ASIC Design and Implementation of a Novel Arbitrary Function Generator Using Orthogonal Functions

Size: px
Start display at page:

Download "ASIC Design and Implementation of a Novel Arbitrary Function Generator Using Orthogonal Functions"

Transcription

1 Advance in Electronic and Electric Engineering. ISSN , Volume 4, Number 1 (2014), pp. 1-8 Research India Publications ASIC Design and Implementation of a Novel Arbitrary Function Generator Using Orthogonal Functions A. Abbasi 1, SA. Abbasi 2, A.R.M. Alamoud 3 and S.A. Loan 4 1,2,3 Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh 11421, SAUDI ARABIA. 4 Department of Electronics and Com. Engineering, Jamia MilliaIslamia, New Delhi , INDIA. 1 aabbasi@ksu.edu.sa, 2 abbasi@ksu.edu.sa, 3 alamoud@ksu.edu.sa, 4 sajadiitk@gmail.com Abstract Arbitrary function generators often known as Arbitrary Waveform Generators (AWGs) are becoming increasingly important for many military and commercial applications. Many approaches for design and fabrication of AWGs are used. However, all of them suffer from various drawbacks and are therefore not acceptable for all application. A novel approach has therefore been attempted for generating arbitrary waveforms using orthogonal functions. The orthogonal functions, specially the Rademacher and Walsh functions are being increasingly used by engineers for various Digital Signal Processing (DSP) applications since such applications require fast processing time in order to meet the challenges of the real time systems. A set of Rademacher and Walsh Functions has been used to develop a standalone arbitrary function generator. The design is targeted to the stateof-the-art Cell Based Integrated Circuits (CBIC) technology. High level design techniques are used with the help of advanced EDA tools from SYNOPSYS International. Optimized VHDL models have been developed and used for design entry. The design is thoroughly verified using advanced verifications tools. The design is implemented and processing has been done with 90nm CMOS Technology from TSMC foundry. The simulation, design and implementation results are presented It is observed that the results obtained, are far better than the results reported earlier in the literature.

2 2 A. Abbasi et al Keywords: ASIC; CBIC; rademacher functions, walsh functions, arbitrary waveform generator. 1. Introduction Arbitrary waveforms are used in a wide range of applications in many commercial and military fields (Tie-Liang and Yu-lin, 2001).Many possibilities for Arbitrary WaveformsGeneration (AWG) are open to a designer, ranging from Phase-Locked- Loop (PLL)-based techniques (Larsen, 1998) for very high-frequency synthesis, to dynamic programming of Digital-to-Analog Converter (DAC) outputs (Vankka, 1997) to generate arbitrary waveforms at lower frequencies. The Direct Digital Frequency synthesizers are widely used in many communications and measurement systems. The technique, however, required large ROM and was more complex than even simple sinusoids. Another technique known as Direct Digital Synthesis (DDS) is alsobeing used to synthesize AC signals for instrumentation, and digital communications (Kroupa et al., 2000; Hsieh et al. 2003). This technique is based on the Shannon s sample theory and its basic principle is to convert the waveform s sampled discrete value to analog signal using DAC (digital-analog converter).(vankka, 1997)presented the design of a Direct Digital Synthesizer (DDS) with an on-chip D/A converter fabricated with 0.8-µm BiCMOS technology. This design made improvements and reduced delays and line loading caused by interchip connections. However, the DDS technique still suffered from drawbacks such as a large set of the spurious signals.another scheme of AWG which contains many multi-level converters has been presented by (Yunping and Lijun, 2000). This technique was more useful for power applications. A prototype of a single chip AWG was presented by (Tie-Liang and Yulin, 2001)and it was implemented on a Virtex-E FPGA but suffers from the drawbacks of being very complex and expensive. (Hsiehet al, 2003) used FPGAs to implement an n-channel AWG with various add-on functions. (Baronti, et al, 2002) described a Digital-to-Time Converter (DTC) based on a Delay-Locked Loop (DLL) for phase interpolation in Direct Digital Synthesis (DDS) applications. The conversion is made in two steps using digitally controllable delay cells with configurable shunt-capacitors load. The circuit is able to interpolate a 120 MHz clock, generating a delay proportional to an 8-bit digital control word with 32 ps resolution. The DDS system clock frequency is thus virtually enhanced up to about 30 GHz, achieving a strong reduction of the spurious component level. The 256 levels interpolation is achieved using only 35 delay elements (excluding dummy cells). (Langlois and Al-Khalili, 2004) presented a review of phase to sine amplitude conversion (PSAC) techniques for direct digital frequency synthesis (DDFS). Principles of DDFS are first considered, and then approaches for the reduction of system complexity are identified. It is shown that the basic problem for the design of the phase to sine amplitude converter, whether the system has single phase or quadrature outputs, is the reproduction of an approximated sine function for first quadrant angles. The state of the art in PSAC design is then reviewed following a systematic classification of techniques, namely angular decomposition, angular rotation, sine amplitude compression, polynomial

3 ASIC Design and Implementation of a Novel Arbitrary Function Generator Using 3 approximation, and analogue approaches. (Torres-Company et al, 2006) presented an all-incoherent technique for the generation of arbitrary electromagnetic intensity profiles. It is based on spectral filtering of a broadband continuous-wave light source so that the filtered spectral density function (SDF) becomes the user-defined waveform. After large temporal modulation and subsequent distortion in a first-order dispersive medium, the incoherent mapping of the filtered SDF to the time domain occurs. Optical-to-electrical conversion in a fast photodiode allows the optical intensity to be mapped into the electrical domain. It has however, been observed that none of the techniques available so far are entirely satisfactory and hence there is a need to use a new approach.it has been shown earlier(abbasi and Alamoud, 2005) that well known orthogonal functions viz. the Rademacher functions and Walsh functions may be used to generatearbitrary signals. It has been demonstrated that virtually any periodic signal can be synthesized. A detailed theoretical analysis along with the isolated generation of some signals has been presented.in the present work, the above technique is extended and used to design, implement and prototype an arbitrary signal generator which can be used to generate any arbitrary signal with a single hardware. This has been done by incorporating the generation of expansion coefficients in the hardware itself rather than relying upon MATLAB based calculations as is done in (Abbasi and Alamoud, 2005; Abbasi and Qasim, 2006). This has resulted in a truly stand-alone arbitrary waveform generator. The rest of the paper is organized as follows. Section 2 discusses the new technique of arbitrary signal generation using orthogonal functions.thehigh level design of arbitrary signal generation is described in section 3. The implementation is discussed in section 4. Results and Discussions are given in section 5. Conclusions are presented in section The New Technique for Arbitrary Signal Generation An attempt at hardware realization of Rademacher functions and Walsh functions and the generation of digital and analog sinusoidal waveforms was described by (Bin Ateeq, et al, 2002). The Rademacher and Walsh functions are a set of discrete valued functions that can be reduced to modulo-2 addition. These functions have received increasing attention in recent years in a variety of engineering areas such as communication, signal processing, system analysis, and control (Tie-Liang and Yu-lin, 2001). Walsh functions take only two amplitude values, +1 and -1 and hence can be represented as binary signals.it is possible to formulate Walsh series expansion for functions of periodic characteristics given by (Bin Ateeq, et al, 2002): f(x) A 0 ψ(0,x) + A 1 ψ(1,x) + A 2 ψ(2,x) + (1) where, f(x) is the desired function to be generated. The expansion coefficients A n are calculated as: 1 A n = f(x)ψ(n,x)dx 0 (2)

4 4 A. Abbasi et al Using the above equations, any digital periodic signalcan be generated by the following steps: 1. Determination of Expansion coefficients 2. Generation of the Rademacher functions 3. Generation of Walsh functions 4. Generation of periodic signals using expansion coefficients 3. High Level Design of Arbitrary Signal Generation The Very High Speed Hardware Description Language (VHDL) has been used for design. The important steps in VHDL coding are described below. 4.1 Generation of Rademacher and Walsh functions We have observed that the Rademacher functions may be realized as the output at various stages of a Binary Counter. This greatly simplifies the generation of Rademacher functions and hence this technique has been used for the realization of these functions instead of the direct realization as suggested by the mathematicians. The Walsh functions are computed as products of Rademacher functions (Golubov et al, 1991), based on the gray code conversion of the Walsh function index sequence, as given below. ψ(n, x) = [φ(i + 1, x)] n {0,1}wheren = 2 n Since the Walsh functions are two-level signals, positive (+1) and negative (-1), they can be easily implemented in digital form. It may be seen that by replacing the value +1 by binary 0 and 1 by binary 1, multiplication is replaced by the XOR operation. 4.2 Calculation of expansion coefficients The snippet of the VHDL code for generation of first two expansion coefficients is given below. A0<=F(1)+F(2)+F(3)+F(4)+F(5)+F(6)+F(7)+F(8)+F(9)+F(10)+F(11)+F( 12)+F(13)+F(14)+F(15)+F(16)+F(17)+F(18)+F(19)+F(20)+F(21)+F(22) +F(23)+F(24)+F(25)+F(26)+F(27)+F(28)+F(29)+F(30)+F(31)+F(32); A1<=F(1)+F(2)+F(3)+F(4)+F(5)+F(6)+F(7)+F(8)+F(9)+F(10)+F(11)+F( 12)+F(13)+F(14)+F(15)+F(16)-F(17)-F(18)-F(19)-F(20)-F(21)-F(22)- F(23)-F(24)-F(25)-F(26)-F(27)-F(28)-F(29) -F(30)-F (31)-F(32); The complete VHDL code for the arbitrary signal generator was written on the basis of the process mentioned above. Initially a simple form of VHDL code was written. It was then iterated many times to produce a superior code.

5 ASIC Design and Implementation of a Novel Arbitrary Function Generator Using 5 4. Implementation The design of the AWG is targeted to 90nm CMOS LP (Low Power) HVT (High Threshold Voltage) technology from TSMC. In this technology, 9 metal layers fabrication process is adopted. The odd numbered metal layer are used for horizontal connections and even numbered for vertical connections. Metal layer 1 is used for standard cells placement, Metal layer 2 for vertical clock and signal routing, Metal layer 3 for horizontal clock and signal routing. Metal layer 4 to Metal layer 9 aremainly used for power and ground straps. However, some of the signal routing also occurs from Metal layer 4 to Metal layer 7 to avoid DRC errors. Metal layer 8 and 9 are specifically for power mesh, which is connected to the power ring. Power Mesh is also connected to the Metal layer 1 through Vias. 5. Results and Discussions Any number of terms may be used for Walsh series approximation. Larger the number of terms used, higher the accuracy at the expense of more hardware. The 32-term Walsh series approximation with 32 samples per period has been found to give fairly accurate results and has been selected for demonstration purposes. In all of the cases, the error was found to be zero. This is the advantage of direct digital realization. If the analog version of the signals is to be generated, the results will have only the quantization error. This error may be further reduced, if necessary, by taking a larger number of samples at the expense of more hardware. The Power analysis shows the total dynamic power to be 7.536mW. Total area for this implementation is 194 mm 2 out of which 154 mm 2 is dedicated to core area where all the routing and standard cells are placed. Rest of the 40 mm 2 is used for I/O Ports cells, and power ring. Design is verified behaviorally, after performing Layout design. Delays are measured at different instances of the clock. Maximum delay, through timing analysis is found to be 5.11ns. This is far better than the previously claimed results of 9.5 ns. Fig. 1 shows the input to the synthesized net list and Fig. 2 shows the output waveform. Fig. 1: Input to the synthesized net list.

6 6 A. Abbasi et al Fig. 2: Output waveform of the synthesized net-list. 6. Conclusion The design and implementation of a novel stand-alone arbitrary waveform/signal generator is described. The technique implemented is based upon the use of orthogonal functions for the synthesis of digital signals and takes the advantage of ease of implementation with high level design techniques and excellent performance of the state-of-the-art CBIC technology. It was observed that with this technique, any periodic digital signal can be generated with a single hardware and thus the arbitrary signal generation system is stand-alone and doesn t require the support of any computer hardware or software like MATLAB, as was needed in earlier attempts. The implementation is targeted to 90nm CMOS LP (Low Power) HVT (High Threshold Voltage) technology from TSMC in which, 9 metal layers fabrication process is adopted. 7. Acknowledgements The authors gratefully acknowledge the financial supportfrom National Plan for Science, Technology and Innovation (NPST), Saudi Arabia under project no. 11-NAN

7 ASIC Design and Implementation of a Novel Arbitrary Function Generator Using 7 References [1] A. M. A. Bin Ateeq, S. A. Abbasi and A. R. M. Alamoud (2002), Hardware Realization of Walsh Functions and Their Applications Using VHDL and Reconfigurable Logic, Proc.Of IEEE Int. Conf. on Microelectronics, (ICM 2002), Beirut, Lebanon, pp 58-61, [2] B. I. Golubov, A. V. Efimov, V. A Skvortsov and V. Skvortsov (1991), Walsh series and transforms: theory and applications, Kluwer Academic Publishers: New York.D. C. Larson (1998), High speed direct digital synthesis techniques and applications, Technical Digest - GaAs IC Symposium, Atlanta, pp [3] F. Baronti, L. Fanucci, D. Lunardini, R. Roncella, and R. Saletti (2002), A High-Resolution DLL-Based Digital-To-Time Converter for DDS Application, IEEE Int. Frequency Control Symposium and PDA Exhibition, New Orleans, LA, USA, pp [4] J. M.P. Langlois and D. Al-Khalili (2004), Phase to sinusoid amplitude conversion techniques for direct digital frequency synthesis, IEE Proc.- Circuits Devices Syst., Vol. 151, No. 6, pp [5] J. Vankka, M. Waltari, M. Kosunen and K. A. I. Halonm (1998), A direct digital synthesizer with an on-chip D/A-converter, IEEE J. Solid State Circuits, Vol. 33, pp [6] Jen-Wei Hsieh, Tsai, Guo-Rueyand Min-Chuan Lin (2003), Using FPGA to Implement a N-channel Arbitrary Waveform Generator with Various Add-on Functions, Proc. Of IEEE Int. conf. on Field-Programmable Technology (FPT), Tokyo, Japan, pp [7] L. Tie-liang and Q. Yu-lin (2001), An approach to the single-chip arbitrary waveform generator (AWG), Proc. Of 4th Int. Conf. ASIC, Shanghai, pp [8] S. A. Abbasi and A. R. M. Alamoud (2005), Generation of digital waves using orthogonal functions, J.Engg, Vol. 15, pp [9] V. F. Kroupa, V. ˇCıˇzek, J. ˇStursa, and H. ˇSvandov (2000), Spurious Signals in Direct Digital Frequency Synthesizers Due to the Phase Truncation, IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 47, No. 5, pp [10] V. Torres-Company, J. Lancis, and P. Andrés (2006), Arbitrary Waveform Generator Based on All-Incoherent Pulse Shaping, IEEE Photonics Technology Letters, Vol. 18, No. 24,pp [11] Y. Orino, M. K. Kurosawa, and T. Katagiri, Direct-Digital Synthesis Using Delta-Sigma Modulated Signals, Proc. Of IEEE, 2005.

8 8 A. Abbasi et al

VHDL Modeling, Simulation and Prototyping of a Novel Arbitrary Signal Generation System

VHDL Modeling, Simulation and Prototyping of a Novel Arbitrary Signal Generation System American J. of Engineering and Applied Sciences 3 (4): 670-677, 2010 ISSN 1941-7020 2010 Science Publications VHDL Modeling, Simulation and Prototyping of a Novel Arbitrary Signal Generation System S.A.

More information

Single Chip FPGA Based Realization of Arbitrary Waveform Generator using Rademacher and Walsh Functions

Single Chip FPGA Based Realization of Arbitrary Waveform Generator using Rademacher and Walsh Functions IEEE ICET 26 2 nd International Conference on Emerging Technologies Peshawar, Pakistan 3-4 November 26 Single Chip FPGA Based Realization of Arbitrary Waveform Generator using Rademacher and Walsh Functions

More information

A fast programmable frequency divider with a wide dividing-ratio range and 50% duty-cycle

A fast programmable frequency divider with a wide dividing-ratio range and 50% duty-cycle A fast programmable frequency divider with a wide dividing-ratio range and 50% duty-cycle Mo Zhang a), Syed Kamrul Islam b), and M. Rafiqul Haider c) Department of Electrical & Computer Engineering, University

More information

Sine Approximation for Direct Digital Frequency Synthesizers and Function Generators

Sine Approximation for Direct Digital Frequency Synthesizers and Function Generators Sine Approximation for Direct Digital Frequency Synthesizers and Function Generators Milan Stork Applied Electronics and Telecommunications, Faculty of Electrical Engineering/RICE University of West Bohemia,

More information

An Optimized Direct Digital Frequency. Synthesizer (DDFS)

An Optimized Direct Digital Frequency. Synthesizer (DDFS) Contemporary Engineering Sciences, Vol. 7, 2014, no. 9, 427-433 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ces.2014.4326 An Optimized Direct Digital Frequency Synthesizer (DDFS) B. Prakash

More information

High Speed Direct Digital Frequency Synthesizer Using a New Phase accumulator

High Speed Direct Digital Frequency Synthesizer Using a New Phase accumulator Australian Journal of Basic and Applied Sciences, 5(11): 393-397, 2011 ISSN 1991-8178 High Speed Direct Digital Frequency Synthesizer Using a New Phase accumulator 1 Salah Hasan Ibrahim, 1 Sawal Hamid

More information

Acounter-basedall-digital spread-spectrum clock generatorwithhighemi reductionin65nmcmos

Acounter-basedall-digital spread-spectrum clock generatorwithhighemi reductionin65nmcmos LETTER IEICE Electronics Express, Vol.10, No.6, 1 6 Acounter-basedall-digital spread-spectrum clock generatorwithhighemi reductionin65nmcmos Ching-Che Chung 1a), Duo Sheng 2, and Wei-Da Ho 1 1 Department

More information

A new method of spur reduction in phase truncation for DDS

A new method of spur reduction in phase truncation for DDS A new method of spur reduction in phase truncation for DDS Zhou Jianming a) School of Information Science and Technology, Beijing Institute of Technology, Beijing, 100081, China a) zhoujm@bit.edu.cn Abstract:

More information

A FREQUENCY SYNTHESIZER STRUCTURE BASED ON COINCIDENCE MIXER

A FREQUENCY SYNTHESIZER STRUCTURE BASED ON COINCIDENCE MIXER 3 A FREQUENCY SYNTHESIZER STRUCTURE BASED ON COINCIDENCE MIXER Milan STORK University of West Bohemia UWB, P.O. Box 314, 30614 Plzen, Czech Republic stork@kae.zcu.cz Keywords: Coincidence, Frequency mixer,

More information

f o Fig ECE 6440 Frequency Synthesizers P.E. Allen Frequency Magnitude Spectral impurity Frequency Fig010-03

f o Fig ECE 6440 Frequency Synthesizers P.E. Allen Frequency Magnitude Spectral impurity Frequency Fig010-03 Lecture 010 Introduction to Synthesizers (5/5/03) Page 010-1 LECTURE 010 INTRODUCTION TO FREQUENCY SYNTHESIZERS (References: [1,5,9,10]) What is a Synthesizer? A frequency synthesizer is the means by which

More information

A Novel Low-Power High-Resolution ROM-less DDFS Architecture

A Novel Low-Power High-Resolution ROM-less DDFS Architecture A Novel Low-Power High-Resolution ROM-less DDFS Architecture M. NourEldin M., Ahmed Yahya Abstract- A low-power high-resolution ROM-less Direct Digital frequency synthesizer architecture based on FPGA

More information

A VCO-based analog-to-digital converter with secondorder sigma-delta noise shaping

A VCO-based analog-to-digital converter with secondorder sigma-delta noise shaping A VCO-based analog-to-digital converter with secondorder sigma-delta noise shaping The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram

A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram LETTER IEICE Electronics Express, Vol.10, No.4, 1 8 A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram Wang-Soo Kim and Woo-Young Choi a) Department

More information

Multiple Reference Clock Generator

Multiple Reference Clock Generator A White Paper Presented by IPextreme Multiple Reference Clock Generator Digitial IP for Clock Synthesis August 2007 IPextreme, Inc. This paper explains the concept behind the Multiple Reference Clock Generator

More information

A Digital Clock Multiplier for Globally Asynchronous Locally Synchronous Designs

A Digital Clock Multiplier for Globally Asynchronous Locally Synchronous Designs A Digital Clock Multiplier for Globally Asynchronous Locally Synchronous Designs Thomas Olsson, Peter Nilsson, and Mats Torkelson. Dept of Applied Electronics, Lund University. P.O. Box 118, SE-22100,

More information

/$ IEEE

/$ IEEE IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 11, NOVEMBER 2006 1205 A Low-Phase Noise, Anti-Harmonic Programmable DLL Frequency Multiplier With Period Error Compensation for

More information

An All-Digital Direct Digital Synthesizer Fully Implemented on FPGA

An All-Digital Direct Digital Synthesizer Fully Implemented on FPGA 1 An All-Digital Direct Digital Synthesizer Fully Implemented on FPGA Hesham Omran, Khaled Shara, and Magdy Ibrahim Electronics and Communications Engineering Department Faculty o Engineering, Ain Shams

More information

FPGA Prototyping of Digital RF Transmitter Employing Delta Sigma Modulation for SDR

FPGA Prototyping of Digital RF Transmitter Employing Delta Sigma Modulation for SDR FPGA Prototyping of Digital RF Transmitter Employing Delta Sigma Modulation for SDR Mohamed A. Dahab¹ Khaled A. Shehata² Salwa H. El Ramly³ Karim A. Hamouda 4 124 Arab Academy for Science, Technology &

More information

CMOS Current Starved Voltage Controlled Oscillator Circuit for a Fast Locking PLL

CMOS Current Starved Voltage Controlled Oscillator Circuit for a Fast Locking PLL IEEE INDICON 2015 1570186537 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 60 61 62 63

More information

Wideband Frequency Synthesizer Implementation using FPGA

Wideband Frequency Synthesizer Implementation using FPGA GRD Journals- Global Research and Development Journal for Engineering Volume 2 Issue 7 June 2017 ISSN: 2455-5703 Wideband Frequency Synthesizer Implementation using FPGA Jasmanpreet Singh Mrs. Monika Aggarwal

More information

A LOW POWER SINGLE PHASE CLOCK DISTRIBUTION USING 4/5 PRESCALER TECHNIQUE

A LOW POWER SINGLE PHASE CLOCK DISTRIBUTION USING 4/5 PRESCALER TECHNIQUE A LOW POWER SINGLE PHASE CLOCK DISTRIBUTION USING 4/5 PRESCALER TECHNIQUE MS. V.NIVEDITHA 1,D.MARUTHI KUMAR 2 1 PG Scholar in M.Tech, 2 Assistant Professor, Dept. of E.C.E,Srinivasa Ramanujan Institute

More information

Delay-Locked Loop Using 4 Cell Delay Line with Extended Inverters

Delay-Locked Loop Using 4 Cell Delay Line with Extended Inverters International Journal of Electronics and Electrical Engineering Vol. 2, No. 4, December, 2014 Delay-Locked Loop Using 4 Cell Delay Line with Extended Inverters Jefferson A. Hora, Vincent Alan Heramiz,

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECEN620: Network Theory Broadband Circuit Design Fall 2014 Lecture 16: CDRs Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements Project descriptions are posted on the website Preliminary

More information

ISSCC 2003 / SESSION 4 / CLOCK RECOVERY AND BACKPLANE TRANSCEIVERS / PAPER 4.3

ISSCC 2003 / SESSION 4 / CLOCK RECOVERY AND BACKPLANE TRANSCEIVERS / PAPER 4.3 ISSCC 2003 / SESSION 4 / CLOCK RECOVERY AND BACKPLANE TRANSCEIVERS / PAPER 4.3 4.3 A Second-Order Semi-Digital Clock Recovery Circuit Based on Injection Locking M.-J. Edward Lee 1, William J. Dally 1,2,

More information

Design and Performance Analysis of a Reconfigurable Fir Filter

Design and Performance Analysis of a Reconfigurable Fir Filter Design and Performance Analysis of a Reconfigurable Fir Filter S.karthick Department of ECE Bannari Amman Institute of Technology Sathyamangalam INDIA Dr.s.valarmathy Department of ECE Bannari Amman Institute

More information

All Digital Ultra-Fast Acquisition PLL. Atul S. Bhadkamkar May 14, 2010

All Digital Ultra-Fast Acquisition PLL. Atul S. Bhadkamkar May 14, 2010 All Digital Ultra-Fast Acquisition PLL Atul S. Bhadkamkar May 14, 2010 1.Table of Contents 2.Introduction...3 3.Motivation...3 4.State of the Art...4 5.Proposed Frequency Synthesizer...5 6.Design Parameters...7

More information

ADVANCES in VLSI technology result in manufacturing

ADVANCES in VLSI technology result in manufacturing INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2013, VOL. 59, NO. 1, PP. 99 104 Manuscript received January 8, 2013; revised March, 2013. DOI: 10.2478/eletel-2013-0012 Rapid Prototyping of Third-Order

More information

ISSN:

ISSN: 1391 DESIGN OF 9 BIT SAR ADC USING HIGH SPEED AND HIGH RESOLUTION OPEN LOOP CMOS COMPARATOR IN 180NM TECHNOLOGY WITH R-2R DAC TOPOLOGY AKHIL A 1, SUNIL JACOB 2 1 M.Tech Student, 2 Associate Professor,

More information

Integrated Circuit Design for High-Speed Frequency Synthesis

Integrated Circuit Design for High-Speed Frequency Synthesis Integrated Circuit Design for High-Speed Frequency Synthesis John Rogers Calvin Plett Foster Dai ARTECH H O US E BOSTON LONDON artechhouse.com Preface XI CHAPTER 1 Introduction 1 1.1 Introduction to Frequency

More information

PV SYSTEM BASED FPGA: ANALYSIS OF POWER CONSUMPTION IN XILINX XPOWER TOOL

PV SYSTEM BASED FPGA: ANALYSIS OF POWER CONSUMPTION IN XILINX XPOWER TOOL 1 PV SYSTEM BASED FPGA: ANALYSIS OF POWER CONSUMPTION IN XILINX XPOWER TOOL Pradeep Patel Instrumentation and Control Department Prof. Deepali Shah Instrumentation and Control Department L. D. College

More information

Section 1. Fundamentals of DDS Technology

Section 1. Fundamentals of DDS Technology Section 1. Fundamentals of DDS Technology Overview Direct digital synthesis (DDS) is a technique for using digital data processing blocks as a means to generate a frequency- and phase-tunable output signal

More information

Application Note #5 Direct Digital Synthesis Impact on Function Generator Design

Application Note #5 Direct Digital Synthesis Impact on Function Generator Design Impact on Function Generator Design Introduction Function generators have been around for a long while. Over time, these instruments have accumulated a long list of features. Starting with just a few knobs

More information

Simplified Analogue Realization of the Digital Direct Synthesis (DDS) Technique for Signal Generation

Simplified Analogue Realization of the Digital Direct Synthesis (DDS) Technique for Signal Generation IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 2 Ver. VI (Mar Apr. 2014), PP 85-89 Simplified Analogue Realization of the Digital

More information

Digital Controller Chip Set for Isolated DC Power Supplies

Digital Controller Chip Set for Isolated DC Power Supplies Digital Controller Chip Set for Isolated DC Power Supplies Aleksandar Prodic, Dragan Maksimovic and Robert W. Erickson Colorado Power Electronics Center Department of Electrical and Computer Engineering

More information

Hardware/Software Co-Simulation of BPSK Modulator and Demodulator using Xilinx System Generator

Hardware/Software Co-Simulation of BPSK Modulator and Demodulator using Xilinx System Generator www.semargroups.org, www.ijsetr.com ISSN 2319-8885 Vol.02,Issue.10, September-2013, Pages:984-988 Hardware/Software Co-Simulation of BPSK Modulator and Demodulator using Xilinx System Generator MISS ANGEL

More information

THE UNIVERSITY OF NAIROBI

THE UNIVERSITY OF NAIROBI THE UNIVERSITY OF NAIROBI ELECTRICAL AND INFORMATION ENGINEERING DEPARTMENT FINAL YEAR PROJECT. PROJECT NO. 085. TITLE: A PHASE-LOCKED LOOP FREQUENCY SYNTHESIZER BY: TUNDULI W. MICHAEL F17/2143/2004. SUPERVISOR:

More information

A Review of Phase Locked Loop Design Using VLSI Technology for Wireless Communication.

A Review of Phase Locked Loop Design Using VLSI Technology for Wireless Communication. A Review of Phase Locked Loop Design Using VLSI Technology for Wireless Communication. PG student, M.E. (VLSI and Embedded system) G.H.Raisoni College of Engineering and Management, A nagar Abstract: The

More information

on the use of an original calibration scheme. The effectiveness of the calibration procedure is

on the use of an original calibration scheme. The effectiveness of the calibration procedure is Ref: BC.MEJ-IMST01.2 Analog Built-In Saw-Tooth Generator for ADC Histogram Test F. Azaïs, S. Bernard, Y. Bertrand and M. Renovell LIRMM - University of Montpellier 161, rue Ada - 34392 Montpellier Cedex

More information

A 2.4 GHz to 3.86 GHz digitally controlled oscillator with 18.5 khz frequency resolution using single PMOS varactor

A 2.4 GHz to 3.86 GHz digitally controlled oscillator with 18.5 khz frequency resolution using single PMOS varactor LETTER IEICE Electronics Express, Vol.9, No.24, 1842 1848 A 2.4 GHz to 3.86 GHz digitally controlled oscillator with 18.5 khz frequency resolution using single PMOS varactor Yangyang Niu, Wei Li a), Ning

More information

Open Source Digital Camera on Field Programmable Gate Arrays

Open Source Digital Camera on Field Programmable Gate Arrays Open Source Digital Camera on Field Programmable Gate Arrays Cristinel Ababei, Shaun Duerr, Joe Ebel, Russell Marineau, Milad Ghorbani Moghaddam, and Tanzania Sewell Department of Electrical and Computer

More information

IN RECENT years, the phase-locked loop (PLL) has been a

IN RECENT years, the phase-locked loop (PLL) has been a 430 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 57, NO. 6, JUNE 2010 A Two-Cycle Lock-In Time ADPLL Design Based on a Frequency Estimation Algorithm Chia-Tsun Wu, Wen-Chung Shen,

More information

Periodic Wave Generation for Direct Digital Synthesization

Periodic Wave Generation for Direct Digital Synthesization International Journal on Intelligent Electronics Systems, Vol. 10 No.1 January 2016 22 Periodic Wave Generation for Direct Digital Synthesization Abstract Govindaswamy Indhumathi 1 Dr.R. Seshasayanan 2

More information

Analysis of phase Locked Loop using Ring Voltage Controlled Oscillator

Analysis of phase Locked Loop using Ring Voltage Controlled Oscillator Analysis of phase Locked Loop using Ring Voltage Controlled Oscillator Abhishek Mishra Department of electronics &communication, suresh gyan vihar university Mahal jagatpura, jaipur (raj.), india Abstract-There

More information

DESIGN OF MULTIPLYING DELAY LOCKED LOOP FOR DIFFERENT MULTIPLYING FACTORS

DESIGN OF MULTIPLYING DELAY LOCKED LOOP FOR DIFFERENT MULTIPLYING FACTORS DESIGN OF MULTIPLYING DELAY LOCKED LOOP FOR DIFFERENT MULTIPLYING FACTORS Aman Chaudhary, Md. Imtiyaz Chowdhary, Rajib Kar Department of Electronics and Communication Engg. National Institute of Technology,

More information

Conference Guide IEEE International Symposium on Circuits and Systems. Rio de Janeiro, May 15 18, 2011

Conference Guide IEEE International Symposium on Circuits and Systems. Rio de Janeiro, May 15 18, 2011 2011 IEEE International Symposium on Circuits and Systems Rio de Janeiro, May 15 18, 2011 Conference Guide The Institute of Electrical and Eletronics Engineers IEEE Circuits and System s Society Federal

More information

Design of CMOS Based Numerical Control Oscillator with Better Performance Parameter in 45nm CMOS Process

Design of CMOS Based Numerical Control Oscillator with Better Performance Parameter in 45nm CMOS Process IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 09 February 2016 ISSN (online): 2349-6010 Design of CMOS Based Numerical Control Oscillator with Better Performance

More information

Low distortion signal generator based on direct digital synthesis for ADC characterization

Low distortion signal generator based on direct digital synthesis for ADC characterization ACTA IMEKO July 2012, Volume 1, Number 1, 59 64 www.imeko.org Low distortion signal generator based on direct digital synthesis for ADC characterization Walter F. Adad, Ricardo J. Iuzzolino Instituto Nacional

More information

Tirupur, Tamilnadu, India 1 2

Tirupur, Tamilnadu, India 1 2 986 Efficient Truncated Multiplier Design for FIR Filter S.PRIYADHARSHINI 1, L.RAJA 2 1,2 Departmentof Electronics and Communication Engineering, Angel College of Engineering and Technology, Tirupur, Tamilnadu,

More information

A fully synthesizable injection-locked PLL with feedback current output DAC in 28 nm FDSOI

A fully synthesizable injection-locked PLL with feedback current output DAC in 28 nm FDSOI LETTER IEICE Electronics Express, Vol.1, No.15, 1 11 A fully synthesizable injection-locked PLL with feedback current output DAC in 8 nm FDSOI Dongsheng Yang a), Wei Deng, Aravind Tharayil Narayanan, Rui

More information

ISSN:

ISSN: High Frequency Power Optimized Ring Voltage Controlled Oscillator for 65nm CMOS Technology NEHA K.MENDHE 1, M. N. THAKARE 2, G. D. KORDE 3 Department of EXTC, B.D.C.O.E, Sevagram, India, nehakmendhe02@gmail.com

More information

Experimental Results for Low-Jitter Wide-Band Dual Cascaded Phase Locked Loop System

Experimental Results for Low-Jitter Wide-Band Dual Cascaded Phase Locked Loop System , October 0-, 010, San Francisco, USA Experimental Results for Low-Jitter Wide-Band Dual Cascaded Phase Locked Loop System Ahmed Telba and Syed Manzoor Qasim, Member, IAENG Abstract Jitter is a matter

More information

DESIGN AND DEVELOPMENT OF AN FPGA BASED DDFS SIGNAL GENERATOR WALTER MAINA MUTEITHIA I56/72200/2008

DESIGN AND DEVELOPMENT OF AN FPGA BASED DDFS SIGNAL GENERATOR WALTER MAINA MUTEITHIA I56/72200/2008 DESIGN AND DEVELOPMENT OF AN FPGA BASED DDFS SIGNAL GENERATOR BY WALTER MAINA MUTEITHIA I56/72200/2008 A thesis submitted in partial fulfillment of the requirement for the degree of Master of Science in

More information

Design and FPGA Implementation of High-speed Parallel FIR Filters

Design and FPGA Implementation of High-speed Parallel FIR Filters 3rd International Conference on Mechatronics, Robotics and Automation (ICMRA 215) Design and FPGA Implementation of High-speed Parallel FIR Filters Baolin HOU 1, a *, Yuancheng YAO 1,b and Mingwei QIN

More information

Simulation and Experimental Based Four Switch Three Phase Inverter Fed Induction Motor Drive

Simulation and Experimental Based Four Switch Three Phase Inverter Fed Induction Motor Drive ISSN 1 746-72, England, UK World Journal of Modelling and Simulation Vol. 9 (201) No. 2, pp. 8-88 Simulation and Experimental Based Four Switch Three Phase Inverter Fed Induction Motor Drive Nalin Kant

More information

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY Neha Bakawale Departmentof Electronics & Instrumentation Engineering, Shri G. S. Institute of

More information

ACONVENTIONAL direct digital-frequency synthesis

ACONVENTIONAL direct digital-frequency synthesis 1294 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 11, NOVEMBER 2006 Direct Digital-Frequency Synthesis by Analog Interpolation Alistair McEwan, Member, IEEE, and Steve Collins,

More information

Current Rebuilding Concept Applied to Boost CCM for PF Correction

Current Rebuilding Concept Applied to Boost CCM for PF Correction Current Rebuilding Concept Applied to Boost CCM for PF Correction Sindhu.K.S 1, B. Devi Vighneshwari 2 1, 2 Department of Electrical & Electronics Engineering, The Oxford College of Engineering, Bangalore-560068,

More information

FPGA SerDes Capability as Switch mode PA Modulator

FPGA SerDes Capability as Switch mode PA Modulator ISSC 2014 / CIICT 2014, Limerick, June 26-27 FPGA SerDes Capability as Switch mode PA Modulator Keith Finnerty, John Dooley, Ronan Farrell Callan Institute, Electronic Engineering, NUI Maynooth Maynooth,

More information

Abstract: PWM Inverters need an internal current feedback loop to maintain desired

Abstract: PWM Inverters need an internal current feedback loop to maintain desired CURRENT REGULATION OF PWM INVERTER USING STATIONARY FRAME REGULATOR B. JUSTUS RABI and Dr.R. ARUMUGAM, Head of the Department of Electrical and Electronics Engineering, Anna University, Chennai 600 025.

More information

BPSK System on Spartan 3E FPGA

BPSK System on Spartan 3E FPGA INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGIES, VOL. 02, ISSUE 02, FEB 2014 ISSN 2321 8665 BPSK System on Spartan 3E FPGA MICHAL JON 1 M.S. California university, Email:santhoshini33@gmail.com. ABSTRACT-

More information

Case5:08-cv PSG Document Filed09/17/13 Page1 of 11 EXHIBIT

Case5:08-cv PSG Document Filed09/17/13 Page1 of 11 EXHIBIT Case5:08-cv-00877-PSG Document578-15 Filed09/17/13 Page1 of 11 EXHIBIT N ISSCC 2004 Case5:08-cv-00877-PSG / SESSION 26 / OPTICAL AND Document578-15 FAST I/O / 26.10 Filed09/17/13 Page2 of 11 26.10 A PVT

More information

Technology Timeline. Transistors ICs (General) SRAMs & DRAMs Microprocessors SPLDs CPLDs ASICs. FPGAs. The Design Warrior s Guide to.

Technology Timeline. Transistors ICs (General) SRAMs & DRAMs Microprocessors SPLDs CPLDs ASICs. FPGAs. The Design Warrior s Guide to. FPGAs 1 CMPE 415 Technology Timeline 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 Transistors ICs (General) SRAMs & DRAMs Microprocessors SPLDs CPLDs ASICs FPGAs The Design Warrior s Guide

More information

A single-slope 80MS/s ADC using two-step time-to-digital conversion

A single-slope 80MS/s ADC using two-step time-to-digital conversion A single-slope 80MS/s ADC using two-step time-to-digital conversion The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

An Efficient Method for Implementation of Convolution

An Efficient Method for Implementation of Convolution IAAST ONLINE ISSN 2277-1565 PRINT ISSN 0976-4828 CODEN: IAASCA International Archive of Applied Sciences and Technology IAAST; Vol 4 [2] June 2013: 62-69 2013 Society of Education, India [ISO9001: 2008

More information

Fractional- N PLL with 90 Phase Shift Lock and Active Switched- Capacitor Loop Filter

Fractional- N PLL with 90 Phase Shift Lock and Active Switched- Capacitor Loop Filter J. Park, F. Maloberti: "Fractional-N PLL with 90 Phase Shift Lock and Active Switched-Capacitor Loop Filter"; Proc. of the IEEE Custom Integrated Circuits Conference, CICC 2005, San Josè, 21 September

More information

An Area-efficient DLL based on a Merged Synchronous Mirror Delay Structure for Duty Cycle Correction

An Area-efficient DLL based on a Merged Synchronous Mirror Delay Structure for Duty Cycle Correction Proceedings of the 6th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Corfu Island, Greece, February 16-19, 2007 203 An Area-efficient DLL based on a Merged Synchronous

More information

VLSI Implementation of Digital Down Converter (DDC)

VLSI Implementation of Digital Down Converter (DDC) Volume-7, Issue-1, January-February 2017 International Journal of Engineering and Management Research Page Number: 218-222 VLSI Implementation of Digital Down Converter (DDC) Shaik Afrojanasima 1, K Vijaya

More information

Low Power Approach for Fir Filter Using Modified Booth Multiprecision Multiplier

Low Power Approach for Fir Filter Using Modified Booth Multiprecision Multiplier Low Power Approach for Fir Filter Using Modified Booth Multiprecision Multiplier Gowridevi.B 1, Swamynathan.S.M 2, Gangadevi.B 3 1,2 Department of ECE, Kathir College of Engineering 3 Department of ECE,

More information

Design of CMOS Based PLC Receiver

Design of CMOS Based PLC Receiver Available online at: http://www.ijmtst.com/vol3issue10.html International Journal for Modern Trends in Science and Technology ISSN: 2455-3778 :: Volume: 03, Issue No: 10, October 2017 Design of CMOS Based

More information

Phase interpolation technique based on high-speed SERDES chip CDR Meidong Lin, Zhiping Wen, Lei Chen, Xuewu Li

Phase interpolation technique based on high-speed SERDES chip CDR Meidong Lin, Zhiping Wen, Lei Chen, Xuewu Li 5th International Conference on Computer Sciences and Automation Engineering (ICCSAE 2015) Phase interpolation technique based on high-speed SERDES chip CDR Meidong Lin, Zhiping Wen, Lei Chen, Xuewu Li

More information

TUNABLE MISMATCH SHAPING FOR QUADRATURE BANDPASS DELTA-SIGMA DATA CONVERTERS. Waqas Akram and Earl E. Swartzlander, Jr.

TUNABLE MISMATCH SHAPING FOR QUADRATURE BANDPASS DELTA-SIGMA DATA CONVERTERS. Waqas Akram and Earl E. Swartzlander, Jr. TUNABLE MISMATCH SHAPING FOR QUADRATURE BANDPASS DELTA-SIGMA DATA CONVERTERS Waqas Akram and Earl E. Swartzlander, Jr. Department of Electrical and Computer Engineering University of Texas at Austin Austin,

More information

Implementation of a quasi-digital ADC on PLD

Implementation of a quasi-digital ADC on PLD University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 2006 Implementation of a quasi-digital ADC on PLD Fu-yuan Wang Zhengzhou

More information

New Features of IEEE Std Digitizing Waveform Recorders

New Features of IEEE Std Digitizing Waveform Recorders New Features of IEEE Std 1057-2007 Digitizing Waveform Recorders William B. Boyer 1, Thomas E. Linnenbrink 2, Jerome Blair 3, 1 Chair, Subcommittee on Digital Waveform Recorders Sandia National Laboratories

More information

Highly Reliable Frequency Multiplier with DLL-Based Clock Generator for System-On-Chip

Highly Reliable Frequency Multiplier with DLL-Based Clock Generator for System-On-Chip Highly Reliable Frequency Multiplier with DLL-Based Clock Generator for System-On-Chip B. Janani, N.Arunpriya B.E, Dept. of Electronics and Communication Engineering, Panimalar Engineering College/ Anna

More information

A fully digital clock and data recovery with fast frequency offset acquisition technique for MIPI LLI applications

A fully digital clock and data recovery with fast frequency offset acquisition technique for MIPI LLI applications LETTER IEICE Electronics Express, Vol.10, No.10, 1 7 A fully digital clock and data recovery with fast frequency offset acquisition technique for MIPI LLI applications June-Hee Lee 1, 2, Sang-Hoon Kim

More information

Taheri: A 4-4.8GHz Adaptive Bandwidth, Adaptive Jitter Phase Locked Loop

Taheri: A 4-4.8GHz Adaptive Bandwidth, Adaptive Jitter Phase Locked Loop Engineering, Technology & Applied Science Research Vol. 7, No. 2, 2017, 1473-1477 1473 A 4-4.8GHz Adaptive Bandwidth, Adaptive Jitter Phase Locked Loop Hamidreza Esmaeili Taheri Department of Electronics

More information

All-digital ramp waveform generator for two-step single-slope ADC

All-digital ramp waveform generator for two-step single-slope ADC All-digital ramp waveform generator for two-step single-slope ADC Tetsuya Iizuka a) and Kunihiro Asada VLSI Design and Education Center (VDEC), University of Tokyo 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032,

More information

ADS9850 Signal Generator Module

ADS9850 Signal Generator Module 1. Introduction ADS9850 Signal Generator Module This module described here is based on ADS9850, a CMOS, 125MHz, and Complete DDS Synthesizer. The AD9850 is a highly integrated device that uses advanced

More information

FPGA Implementation of Digital Modulation Techniques BPSK and QPSK using HDL Verilog

FPGA Implementation of Digital Modulation Techniques BPSK and QPSK using HDL Verilog FPGA Implementation of Digital Techniques BPSK and QPSK using HDL Verilog Neeta Tanawade P. G. Department M.B.E.S. College of Engineering, Ambajogai, India Sagun Sudhansu P. G. Department M.B.E.S. College

More information

CHAPTER 5 NOVEL CARRIER FUNCTION FOR FUNDAMENTAL FORTIFICATION IN VSI

CHAPTER 5 NOVEL CARRIER FUNCTION FOR FUNDAMENTAL FORTIFICATION IN VSI 98 CHAPTER 5 NOVEL CARRIER FUNCTION FOR FUNDAMENTAL FORTIFICATION IN VSI 5.1 INTRODUCTION This chapter deals with the design and development of FPGA based PWM generation with the focus on to improve the

More information

Design and Implementation of Programmable Sine Wave Generator for Wireless Applications using PSK/FSK Modulation Technique

Design and Implementation of Programmable Sine Wave Generator for Wireless Applications using PSK/FSK Modulation Technique Design and Implementation of Programmable Sine Wave Generator for Wireless Applications using PSK/FSK Modulation Technique Santosh Kumar Acharya Ajit Kumar Mohanty Prashanta Kumar Dehury Department of

More information

THIS paper deals with the generation of multi-phase clocks,

THIS paper deals with the generation of multi-phase clocks, 984 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 53, NO. 5, MAY 2006 Phase Averaging and Interpolation Using Resistor Strings or Resistor Rings for Multi-Phase Clock Generation Ju-Ming

More information

Design of CMOS Phase Locked Loop

Design of CMOS Phase Locked Loop 2018 IJSRST Volume 4 Issue 2 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Science and Technology Design of CMOS Phase Locked Loop Kaviyadharshini Sivaraman PG Scholar, Department of Electrical

More information

A 42 fj 8-bit 1.0-GS/s folding and interpolating ADC with 1 GHz signal bandwidth

A 42 fj 8-bit 1.0-GS/s folding and interpolating ADC with 1 GHz signal bandwidth LETTER IEICE Electronics Express, Vol.11, No.2, 1 9 A 42 fj 8-bit 1.0-GS/s folding and interpolating ADC with 1 GHz signal bandwidth Mingshuo Wang a), Fan Ye, Wei Li, and Junyan Ren b) State Key Laboratory

More information

A 12 bit 125 MHz ADC USING DIRECT INTERPOLATION

A 12 bit 125 MHz ADC USING DIRECT INTERPOLATION A 12 bit 125 MHz ADC USING DIRECT INTERPOLATION Dr R Allan Belcher University of Wales Swansea and Signal Conversion Ltd, 8 Bishops Grove, Swansea SA2 8BE Phone +44 973 553435 Fax +44 870 164 0107 E-Mail:

More information

A Novel Low Power Digitally Controlled Oscillator with Improved linear Operating Range

A Novel Low Power Digitally Controlled Oscillator with Improved linear Operating Range A Novel Low Power Digitally Controlled Oscillator with Improved linear Operating Range Nasser Erfani Majd, Mojtaba Lotfizad Abstract In this paper, an ultra low power and low jitter 12bit CMOS digitally

More information

A digital phase corrector with a duty cycle detector and transmitter for a Quad Data Rate I/O scheme

A digital phase corrector with a duty cycle detector and transmitter for a Quad Data Rate I/O scheme A digital phase corrector with a duty cycle detector and transmitter for a Quad Data Rate I/O scheme Young-Chan Jang a) School of Electronic Engineering, Kumoh National Institute of Technology, 1, Yangho-dong,

More information

A high-efficiency switching amplifier employing multi-level pulse width modulation

A high-efficiency switching amplifier employing multi-level pulse width modulation INTERNATIONAL JOURNAL OF COMMUNICATIONS Volume 11, 017 A high-efficiency switching amplifier employing multi-level pulse width modulation Jan Doutreloigne Abstract This paper describes a new multi-level

More information

Design And Implementation of FM0/Manchester coding for DSRC. Applications

Design And Implementation of FM0/Manchester coding for DSRC. Applications Design And Implementation of / coding for DSRC Applications Supriya Shivaji Garade, Prof.P.R.Badadapure Department of Electronics and Telecommunication JSPM s Imperial College of Engineering and Research

More information

Design of Phase Locked Loop as a Frequency Synthesizer Muttappa 1 Akalpita L Kulkarni 2

Design of Phase Locked Loop as a Frequency Synthesizer Muttappa 1 Akalpita L Kulkarni 2 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 03, 2015 ISSN (online): 2321-0613 Design of Phase Locked Loop as a Frequency Synthesizer Muttappa 1 Akalpita L Kulkarni

More information

DIRECT DIGITAL SYNTHESIS BASED CORDIC ALGORITHM: A NOVEL APPROACH TOWARDS DIGITAL MODULATIONS

DIRECT DIGITAL SYNTHESIS BASED CORDIC ALGORITHM: A NOVEL APPROACH TOWARDS DIGITAL MODULATIONS DIRECT DIGITAL SYNTHESIS BASED CORDIC ALGORITHM: A NOVEL APPROACH TOWARDS DIGITAL MODULATIONS Prajakta J. Katkar 1, Yogesh S. Angal 2 1 PG student with Department of Electronics and telecommunication,

More information

An Efficent Real Time Analysis of Carry Select Adder

An Efficent Real Time Analysis of Carry Select Adder An Efficent Real Time Analysis of Carry Select Adder Geetika Gesu Department of Electronics Engineering Abha Gaikwad-Patil College of Engineering Nagpur, Maharashtra, India E-mail: geetikagesu@gmail.com

More information

Hardware/Software Co-Simulation of BPSK Modulator Using Xilinx System Generator

Hardware/Software Co-Simulation of BPSK Modulator Using Xilinx System Generator IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719, Volume 2, Issue 10 (October 2012), PP 54-58 Hardware/Software Co-Simulation of BPSK Modulator Using Xilinx System Generator Thotamsetty

More information

AD9772A - Functional Block Diagram

AD9772A - Functional Block Diagram F FEATURES single 3.0 V to 3.6 V supply 14-Bit DAC Resolution 160 MPS Input Data Rate 67.5 MHz Reconstruction Passband @ 160 MPS 74 dbc FDR @ 25 MHz 2 Interpolation Filter with High- or Low-Pass Response

More information

THE USE of multibit quantizers in oversampling analogto-digital

THE USE of multibit quantizers in oversampling analogto-digital 966 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 57, NO. 12, DECEMBER 2010 A New DAC Mismatch Shaping Technique for Sigma Delta Modulators Mohamed Aboudina, Member, IEEE, and Behzad

More information

Design of Multi-functional High frequency DDS using HDL for Soft IP core

Design of Multi-functional High frequency DDS using HDL for Soft IP core RESEARCH ARTICLE OPEN ACCESS Design of Multi-functional High frequency DDS using HDL for Soft IP core Ms.Khushboo D. Babhulkar1, Mrs.Pradnya J.Suryawanshi2, 1 Priyadarshini college of Engineering, Nagpur,

More information

INF3430 Clock and Synchronization

INF3430 Clock and Synchronization INF3430 Clock and Synchronization P.P.Chu Using VHDL Chapter 16.1-6 INF 3430 - H12 : Chapter 16.1-6 1 Outline 1. Why synchronous? 2. Clock distribution network and skew 3. Multiple-clock system 4. Meta-stability

More information

Implementation of High Precision Time to Digital Converters in FPGA Devices

Implementation of High Precision Time to Digital Converters in FPGA Devices Implementation of High Precision Time to Digital Converters in FPGA Devices Tobias Harion () Implementation of HPTDCs in FPGAs January 22, 2010 1 / 27 Contents: 1 Methods for time interval measurements

More information

A Case Study of Nanoscale FPGA Programmable Switches with Low Power

A Case Study of Nanoscale FPGA Programmable Switches with Low Power A Case Study of Nanoscale FPGA Programmable Switches with Low Power V.Elamaran 1, Har Narayan Upadhyay 2 1 Assistant Professor, Department of ECE, School of EEE SASTRA University, Tamilnadu - 613401, India

More information

Digital Systems Design

Digital Systems Design Digital Systems Design Digital Systems Design and Test Dr. D. J. Jackson Lecture 1-1 Introduction Traditional digital design Manual process of designing and capturing circuits Schematic entry System-level

More information