrated Circuits A. COURSE DESCRIPTION Credits: 4 Lecture Hours/Week: 2 Lab Hours/Week: 4 OJT Hours/Week: *.* Prerequisites: None Corequisites: None

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad 1 P a g e INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING TUTORIAL QUESTION BANK Name : INTEGRATED CIRCUITS APPLICATIONS Code

More information

MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Linear Integrated Circuit Subject Code:

MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Linear Integrated Circuit Subject Code: MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Linear Integrated Circuit Subject Code: Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as

More information

III/IV B.Tech. DEGREE EXAMINATIONS, NOV/DEC-2017

III/IV B.Tech. DEGREE EXAMINATIONS, NOV/DEC-2017 EC 314 (R-15) Total No. of Questions :09] [Total No. of Pages : 02 III/IV B.Tech. DEGREE EXAMINATIONS, NOV/DEC-2017 First Semester ELECTRONICS & COMMUNICATION ENGINEERING COMPUTER ORGANISATION AND OPERATING

More information

SYLLABUS. osmania university CHAPTER - 1 : OPERATIONAL AMPLIFIER CHAPTER - 2 : OP-AMP APPLICATIONS ARATORS AND CONVERTERS

SYLLABUS. osmania university CHAPTER - 1 : OPERATIONAL AMPLIFIER CHAPTER - 2 : OP-AMP APPLICATIONS ARATORS AND CONVERTERS Contents i SYLLABUS osmania university UNIT - I CHAPTER - 1 : OPERATIONAL AMPLIFIER Operational Amplifiers-Characteristics, Open Loop Voltage Gain, Output Impedance, Input Impedance, Common Mode Rejection

More information

DMI COLLEGE OF ENGINEERING

DMI COLLEGE OF ENGINEERING DMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING EC8453 - LINEAR INTEGRATED CIRCUITS Question Bank (II-ECE) UNIT I BASICS OF OPERATIONAL AMPLIFIERS PART A 1.Mention the

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com 8.1 Operational Amplifier (Op-Amp) UNIT 8: Operational Amplifier An operational amplifier ("op-amp") is a DC-coupled high-gain electronic voltage amplifier with a differential input and, usually, a single-ended

More information

St.MARTIN S ENGINEERING COLLEGE

St.MARTIN S ENGINEERING COLLEGE St.MARTIN S ENGINEERING COLLEGE Dhulapally, Kompally, Secunderabad-500014. Branch Year&Sem Subject Name : Electrical and Electronics Engineering : III B. Tech I Semester : IC Applications OBJECTIVES QUESTION

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING QUESTION BANK III SEMESTER EE6303 Linear Integrated Circuits and Applications

More information

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK IV SEMESTER

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK IV SEMESTER VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK IV SEMESTER EC6404 LINEAR INTEGRATED CIRCUITS Regulation 2013 Academic

More information

EC6404-LINEAR INTEGRATED CIRCUITS Question bank UNIT-I PART-A 1. What are the advantages of an IC over discrete components?

EC6404-LINEAR INTEGRATED CIRCUITS Question bank UNIT-I PART-A 1. What are the advantages of an IC over discrete components? EC6404-LINEAR INTEGRATED CIRCUITS Question bank UNIT-I PART-A 1. What are the advantages of an IC over discrete components?(apr-2014)(apr- 2013,Nov-2014) 2. State an Monolitihic ICs.(Apr-2010,Nov-2014)

More information

Academic Course Description. EC1013 Linear Integrated Circuits Fourth Semester, (Even Semester)

Academic Course Description. EC1013 Linear Integrated Circuits Fourth Semester, (Even Semester) Academic Course Description SRM University Faculty of Engineering and Technology Department of Electronics and Communication Engineering EC1013 Linear Integrated Circuits Fourth Semester, 2014-15 (Even

More information

Operational Amplifiers

Operational Amplifiers Fundamentals of op-amp Operation modes Golden rules of op-amp Op-amp circuits Inverting & non-inverting amplifier Unity follower, integrator & differentiator Introduction An operational amplifier, or op-amp,

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS UNIT-I - PN DIODEAND ITSAPPLICATIONS 1. What is depletion region in PN junction?

More information

FIRSTRANKER. 1. (a) What are the advantages of the adjustable voltage regulators over the fixed

FIRSTRANKER. 1. (a) What are the advantages of the adjustable voltage regulators over the fixed Code No: 07A51102 R07 Set No. 2 1. (a) What are the advantages of the adjustable voltage regulators over the fixed voltage regulators. (b) Differentiate betweenan integrator and a differentiator. [8+8]

More information

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Linear Integrated Circuits Applications

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Linear Integrated Circuits Applications About the Tutorial Linear Integrated Circuits are solid state analog devices that can operate over a continuous range of input signals. Theoretically, they are characterized by an infinite number of operating

More information

Devices and Op-Amps p. 1 Introduction to Diodes p. 3 Introduction to Diodes p. 4 Inside the Diode p. 6 Three Diode Models p. 10 Computer Circuit

Devices and Op-Amps p. 1 Introduction to Diodes p. 3 Introduction to Diodes p. 4 Inside the Diode p. 6 Three Diode Models p. 10 Computer Circuit Contents p. v Preface p. ix Devices and Op-Amps p. 1 Introduction to Diodes p. 3 Introduction to Diodes p. 4 Inside the Diode p. 6 Three Diode Models p. 10 Computer Circuit Analysis p. 16 MultiSIM Lab

More information

SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY SCHOOL OF ELECTRONICS AND ELECTRICAL ENGINEERING DEPARTMENT OF EEE. Section

SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY SCHOOL OF ELECTRONICS AND ELECTRICAL ENGINEERING DEPARTMENT OF EEE. Section SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY SCHOOL OF ELECTRONICS AND ELECTRICAL ENGINEERING DEPARTMENT OF EEE Course Code : EE0305 Course Title : LINEAR INTEGRATED CIRCUITS Semester : V Course

More information

SYLLABUS. osmania university UNIT - I UNIT - II UNIT - III CHAPTER - 4 : OPERATIONAL AMPLIFIER

SYLLABUS. osmania university UNIT - I UNIT - II UNIT - III CHAPTER - 4 : OPERATIONAL AMPLIFIER Contents i SYLLABUS osmania university UNIT - I CHAPTER - 1 : DIFFERENTIAL AMPLIFIERS Classification, DC and AC Analysis of Single/Dual Input Balanced and Unbalanced Output Configurations using BJTs. Level

More information

P a g e 1. Introduction

P a g e 1. Introduction P a g e 1 Introduction 1. Signals in digital form are more convenient than analog form for processing and control operation. 2. Real world signals originated from temperature, pressure, flow rate, force

More information

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY ECR, MAMALLAPURAM CHENNAI-603104 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6404- LINEAR INTEGRATED CIRCUITS QUESTION BANK PREPARED

More information

Transistor Digital Circuits

Transistor Digital Circuits Recapitulation Transistor Digital Circuits The transistor Operating principle and regions Utilization of the transistor Transfer characteristics, symbols Controlled switch model BJT digital circuits MOSFET

More information

EE : ELECTRICAL ENGINEERING Module 8 : Analog and Digital Electronics INDEX

EE : ELECTRICAL ENGINEERING Module 8 : Analog and Digital Electronics INDEX Pearl Centre, S.B. Marg, Dadar (W), Mumbai 400 028. Tel. 4232 4232 EE : ELECTRICAL ENGINEERING Module 8 : Analog and Digital Electronics Contents INDEX Sub Topics 1. Characteristics of Diodes, BJT & FET

More information

EC202- ELECTRONIC CIRCUITS II Unit- I -FEEEDBACK AMPLIFIER

EC202- ELECTRONIC CIRCUITS II Unit- I -FEEEDBACK AMPLIFIER EC202- ELECTRONIC CIRCUITS II Unit- I -FEEEDBACK AMPLIFIER 1. What is feedback? What are the types of feedback? 2. Define positive feedback. What are its merits and demerits? 3. Define negative feedback.

More information

EE LINEAR INTEGRATED CIRCUITS AND APPLICATIONS TWO MARK QUESTIONS WITH ANSWERS UNIT-I CIRCUIT CONFIGURATION FOR LINEAR ICs

EE LINEAR INTEGRATED CIRCUITS AND APPLICATIONS TWO MARK QUESTIONS WITH ANSWERS UNIT-I CIRCUIT CONFIGURATION FOR LINEAR ICs EE6303 - LINEAR INTEGRATED CIRCUITS AND APPLICATIONS TWO MARK QUESTIONS WITH ANSWERS UNIT-I CIRCUIT CONFIGURATION FOR LINEAR ICs 1. Mention the advantages of integrated circuits. *Miniaturization and hence

More information

Function Generator Using Op Amp Ic 741 Theory

Function Generator Using Op Amp Ic 741 Theory Function Generator Using Op Amp Ic 741 Theory Note: Op-Amps ua741, LM 301, LM311, LM 324 & AD 633 may be used To design an Inverting Amplifier for the given specifications using Op-Amp IC 741. THEORY:

More information

W.E.From..JllIle.. Jalgaoll S..Ualnis.f'o..,8.Y.B.Sc... c... v Y... l\f()ft11mlihlirlishtr<i. UIli\,eI'~it.y,.

W.E.From..JllIle.. Jalgaoll S..Ualnis.f'o..,8.Y.B.Sc... c... v Y... l\f()ft11mlihlirlishtr<i. UIli\,eI'~it.y,. "... - - ',','.". - -... '..,. " -,-. -.." ',', '.','..-..-, -.'.-,' ',',- -.. ',",",... - - ""....,.. '-- "... -- -. ".. ".. - -,,, - - --,,,.. ---" ---.. " _._-, ", ::. -:. :-:: :':,:::->.:-:.,:,,-:::.::

More information

Introduction to Simulation using EDWinXP

Introduction to Simulation using EDWinXP Introduction to Simulation using EDWinXP Introduction to Simulation using EDWinXP First Edition Copyright Notice ALL RIGHTS RESERVED. Any unauthorized reprint or use of this material is prohibited. No

More information

Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET REV. NO. : REV.

Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET REV. NO. : REV. Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET LABORATORY MANUAL EXPERIMENT NO. ISSUE NO. : ISSUE DATE: July 200 REV. NO. : REV.

More information

Linear IC s and applications

Linear IC s and applications Questions and Solutions PART-A Unit-1 INTRODUCTION TO OP-AMPS 1. Explain data acquisition system Jan13 DATA ACQUISITION SYSYTEM BLOCK DIAGRAM: Input stage Intermediate stage Level shifting stage Output

More information

Chapter 13 Oscillators and Data Converters

Chapter 13 Oscillators and Data Converters Chapter 13 Oscillators and Data Converters 13.1 General Considerations 13.2 Ring Oscillators 13.3 LC Oscillators 13.4 Phase Shift Oscillator 13.5 Wien-Bridge Oscillator 13.6 Crystal Oscillators 13.7 Chapter

More information

UNIT-I CIRCUIT CONFIGURATION FOR LINEAR

UNIT-I CIRCUIT CONFIGURATION FOR LINEAR UNIT-I CIRCUIT CONFIGURATION FOR LINEAR ICs 2 marks questions 1.Mention the advantages of integrated circuits. *Miniaturisation and hence increased equipment density. *Cost reduction due to batch processing.

More information

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Pre-Report Forms

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Pre-Report Forms Facility of Engineering Biomedical Engineering Department Medical Electronic Lab BME (317) Pre-Report Forms Prepared by Eng.Hala Amari Spring 2014 Facility of Engineering Biomedical Engineering Department

More information

UNIT I Circuit Configuration for Linear ICs

UNIT I Circuit Configuration for Linear ICs UNIT I Circuit Configuration for Linear ICs Current Mirror Circuit: A current mirror is a circuit designed to copy a current through one active device by controlling the current in another

More information

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET) Difference between BJTs and FETs Transistors can be categorized according to their structure, and two of the more commonly known transistor structures, are the BJT and FET. The comparison between BJTs

More information

Multivibrators. Department of Electrical & Electronics Engineering, Amrita School of Engineering

Multivibrators. Department of Electrical & Electronics Engineering, Amrita School of Engineering Multivibrators Multivibrators Multivibrator is an electronic circuit that generates square, rectangular, pulse waveforms. Also called as nonlinear oscillators or function generators. Multivibrator is basically

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Table of contents 1. Design 1.1. The Differential Amplifier 1.2. Level Shifter 1.3. Power Amplifier 2. Characteristics 3. The Opamp without NFB 4. Linear Amplifiers 4.1. The Non-Inverting

More information

Basic Operational Amplifier Circuits

Basic Operational Amplifier Circuits Basic Operational Amplifier Circuits Comparators A comparator is a specialized nonlinear op-amp circuit that compares two input voltages and produces an output state that indicates which one is greater.

More information

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Post-lab Forms Facility of Engineering Biomedical Engineering Department Medical Electronic Lab BME (317) Post-lab Forms Prepared by Eng.Hala Amari Spring 2014 Facility of Engineering Biomedical Engineering Department

More information

PROPOSED SCHEME OF COURSE WORK

PROPOSED SCHEME OF COURSE WORK PROPOSED SCHEME OF COURSE WORK Course Details: Course Title : LINEAR AND DIGITAL IC APPLICATIONS Course Code : 13EC1146 L T P C : 4 0 0 3 Program: : B.Tech. Specialization: : Electrical and Electronics

More information

Electronic PRINCIPLES

Electronic PRINCIPLES MALVINO & BATES Electronic PRINCIPLES SEVENTH EDITION Chapter 22 Nonlinear Op-Amp Circuits Topics Covered in Chapter 22 Comparators with zero reference Comparators with non-zero references Comparators

More information

Fig 1: The symbol for a comparator

Fig 1: The symbol for a comparator INTRODUCTION A comparator is a device that compares two voltages or currents and switches its output to indicate which is larger. They are commonly used in devices such as They are commonly used in devices

More information

21/10/58. M2-3 Signal Generators. Bill Hewlett and Dave Packard s 1 st product (1939) US patent No HP 200A s schematic

21/10/58. M2-3 Signal Generators. Bill Hewlett and Dave Packard s 1 st product (1939) US patent No HP 200A s schematic M2-3 Signal Generators Bill Hewlett and Dave Packard s 1 st product (1939) US patent No.2267782 1 HP 200A s schematic 2 1 The basic structure of a sinusoidal oscillator. A positive feedback loop is formed

More information

PESIT BANGALORE SOUTH CAMPUS BASIC ELECTRONICS

PESIT BANGALORE SOUTH CAMPUS BASIC ELECTRONICS PESIT BANGALORE SOUTH CAMPUS QUESTION BANK BASIC ELECTRONICS Sub Code: 17ELN15 / 17ELN25 IA Marks: 20 Hrs/ Week: 04 Exam Marks: 80 Total Hours: 50 Exam Hours: 03 Name of Faculty: Mr. Udoshi Basavaraj Module

More information

LIC & COMMUNICATION LAB MANUAL

LIC & COMMUNICATION LAB MANUAL LIC & Communication Lab Manual LIC & COMMUNICATION LAB MANUAL FOR V SEMESTER B.E (E& ( E&C) (For private circulation only) NAME: DEPARTMENT OF ELECTRONICS & COMMUNICATION SRI SIDDHARTHA INSTITUTE OF TECHNOLOGY

More information

For input: Peak to peak amplitude of the input = volts. Time period for 1 full cycle = sec

For input: Peak to peak amplitude of the input = volts. Time period for 1 full cycle = sec Inverting amplifier: [Closed Loop Configuration] Design: A CL = V o /V in = - R f / R in ; Assume R in = ; Gain = ; Circuit Diagram: RF +10V F.G ~ + Rin 2 3 7 IC741 + 4 6 v0-10v CRO Model Graph Inverting

More information

CHARACTERIZATION OF OP-AMP

CHARACTERIZATION OF OP-AMP EXPERIMENT 4 CHARACTERIZATION OF OP-AMP OBJECTIVES 1. To sketch and briefly explain an operational amplifier circuit symbol and identify all terminals. 2. To list the amplifier stages in a typical op-amp

More information

IFB270 Advanced Electronic Circuits

IFB270 Advanced Electronic Circuits IFB270 Advanced Electronic Circuits Chapter 13: Basic op-amp circuits Prof. Manar Mohaisen Department of EEC Engineering Introduction Review of the Precedent Lecture Op-amp operation modes and parameters

More information

WINTER 14 EXAMINATION

WINTER 14 EXAMINATION Subject Code:173 WINTER 14 EXAMINATION Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The

More information

Preface... iii. Chapter 1: Diodes and Circuits... 1

Preface... iii. Chapter 1: Diodes and Circuits... 1 Table of Contents Preface... iii Chapter 1: Diodes and Circuits... 1 1.1 Introduction... 1 1.2 Structure of an Atom... 2 1.3 Classification of Solid Materials on the Basis of Conductivity... 2 1.4 Atomic

More information

FREQUENTLY ASKED QUESTIONS

FREQUENTLY ASKED QUESTIONS FREQUENTLY ASKED QUESTIONS UNIT-1 SUBJECT : ELECTRONIC DEVICES AND CIRCUITS SUBJECT CODE : EC6202 BRANCH: EEE PART -A 1. What is meant by diffusion current in a semi conductor? (APR/MAY 2010, 2011, NOV/DEC

More information

The steeper the phase shift as a function of frequency φ(ω) the more stable the frequency of oscillation

The steeper the phase shift as a function of frequency φ(ω) the more stable the frequency of oscillation It should be noted that the frequency of oscillation ω o is determined by the phase characteristics of the feedback loop. the loop oscillates at the frequency for which the phase is zero The steeper the

More information

EE LINEAR INTEGRATED CIRCUITS & APPLICATIONS

EE LINEAR INTEGRATED CIRCUITS & APPLICATIONS UNITII CHARACTERISTICS OF OPAMP 1. What is an opamp? List its functions. The opamp is a multi terminal device, which internally is quite complex. It is a direct coupled high gain amplifier consisting of

More information

UNIT-V: WAVEFORM GENERATORS AND SPECIAL FUNCTION ICs. PARTA (2 Marks)

UNIT-V: WAVEFORM GENERATORS AND SPECIAL FUNCTION ICs. PARTA (2 Marks) UNIT-V: WAVEFORM GENERATORS AND SPECIAL FUNCTION ICs PARTA (2 Marks) 1. Define line regulation.[auc April 2004] It is defined as the percentage change in the output voltage from a change in the input voltage.

More information

State the application of negative feedback and positive feedback (one in each case)

State the application of negative feedback and positive feedback (one in each case) (ISO/IEC - 700-005 Certified) Subject Code: 073 Model wer Page No: / N Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer

More information

Introductory Electronics for Scientists and Engineers

Introductory Electronics for Scientists and Engineers Introductory Electronics for Scientists and Engineers Second Edition ROBERT E. SIMPSON University of New Hampshire Allyn and Bacon, Inc. Boston London Sydney Toronto Contents Preface xiü 1 Direct Current

More information

Q1. Explain the Astable Operation of multivibrator using 555 Timer IC.

Q1. Explain the Astable Operation of multivibrator using 555 Timer IC. Q1. Explain the Astable Operation of multivibrator using 555 Timer I. Answer: The following figure shows the 555 Timer connected for astable operation. A V PIN 8 PIN 7 B 5K PIN6 - S Q 5K PIN2 - Q PIN3

More information

Lecture #3 Basic Op-Amp Circuits

Lecture #3 Basic Op-Amp Circuits Spring 2015 Benha University Faculty of Engineering at Shoubra ECE-322 Electronic Circuits (B) Lecture #3 Basic Op-Amp Circuits Instructor: Dr. Ahmad El-Banna Agenda Comparators Summing Amplifiers Integrators

More information

Analog I/O. ECE 153B Sensor & Peripheral Interface Design Winter 2016

Analog I/O. ECE 153B Sensor & Peripheral Interface Design Winter 2016 Analog I/O ECE 153B Sensor & Peripheral Interface Design Introduction Anytime we need to monitor or control analog signals with a digital system, we require analogto-digital (ADC) and digital-to-analog

More information

GATE SOLVED PAPER - IN

GATE SOLVED PAPER - IN YEAR 202 ONE MARK Q. The i-v characteristics of the diode in the circuit given below are : v -. A v 0.7 V i 500 07 $ = * 0 A, v < 0.7 V The current in the circuit is (A) 0 ma (C) 6.67 ma (B) 9.3 ma (D)

More information

ELT 215 Operational Amplifiers (LECTURE) Chapter 5

ELT 215 Operational Amplifiers (LECTURE) Chapter 5 CHAPTER 5 Nonlinear Signal Processing Circuits INTRODUCTION ELT 215 Operational Amplifiers (LECTURE) In this chapter, we shall present several nonlinear circuits using op-amps, which include those situations

More information

Lab 2 Revisited Exercise

Lab 2 Revisited Exercise Lab 2 Revisited Exercise +15V 100k 1K 2N2222 Wire up led display Note the ground leads LED orientation 6.091 IAP 2008 Lecture 3 1 Comparator, Oscillator +5 +15 1k 2 V- 7 6 Vin 3 V+ 4 V o Notice that power

More information

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics Sr. No. Date TITLE To From Marks Sign 1 To verify the application of op-amp as an Inverting Amplifier 2 To

More information

SET - 1 Code No: II B. Tech II Semester Regular Examinations, April/May 2009

SET - 1 Code No: II B. Tech II Semester Regular Examinations, April/May 2009 SET - 1 Code No: 3220401 II B. Tech II Semester Regular Examinations, April/May 2009 PULSE AND DIGITAL CIRCUITS ( Common to E.C.E, B.M.E, E.Con.E, I.C.E ) Time: 3 hours Max Marks: 80 Answer Any FIVE Questions

More information

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 019.101 Introductory Analog Electronics Laboratory Laboratory No. READING ASSIGNMENT

More information

Analog Electronic Circuits Lab-manual

Analog Electronic Circuits Lab-manual 2014 Analog Electronic Circuits Lab-manual Prof. Dr Tahir Izhar University of Engineering & Technology LAHORE 1/09/2014 Contents Experiment-1:...4 Learning to use the multimeter for checking and indentifying

More information

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. ELECTRONIC PRINCIPLES AND APPLICATIONS

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. ELECTRONIC PRINCIPLES AND APPLICATIONS R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. DEPARTMENT OF PHYSICS QUESTION BANK FOR SEMESTER V PHYSICS PAPER VI (A) ELECTRONIC PRINCIPLES AND APPLICATIONS UNIT I: SEMICONDUCTOR DEVICES

More information

Operational amplifiers

Operational amplifiers Operational amplifiers Bởi: Sy Hien Dinh INTRODUCTION Having learned the basic laws and theorems for circuit analysis, we are now ready to study an active circuit element of paramount importance: the operational

More information

multivibrator; Introduction to silicon-controlled rectifiers (SCRs).

multivibrator; Introduction to silicon-controlled rectifiers (SCRs). Appendix The experiments of which details are given in this book are based largely on a set of 'modules' specially designed by Dr. K.J. Close. These 'modules' are now made and marketed by Irwin-Desman

More information

Special-Purpose Operational Amplifier Circuits

Special-Purpose Operational Amplifier Circuits Special-Purpose Operational Amplifier Circuits Instrumentation Amplifier An instrumentation amplifier (IA) is a differential voltagegain device that amplifies the difference between the voltages existing

More information

Analogue Electronic Systems

Analogue Electronic Systems Unit 47: Unit code Analogue Electronic Systems F/615/1515 Unit level 5 Credit value 15 Introduction Analogue electronic systems are still widely used for a variety of very important applications and this

More information

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2) EE 368 Electronics Lab Experiment 10 Operational Amplifier Applications (2) 1 Experiment 10 Operational Amplifier Applications (2) Objectives To gain experience with Operational Amplifier (Op-Amp). To

More information

ANALOG ELECTRONIC CIRCUITS (EE-325-F) LAB MANUAL

ANALOG ELECTRONIC CIRCUITS (EE-325-F) LAB MANUAL ANALOG ELECTRONIC CIRCUITS (EE-325-F) LAB MANUAL V SEMESTER Department Of Electronics & CommunicationEngg. BSA Institute of Technology & Management Faridabad. LIST OF EXPERIMENTS S.NO. NAME OF THE EXPERIMENT

More information

Concepts to be Reviewed

Concepts to be Reviewed Introductory Medical Device Prototyping Analog Circuits Part 3 Operational Amplifiers, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Reviewed Operational

More information

tyuiopasdfghjklzxcvbnmqwertyuiopas dfghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq

tyuiopasdfghjklzxcvbnmqwertyuiopas dfghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq qwertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfgh jklzxcvbnmqwertyuiopasdfghjklzxcvb nmqwertyuiopasdfghjklzxcvbnmqwer Instrumentation Device Components Semester 2 nd tyuiopasdfghjklzxcvbnmqwertyuiopas

More information

Solapur University, Solapur Syllabus for B.Sc. II Electronics Semester System To be implemented from Academic Year ) Course Structure: -

Solapur University, Solapur Syllabus for B.Sc. II Electronics Semester System To be implemented from Academic Year ) Course Structure: - 1 Solapur University, Solapur Syllabus for B.Sc. II Electronics Semester System To be implemented from Academic Year 2011-12 1) Course Structure: - Sr. Semester Paper Title Total No No. 1. Semester-III

More information

Exam Booklet. Pulse Circuits

Exam Booklet. Pulse Circuits Exam Booklet Pulse Circuits Pulse Circuits STUDY ASSIGNMENT This booklet contains two examinations for the six lessons entitled Pulse Circuits. The material is intended to provide the last training sought

More information

GATE: Electronics MCQs (Practice Test 1 of 13)

GATE: Electronics MCQs (Practice Test 1 of 13) GATE: Electronics MCQs (Practice Test 1 of 13) 1. Removing bypass capacitor across the emitter leg resistor in a CE amplifier causes a. increase in current gain b. decrease in current gain c. increase

More information

Microelectronic Circuits

Microelectronic Circuits SECOND EDITION ISHBWHBI \ ' -' Microelectronic Circuits Adel S. Sedra University of Toronto Kenneth С Smith University of Toronto HOLT, RINEHART AND WINSTON HOLT, RINEHART AND WINSTON, INC. New York Chicago

More information

PULSE CIRCUITS AND ICs LAB EC-361

PULSE CIRCUITS AND ICs LAB EC-361 LAB MANUAL PULSE CIRCUITS AND ICs LAB EC-361 Prepared by M.Lenin Babu Lecturer, ECE. & T.Srinivasa Rao Lecturer, ECE. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING BAPATLA ENGINEERING COLLEGE:

More information

Precision Rectifier Circuits

Precision Rectifier Circuits Precision Rectifier Circuits Rectifier circuits are used in the design of power supply circuits. In such applications, the voltage being rectified are usually much greater than the diode voltage drop,

More information

HIGH LOW Astable multivibrators HIGH LOW 1:1

HIGH LOW Astable multivibrators HIGH LOW 1:1 1. Multivibrators A multivibrator circuit oscillates between a HIGH state and a LOW state producing a continuous output. Astable multivibrators generally have an even 50% duty cycle, that is that 50% of

More information

SUMMER 13 EXAMINATION Subject Code: Model Answer Page No: / N

SUMMER 13 EXAMINATION Subject Code: Model Answer Page No: / N Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec INTEGRATED CIRCUITS 1988 Dec DAC products are designed to convert a digital code to an analog signal. Since a common source of digital signals is the data bus of a microprocessor, DAC circuits that are

More information

Assume availability of the following components to DESIGN and DRAW the circuits of the op. amp. applications listed below:

Assume availability of the following components to DESIGN and DRAW the circuits of the op. amp. applications listed below: ========================================================================================== UNIVERSITY OF SOUTHERN MAINE Dept. of Electrical Engineering TEST #3 Prof. M.G.Guvench ELE343/02 ==========================================================================================

More information