Looking at 637 nm VIIRS band, S-NPP

Size: px
Start display at page:

Download "Looking at 637 nm VIIRS band, S-NPP"

Transcription

1 Looking at 637 nm VIIRS band, S-NPP (Sharpening I1) B. GUENTHER STELLAR SOLUTIONS, INC NOAA-JPSS 1

2 I am looking at houses and have a desire to know how much living area this floor plan has for first floor living. It has a garage that is 21 8 X 20 4 and is built on a 40' X 50' slab Sorry, the picture is very grainy. 2

3 How Would You Do it to Get the Measure of the Living Space? For the house, I'd compute the area of garage and subtract that from 2000ft-sq Another example Installing sheetrock, need piece 8 ft tall by 3ft 3.5in in width Start with full sheet, 4X8 and remove 8.5in (careful which side of line I cut on) Clearly in my mind I am shaving off material to get to final dimension These are everyday questions and are answered easily when the question deals with quantity that is linear 3

4 Pizza sharing, another every day question Now this is easy to split in half, thirds or quarters if the 'measure' is amount of pizza being shared In my house, sharing pepperoni pizza includes 'fair shares' of the pepperoni too Situation is easy when the quantity is properly linearized and not so easy when the quantity is not easily linearized 4

5 VIIRS Imagery Band 1 (I1, 640 nm) Has Large Bandpass Now finally to VIIRS Remember that JPSS started as NPOESS and the Imagery requirements were driven by DoD applications NASA advocated for VIIRS bandpass similar to MODIS Channel 1 at 645 nm to sustain NDVI products DoD advocated for high SNR in high spatial resolution band Also provides easier manufacturing to meet SNR with 375 Km resolution Final specification ended at 80 nm bandpass for I1 Moderate resolution band M5 nested spectrally within I1 Question is how to introduce spectral sharpening to I1, if we may 5

6 RSR for M5 and I1, Actual 6 RSR for M5 and I1, Single Detector Full Spectral Range RSR Expanded RSR for 670 to 695 nm Interval M5 I1 Wavelength in nm RSR Wavelength in nm M5 I1 These bands are clearly not box car, so how do we handle this? Data are for S-NPP VIIRS

7 Process to Sharped I1 I1 must be aggregated to M5 spatial resolution (2 samples in track and 2 samples in scan direction, compute average radiance) Aggregated I1 samples have sharper MTF than M5 Differences in MTF captured in uncertainty 'Align' lw c-o of M5 to I1, called spectral alignment here Compute RSR differences from Chart 7, right side figure (see Chart 9) Need analytic TOA spectral radiance in 675 to 690 nm, includes Rayleigh scatter, aerosol contributions and surface reflectance L surplus is radiance correction needed to align cut-off slopes Integration of L TOA (λ with RSR difference (see Chart 9) Evaluate polarization effects but likely not important Remember need do this in linear space and here that is radiance space Compute in EDR development since surface reflectance(, polarization) and aerosol contributions unknown when SDR computed operationally 7

8 Visualization of Spectral Alignment 1.2 Expanded RSR for 670 to 695 nm Interval RSR difference RSR Wavelength in nm M5 I1 L surplus is adjusting the TOA radiance in long wave cut-off of M5 greater than I1 8

9 Formula, Just to Write it Down I1-sharpened = (I1-M5-L surplus ) Think of L surplus as a 'signed' value L surplus is positive when M5 RSR lw c-o is longer in wavelength than is the I1 RSR lw c-o 9

10 Channel 1 Comparisons 1.2 Relative Spectral Response Wavelength (nm) MODIS M1 VIIRS I1 VIIRS M5 VIIRS I1-sharpened Bands are MODIS M1, VIIRS I1, VIIRS M5 and VIIRS I1-sharpened Shown as Box Car RSR approximations (tails added to VIIRS I1 only for projection clarity Strategy and guidance on how (if?) I1-sparpened may be constructed We already agreed that I1-sharpening may be done with simple subtraction (I1-M5) when the subtraction is done in appropriate linear space, [and adjusted if longwave cut-off (lw c-o) for two bands not congruent] For Box Car RSR the linear space is no more complicated than measured radiance I1-sharpening is no more complicated than presented in earlier examples for floor space and sizing of sheetrock 10

11 I1-sharpened in Application to NDVI for Channel 1 Sensor Band Band Center (nm) Bandpass (nm) AVHRR (Channel 1) MODIS M VIIRS I VIIRS I1-sharpened MODIS M1 used here only for comparisons, and no distinction is made between Terra and Aqua sensors since they were built to a common spectral specification 11

12 Grass reflectance (black), I1 (red) and I1-sharpeded (Green) reflectance 0r BANDPASS WAVELENGTH (NM) Reflectance curve is data shown by Larry Leigh, SDSU, yesterday in Workshop 2 Data are an SDSU grass site test hyperspectral reflectance reference curve (unpublished) 12

13 13

14 Wait, Before You Start Using This MUST validate the ideas first May seem crazy, may not VIIRS S-NPP can be used for concept validation Ground truth for the I5-sharpened can be obtained from overpass data with HICO I1-sharpened is the item to be validated L surplus is the item that may be tuned to improve uncertainty in I1- sharpened Process also will allow estimate of uncertainty for I1-sharpened radiometry Uncertainty is relative calibration scales for I1 and M5 will complicate this computation 14

15 Lessons for New Instrument Builders Higher spatial resolution frequently dictates broader spectral measurements to maintain SNR for manufacturability More careful alignment of band edges between the two bands will facilitate band sharpening with lower uncertainty of the resulting band Provides strategy to distinguish physical processes at the larger FOV measurements than can be done using individual bands Please never again provide multiple spatial resolution measurements with common spectral resolution filter Only up-side is to verify that 1+1=2, OK, actually 2+2 = 4 VIIRS down-side: 2 of 16 moderate resolution bands are nearly useless and waste precious internal sensor data rate 15

16 Summary and Conclusions Logic is presented to provide spectral sharpening of the VIIRS I1 bands, at moderate spatial resolution I1 (centered at 640 nm, 80 nm bandpass) presents as I1 sharp (centered at 630 nm, 60 nm bandpass) Accuracy of sharpened band depends on how closely aligned the band cut-offs match and the extent And extent that scene physics is "benign" to allow accurate bandpass alignment Computation is simple mathematical subtraction after adjustments for cut-off alignment Approach broadly applicable within constraint of known scene physics for cut-off alignment in L surplus 16

17 Parting Remarks - I Idea occurs due to fortuitous similarity in VIIRS S-NPP spectral shape for I1 and M5 Also driven by concepts to tune data content for Direct Broadcast data Usefulness of spectral stratification depends entirely on uncertainty involved (and maybe complexity by scene physics in computing L surplus Concept does not seem useful for analysis of band-pairs that are not tightly nested in spectral dimension VIIRS J1 filters within 10 nm in lw c-o differences but L surplus will be of opposite sign compared to S-NPP in computing I-sharpened Filter suite for J3 and J4 will be similar to J2 filter suite Work in getting this concept applied will be useful for all VIIRS sensors through ~2035, OK at least as useful as it is for S-NPP 17

18 Parting Remarks - II Spectral sharpening is not something ever discussed for VIIRS within my earshot, so I think it is new idea Idea is simple Presume you did not enter room today with these ideas clear in your mind Hope you leave room today with clarity for approaches for spectral sharpening Please send me the paper that you or your grad student comes up with in taking this sketchy talk into actual and useful remote sensing applications Thanks for listening, I had fun putting these ideas together and I hope you enjoyed listening, and maybe even have some better ideas for remote sensing science applications 18

19 Acronyms Acronym Meaning Acronym Meaning AVHRR Advanced Very High Resolution MGS Mid Gain Stage (DNB used in Radiometer transition from day to night observations) Bandpass Full Width at Half Maximum MODIS Moderate Resolution Imaging Spectroradiometer Box Car Spectral shape that is flat top MTF Modulation Transfer Function with steep spectral turn-on DoD Department of Defense NASA National Aeronautics and Space Administration DNB Day Night Band NDVI Normalized Difference Vegetation Index EDR Environmental Data Record (Level 2 Data Product) NPOESS National Polar-orbiting Operational Environmental Satellite System F1 VIIRS S-NPP sensor RSB Reflected Solar Band HICO Hyperspectral Imager for RSR Relative Spectral Response Coastal Ocean I (band) Imagery Band SDR Sensor Data Record (Level 1 Data Product) J1 JPSS 1 Mission S-NPP Suomi-National Polar Partnership JPSS Joint Polar Satellite System SNR Signal Noise Ratio LGS Low Gain Stage (DNB used in TOA Top Atmosphere Radiance day observations) lw c-o Longwave cut-off VIIRS Visible/Infrared Imaging Radiometer Suite M (band) Moderate Resolution Band 19

Inter comparison of Terra and Aqua MODIS Reflective Solar Bands Using Suomi NPP VIIRS

Inter comparison of Terra and Aqua MODIS Reflective Solar Bands Using Suomi NPP VIIRS Inter comparison of Terra and Aqua Reflective Solar Bands Using Suomi NPP VIIRS Slawomir Blonski, * Changyong Cao, Sirish Uprety, ** and Xi Shao * NOAA NESDIS Center for Satellite Applications and Research

More information

Status of MODIS, VIIRS, and OLI Sensors

Status of MODIS, VIIRS, and OLI Sensors Status of MODIS, VIIRS, and OLI Sensors Xiaoxiong (Jack) Xiong, Jim Butler, and Brian Markham Code 618.0 NASA/GSFC, Greenbelt, MD 20771, USA Acknowledgements: NASA MODIS Characterization Support Team (MCST)

More information

Sustained Ocean Color Research and Operations

Sustained Ocean Color Research and Operations Sustained Ocean Color Research and Operations What are the minimum requirements to continue the SeaWiFS/MODIS time-series? Based on a National Research Council report by the Ocean Studies Board May 2011

More information

Suomi NPP VIIRS Calibration/ Validation Progress Update

Suomi NPP VIIRS Calibration/ Validation Progress Update Suomi NPP VIIRS Calibration/ Validation Progress Update C. Cao 1, Q. Liu 2, S. Blonski 2, X. Shao 2, and S. Uprety 3 1 NOAA/NESDIS Center for Satellite Applications and Research 2 ESSIC, University of

More information

Status of Aqua MODIS Reflective Solar Bands Calibration and Performance

Status of Aqua MODIS Reflective Solar Bands Calibration and Performance EOS Status of Aqua MODIS Reflective Solar Bands Calibration and Performance Jack Xiong NASA GSFC, Greenbelt, MD 20771, USA A. Angal, H. Chen, X. Geng, D. Link, Y. Li, and A. Wu SSAI, 10210 Greenbelt Road,

More information

CHARACTERISTICS OF REMOTELY SENSED IMAGERY. Radiometric Resolution

CHARACTERISTICS OF REMOTELY SENSED IMAGERY. Radiometric Resolution CHARACTERISTICS OF REMOTELY SENSED IMAGERY Radiometric Resolution There are a number of ways in which images can differ. One set of important differences relate to the various resolutions that images express.

More information

Lecture 6: Multispectral Earth Resource Satellites. The University at Albany Fall 2018 Geography and Planning

Lecture 6: Multispectral Earth Resource Satellites. The University at Albany Fall 2018 Geography and Planning Lecture 6: Multispectral Earth Resource Satellites The University at Albany Fall 2018 Geography and Planning Outline SPOT program and other moderate resolution systems High resolution satellite systems

More information

Cole Rossiter and B. Guenther. Stellar Solutions, Inc. Palo Alto, CA Algorithm Management Project, JPSS

Cole Rossiter and B. Guenther. Stellar Solutions, Inc. Palo Alto, CA Algorithm Management Project, JPSS Capability Enhancements, Changes, and Limitations of Joint Polar Satellite System (JPSS) -1 Compared to Suomi-National Polar-orbiting Partnership (S-NPP) Cole Rossiter and B. Guenther Stellar Solutions,

More information

Using Ground Targets for Sensor On orbit Calibration Support

Using Ground Targets for Sensor On orbit Calibration Support EOS Using Ground Targets for Sensor On orbit Calibration Support X. Xiong, A. Angal, A. Wu, and T. Choi MODIS Characterization Support Team (MCST), NASA/GSFC G. Chander SGT/USGS EROS CEOS Libya 4 Workshop,

More information

Monochromatic Measurements of JPSS-1VIIRS Polarization Sensitivity

Monochromatic Measurements of JPSS-1VIIRS Polarization Sensitivity Monochromatic Measurements of JPSS-1VIIRS Polarization Sensitivity Jeff McIntire 1, David Moyer, Steve Brown 3, Eugene Waluschka 4, Hassan Oudrari 1, and Xiaoxiong Xiong 4 1 VCST / SSAI Aerospace Corporation

More information

Recent developments in Deep Blue satellite aerosol data products from NASA GSFC

Recent developments in Deep Blue satellite aerosol data products from NASA GSFC Recent developments in Deep Blue satellite aerosol data products from NASA GSFC Andrew M. Sayer, N. Christina Hsu (PI), Corey Bettenhausen, Myeong-Jae Jeong Climate & Radiation Laboratory, NASA Goddard

More information

Joint Polar Satellite System (JPSS) Calibration/Validation Plan for Imagery Product

Joint Polar Satellite System (JPSS) Calibration/Validation Plan for Imagery Product Joint Polar Satellite System (JPSS) Calibration/Validation Plan for Imagery Product Version 2.0 Date: 15 December 2015 Prepared By: Don Hillger [NOAA/NESDIS/StAR] Thomas Kopp [The Aerospace Corp.] Page

More information

Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing. Mads Olander Rasmussen

Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing. Mads Olander Rasmussen Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing Mads Olander Rasmussen (mora@dhi-gras.com) 01. Introduction to Remote Sensing DHI What is remote sensing? the art, science, and technology

More information

Reducing Striping and Non-uniformities in VIIRS Day/Night Band (DNB) Imagery

Reducing Striping and Non-uniformities in VIIRS Day/Night Band (DNB) Imagery Reducing Striping and Non-uniformities in VIIRS Day/Night Band (DNB) Imagery Stephen Mills 1 & Steven Miller 2 1 Stellar Solutions Inc., Palo Alto, CA; 2 Colorado State Univ., Cooperative Institute for

More information

NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS

NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS PASSIVE ACTIVE DIGITAL

More information

J11.7 Applications of the NPOESS Visible/Infrared and Microwave Imagers

J11.7 Applications of the NPOESS Visible/Infrared and Microwave Imagers J11.7 Applications of the NPOESS Visible/Infrared and Microwave Imagers Thomas F. Lee, Jeffrey D. Hawkins, F. Joseph Turk, P. Gaiser, M. Bettenhausen Naval Research Laboratory Monterey CA and Washington

More information

Pre-Launch Radiometric Calibration of the S-NPP and JPSS-1 VIIRS Day/Night Bands

Pre-Launch Radiometric Calibration of the S-NPP and JPSS-1 VIIRS Day/Night Bands Pre-Launch Radiometric Calibration of the S-NPP and JPSS-1 VIIRS Day/Night Bands Thomas Schwarting Science Systems and Applications, Lanham, MD Jeff McIntire, Science Systems and Applications, Lanham,

More information

Spectral compatibility of vegetation indices across sensors: band decomposition analysis with Hyperion data

Spectral compatibility of vegetation indices across sensors: band decomposition analysis with Hyperion data Journal of Applied Remote Sensing, Vol. 4, 043520 (30 March 2010) Spectral compatibility of vegetation indices across sensors: band decomposition analysis with Hyperion data Youngwook Kim,a Alfredo R.

More information

An Introduction to Remote Sensing & GIS. Introduction

An Introduction to Remote Sensing & GIS. Introduction An Introduction to Remote Sensing & GIS Introduction Remote sensing is the measurement of object properties on Earth s surface using data acquired from aircraft and satellites. It attempts to measure something

More information

NOAA Satellite and Information Service National Environmental Satellite, Data, and Information Service (NESDIS)

NOAA Satellite and Information Service National Environmental Satellite, Data, and Information Service (NESDIS) NOAA Satellite and Information Service National Environmental Satellite, Data, and Information Service (NESDIS) Status of Current and Future Systems (NOAA-WP-33) Presentation to CGMS-40 November 2012;

More information

Satellite Imagery and Remote Sensing. DeeDee Whitaker SW Guilford High EES & Chemistry

Satellite Imagery and Remote Sensing. DeeDee Whitaker SW Guilford High EES & Chemistry Satellite Imagery and Remote Sensing DeeDee Whitaker SW Guilford High EES & Chemistry whitakd@gcsnc.com Outline What is remote sensing? How does remote sensing work? What role does the electromagnetic

More information

The Moderate Resolution Imaging Spectroradiometer (MODIS): Potential Applications for Climate Change and Modeling Studies

The Moderate Resolution Imaging Spectroradiometer (MODIS): Potential Applications for Climate Change and Modeling Studies The Moderate Resolution Imaging Spectroradiometer (MODIS): Potential Applications for Climate Change and Modeling Studies Menas Kafatos, CEOSR, George Mason University Jim McManus, CEOSR, GMU and GES DISC

More information

NPOESS NPOESS. Entering aa New NationalPolar INTERNATIONAL TOVS CONFERENCE -14 CONFERENCE-14 HALJJBLOOM SPACE SEGMENT PROGRAMMANAGER.

NPOESS NPOESS. Entering aa New NationalPolar INTERNATIONAL TOVS CONFERENCE -14 CONFERENCE-14 HALJJBLOOM SPACE SEGMENT PROGRAMMANAGER. NPOESS NPOESS Entering Entering aa New New Era Era National -orbiting Operational NationalPolar Polar-orbiting OperationalEnvironmental EnvironmentalSatellite SatelliteSystem System Delivering DeliveringGlobal

More information

Improved monitoring of bio-optical processes in coastal and inland waters using high spatial resolution channels on SNPP-VIIRS sensor

Improved monitoring of bio-optical processes in coastal and inland waters using high spatial resolution channels on SNPP-VIIRS sensor Improved monitoring of bio-optical processes in coastal and inland waters using high spatial resolution channels on SNPP-VIIRS sensor Ryan A. Vandermeulen* a, Robert Arnone a, Sherwin Ladner b, Paul Martinolich

More information

Earth-observing satellite intercomparison using the Radiometric Calibration Test Site at Railroad Valley

Earth-observing satellite intercomparison using the Radiometric Calibration Test Site at Railroad Valley Earth-observing satellite intercomparison using the Radiometric Calibration Test Site at Railroad Valley Jeffrey Czapla-Myers Joel McCorkel Nikolaus Anderson Stuart Biggar Jeffrey Czapla-Myers, Joel McCorkel,

More information

Remote Sensing. Division C. Written Exam

Remote Sensing. Division C. Written Exam Remote Sensing Division C Written Exam Team Name: Team #: Team Members: _ Score: /132 A. Matching (10 points) 1. Nadir 2. Albedo 3. Diffraction 4. Refraction 5. Spatial Resolution 6. Temporal Resolution

More information

R a d i o m e t r i c C a l i b r a t i o n N e t w o r k o f A u t o m a t e d I n s t r u m e n t s

R a d i o m e t r i c C a l i b r a t i o n N e t w o r k o f A u t o m a t e d I n s t r u m e n t s RadCalNet R a d i o m e t r i c C a l i b r a t i o n N e t w o r k o f A u t o m a t e d I n s t r u m e n t s Jeffrey Czapla-Myers* on behalf of the RadCalNet Working Group *Remote Sensing Group, College

More information

Sea to Sky: The NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission

Sea to Sky: The NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission Sea to Sky: The NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission Jeremy Werdell PACE Project Scientist NASA Goddard Space Flight Center Robert H. Goddard Memorial Symposium 9 March 2017, Greenbelt,

More information

OPAL Optical Profiling of the Atmospheric Limb

OPAL Optical Profiling of the Atmospheric Limb OPAL Optical Profiling of the Atmospheric Limb Alan Marchant Chad Fish Erik Stromberg Charles Swenson Jim Peterson OPAL STEADE Mission Storm Time Energy & Dynamics Explorers NASA Mission of Opportunity

More information

Remote Sensing for Rangeland Applications

Remote Sensing for Rangeland Applications Remote Sensing for Rangeland Applications Jay Angerer Ecological Training June 16, 2012 Remote Sensing The term "remote sensing," first used in the United States in the 1950s by Ms. Evelyn Pruitt of the

More information

Fundamentals of Remote Sensing

Fundamentals of Remote Sensing Climate Variability, Hydrology, and Flooding Fundamentals of Remote Sensing May 19-22, 2015 GEO-Latin American & Caribbean Water Cycle Capacity Building Workshop Cartagena, Colombia 1 Objective To provide

More information

AVHRR/3 Operational Calibration

AVHRR/3 Operational Calibration AVHRR/3 Operational Calibration Jörg Ackermann, Remote Sensing and Products Division 1 Workshop`Radiometric Calibration for European Missions, 30/31 Aug. 2017`,Frascati (EUM/RSP/VWG/17/936014) AVHRR/3

More information

PLANET SURFACE REFLECTANCE PRODUCT

PLANET SURFACE REFLECTANCE PRODUCT PLANET SURFACE REFLECTANCE PRODUCT FEBRUARY 2018 SUPPORT@PLANET.COM PLANET.COM VERSION 1.0 TABLE OF CONTENTS 3 Product Description 3 Atmospheric Correction Methodology 5 Product Limitations 6 Product Assessment

More information

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011 Training Course Remote Sensing Basic Theory & Image Processing Methods 19 23 September 2011 Popular Remote Sensing Sensors & their Selection Michiel Damen (September 2011) damen@itc.nl 1 Overview Low resolution

More information

Changyong Cao 1, Pubu Ciren 2, Mitch Goldberg 1, and Fuzhong Weng 1. Introduction

Changyong Cao 1, Pubu Ciren 2, Mitch Goldberg 1, and Fuzhong Weng 1. Introduction Intersatellite Calibration of HIRS from 1980 to 2003 Using the Simultaneous Nadir Overpass (SNO) Method for Improved Consistency and Quality of Climate Data Changyong Cao 1, Pubu Ciren 2, Mitch Goldberg

More information

NORMALIZING ASTER DATA USING MODIS PRODUCTS FOR LAND COVER CLASSIFICATION

NORMALIZING ASTER DATA USING MODIS PRODUCTS FOR LAND COVER CLASSIFICATION NORMALIZING ASTER DATA USING MODIS PRODUCTS FOR LAND COVER CLASSIFICATION F. Gao a, b, *, J. G. Masek a a Biospheric Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA b Earth

More information

Development of Chinese SI-traceable reference instruments and retrospective recalibration of historical satellite data

Development of Chinese SI-traceable reference instruments and retrospective recalibration of historical satellite data GRWG Web Meeting Topic: Planning a GSICS/CEOS-WGCV Workshop on SI-traceable reference instruments Development of Chinese SI-traceable reference instruments and retrospective recalibration of historical

More information

From Proba-V to Proba-MVA

From Proba-V to Proba-MVA From Proba-V to Proba-MVA Fabrizio Niro ESA Sensor Performances Products and Algorithm (SPPA) ESA UNCLASSIFIED - For Official Use Proba-V extension in the Copernicus era Proba-V was designed with the main

More information

APCAS/10/21 April 2010 ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS TWENTY-THIRD SESSION. Siem Reap, Cambodia, April 2010

APCAS/10/21 April 2010 ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS TWENTY-THIRD SESSION. Siem Reap, Cambodia, April 2010 APCAS/10/21 April 2010 Agenda Item 8 ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS TWENTY-THIRD SESSION Siem Reap, Cambodia, 26-30 April 2010 The Use of Remote Sensing for Area Estimation by Robert

More information

Legacy of NOAA, NASA and NIST Cooperation in Developing Radiometric Calibration Standards Equipment and Methodologies. Raju Datla, Michael Weinreb

Legacy of NOAA, NASA and NIST Cooperation in Developing Radiometric Calibration Standards Equipment and Methodologies. Raju Datla, Michael Weinreb Legacy of NOAA, NASA and NIST Cooperation in Developing Radiometric Calibration Standards Equipment and Methodologies CALCON 2012 Conference August 28, 2012 Raju Datla, Michael Weinreb Riverside Technology,

More information

3/31/03. ESM 266: Introduction 1. Observations from space. Remote Sensing: The Major Source for Large-Scale Environmental Information

3/31/03. ESM 266: Introduction 1. Observations from space. Remote Sensing: The Major Source for Large-Scale Environmental Information Remote Sensing: The Major Source for Large-Scale Environmental Information Jeff Dozier Observations from space Sun-synchronous polar orbits Global coverage, fixed crossing, repeat sampling Typical altitude

More information

Landgate Firewatch Update

Landgate Firewatch Update Landgate Adrian Allen Satellite Remote Sensing Services Landgate Leeuwin Centre for Earth Sensing Technologies Government of Western Australia Presentation Overview Firewatch Project New web services and

More information

JPSS1 VIIRS RSB Sensor calibration using monochromator-based and laser-based methods

JPSS1 VIIRS RSB Sensor calibration using monochromator-based and laser-based methods JPSS1 VIIRS RSB Sensor calibration using monochromator-based and laser-based methods Jinan Zeng 1, Tom Schwarting 2, Jeff McIntire 2, Jack Ji 2, Hassan Oudrari 2, Jack Xiong 3, and Jim Butler 3 1 Fibertek

More information

1. INTRODUCTION. GOCI : Geostationary Ocean Color Imager

1. INTRODUCTION. GOCI : Geostationary Ocean Color Imager 1. INTRODUCTION The Korea Ocean Research and Development Institute (KORDI) releases an announcement of opportunity (AO) to carry out scientific research for the utilization of GOCI data. GOCI is the world

More information

Comprehensive Vicarious Calibration and Characterization of a Small Satellite Constellation Using the Specular Array Calibration (SPARC) Method

Comprehensive Vicarious Calibration and Characterization of a Small Satellite Constellation Using the Specular Array Calibration (SPARC) Method This document does not contain technology or Technical Data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations. Comprehensive Vicarious

More information

Light penetration within a clear water body. E z = E 0 e -kz

Light penetration within a clear water body. E z = E 0 e -kz THE BLUE PLANET 1 2 Light penetration within a clear water body E z = E 0 e -kz 3 4 5 6 Pure Seawater Phytoplankton b w 10-2 m -1 b w 10-2 m -1 b w, Morel (1974) a w, Pope and Fry (1997) b chl,loisel and

More information

JP Stevens High School: Remote Sensing

JP Stevens High School: Remote Sensing 1 Name(s): ANSWER KEY Date: Team name: JP Stevens High School: Remote Sensing Scoring: Part I - /18 Part II - /40 Part III - /16 Part IV - /14 Part V - /93 Total: /181 2 I. History (3 pts each) 1. What

More information

MERIS instrument. Muriel Simon, Serco c/o ESA

MERIS instrument. Muriel Simon, Serco c/o ESA MERIS instrument Muriel Simon, Serco c/o ESA Workshop on Sustainable Development in Mountain Areas of Andean Countries Mendoza, Argentina, 26-30 November 2007 ENVISAT MISSION 2 Mission Chlorophyll case

More information

Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry. 28 April 2003

Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry. 28 April 2003 Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry 28 April 2003 Outline Passive Microwave Radiometry Rayleigh-Jeans approximation Brightness temperature Emissivity and dielectric constant

More information

On the use of water color missions for lakes in 2021

On the use of water color missions for lakes in 2021 Lakes and Climate: The Role of Remote Sensing June 01-02, 2017 On the use of water color missions for lakes in 2021 Cédric G. Fichot Department of Earth and Environment 1 Overview 1. Past and still-ongoing

More information

Lecture 7 Earth observation missions

Lecture 7 Earth observation missions Remote sensing for agricultural applications: principles and methods (2013-2014) Instructor: Prof. Tao Cheng (tcheng@njau.edu.cn). Nanjing Agricultural University Lecture 7 Earth observation missions May

More information

EOS Validation Investigation Annual Report

EOS Validation Investigation Annual Report EOS Validation Investigation Annual Report Title: Validation and Correction for the Terra MODIS Spatial Response NASA Grant No: NAG5-6339 Period: June 1, 1999 - May 31, 2000 Principal Investigator: Robert

More information

Railroad Valley Playa for use in vicarious calibration of large footprint sensors

Railroad Valley Playa for use in vicarious calibration of large footprint sensors Railroad Valley Playa for use in vicarious calibration of large footprint sensors K. Thome, J. Czapla-Myers, S. Biggar Remote Sensing Group Optical Sciences Center University of Arizona Introduction P

More information

Development of normalized vegetation, soil and water indices derived from satellite remote sensing data

Development of normalized vegetation, soil and water indices derived from satellite remote sensing data Development of normalized vegetation, soil and water indices derived from satellite remote sensing data Takeuchi, W. & Yasuoka, Y. IIS/UT, Japan E-mail: wataru@iis.u-tokyo.ac.jp Nov. 25th, 2004 ACRS2004

More information

Workshop on Practical Applications of MODIS Data in Australia

Workshop on Practical Applications of MODIS Data in Australia Workshop on Practical Applications of MODIS Data in Australia Leeuwin Centre, Floreat WA November 26-29, 2002 Liam Gumley Space Science and Engineering Center University of Wisconsin-Madison Introduction

More information

The studies began when the Tiros satellites (1960) provided man s first synoptic view of the Earth s weather systems.

The studies began when the Tiros satellites (1960) provided man s first synoptic view of the Earth s weather systems. Remote sensing of the Earth from orbital altitudes was recognized in the mid-1960 s as a potential technique for obtaining information important for the effective use and conservation of natural resources.

More information

ENMAP RADIOMETRIC INFLIGHT CALIBRATION, POST-LAUNCH PRODUCT VALIDATION, AND INSTRUMENT CHARACTERIZATION ACTIVITIES

ENMAP RADIOMETRIC INFLIGHT CALIBRATION, POST-LAUNCH PRODUCT VALIDATION, AND INSTRUMENT CHARACTERIZATION ACTIVITIES ENMAP RADIOMETRIC INFLIGHT CALIBRATION, POST-LAUNCH PRODUCT VALIDATION, AND INSTRUMENT CHARACTERIZATION ACTIVITIES A. Hollstein1, C. Rogass1, K. Segl1, L. Guanter1, M. Bachmann2, T. Storch2, R. Müller2,

More information

NPOESS NPOESS. National Polar-orbiting orbiting Operational Environmental Satellite System

NPOESS NPOESS. National Polar-orbiting orbiting Operational Environmental Satellite System NPOESS NPOESS National Polar-orbiting orbiting Operational Environmental Satellite System 1 NPOESS Introductory Video 2 Tri-agency Effort to Leverage and Combine Environmental Satellite Activities METOP

More information

NOAA JPSS and GOES Fire Products R. Bradley Pierce and Shobha Kondragunta NOAA/NESDIS/STAR

NOAA JPSS and GOES Fire Products R. Bradley Pierce and Shobha Kondragunta NOAA/NESDIS/STAR NOAA JPSS and GOES Fire Products R. Bradley Pierce and Shobha Kondragunta NOAA/NESDIS/STAR Outline VIIRS Aerosol Optical Depth and Fire Radiative Power ABI Aerosol Optical Depth and Fire Radiative Power

More information

Part 1: New spectral stuff going on at NIST. Part 2: TSI Traceability of TRF to NIST

Part 1: New spectral stuff going on at NIST. Part 2: TSI Traceability of TRF to NIST Part 1: New spectral stuff going on at NIST SIRCUS-type stuff (tunable lasers) now migrating to LASP Absolute Spectrally-Tunable Detector-Based Source Spectrally-programmable source calibrated via NIST

More information

ISIS TC Meeting. International Spaceborne Imaging Spectroscopy (ISIS) GRSS Technical Committee Meeting, 16/07/2014, IGARSS 2014

ISIS TC Meeting. International Spaceborne Imaging Spectroscopy (ISIS) GRSS Technical Committee Meeting, 16/07/2014, IGARSS 2014 ISIS TC Meeting International Spaceborne Imaging Spectroscopy (ISIS) GRSS Technical Committee Meeting, 16/07/2014, IGARSS 2014 Andreas Müller (DLR) Cindy Ong (CSIRO) Uta Heiden (DLR) Agenda Hyperspectral

More information

SEN3APP Stakeholder Workshop, Helsinki Yrjö Rauste/VTT Kaj Andersson/VTT Eija Parmes/VTT

SEN3APP Stakeholder Workshop, Helsinki Yrjö Rauste/VTT Kaj Andersson/VTT Eija Parmes/VTT Optical Products from Sentinel-2 and Suomi- NPP/VIIRS SEN3APP Stakeholder Workshop, Helsinki 19.11.2015 Yrjö Rauste/VTT Kaj Andersson/VTT Eija Parmes/VTT Structure of Presentation High-resolution data

More information

HICO Status and Operations

HICO Status and Operations HICO Status and Operations HICO Users Group 7-8 May 2014 Mary Kappus, HICO Facility Manager Naval Research Laboratory Washington, DC HICO Transition to NASA Tech Demo Phase 1 In September 2009 HICO began

More information

The USGEO Satellite Needs process provides the firstever whole-of-government approach to identifying desired satellite products across the civilian

The USGEO Satellite Needs process provides the firstever whole-of-government approach to identifying desired satellite products across the civilian Observations (USGEO) Satellite Needs Identifying Federal Satellite User Needs Glenn Bethel / USDA SNWG Co-Chair The USGEO Satellite Needs process provides the firstever whole-of-government approach to

More information

SEA GRASS MAPPING FROM SATELLITE DATA

SEA GRASS MAPPING FROM SATELLITE DATA JSPS National Coordinators Meeting, Coastal Marine Science 19 20 May 2008 Melaka SEA GRASS MAPPING FROM SATELLITE DATA Mohd Ibrahim Seeni Mohd, Nurul Hazrina Idris, Samsudin Ahmad 1. Introduction PRESENTATION

More information

Outline. Background NOAA s GOES-R Proving Ground (PG) Selected PG applications from Suomi-NPP VIIRS Transitioning to AHI: Conclusions

Outline. Background NOAA s GOES-R Proving Ground (PG) Selected PG applications from Suomi-NPP VIIRS Transitioning to AHI: Conclusions Outline Background NOAA s GOES-R Proving Ground (PG) Selected PG applications from Suomi-NPP VIIRS Transitioning to AHI: Selected AHI RGB Applications True Color and Hybrid Green GeoColor Blended Imagery

More information

NOAA Technical Report NESDIS 142

NOAA Technical Report NESDIS 142 NOAA Technical Report NESDIS 142 Visible Infrared Imaging Radiometer Suite (VIIRS) Sensor Data Record (SDR) User s Guide Version 1.2 Washington, D.C. 10 September 2013 U.S. DEPARTMENT OF COMMERCE National

More information

April 23, th International Winds Workshop Jeju City, South Korea

April 23, th International Winds Workshop Jeju City, South Korea April 23, 2018 14 th International Winds Workshop Jeju City, South Korea 1 TOPIC Status of GOES and POES Satellites Operational AMV System and Products Operational ASCAT Processes and Products New AMV

More information

Global hot spot monitoring with Landsat 8 and Sentinel-2. Soushi Kato Atsushi Oda Ryosuke Nakamura (AIST)

Global hot spot monitoring with Landsat 8 and Sentinel-2. Soushi Kato Atsushi Oda Ryosuke Nakamura (AIST) Global hot spot monitoring with Landsat 8 and Sentinel-2 Soushi Kato Atsushi Oda Ryosuke Nakamura (AIST) Motivation for Detecting Hot Spots Hotspot detection using satellite data To monitor wildfire and

More information

Kazuhiro TANAKA GCOM project team/jaxa April, 2016

Kazuhiro TANAKA GCOM project team/jaxa April, 2016 Kazuhiro TANAKA GCOM project team/jaxa April, 216 @ SPIE Asia-Pacific 216 at New Dehli, India 1 http://suzaku.eorc.jaxa.jp/gcom_c/index_j.html GCOM mission and satellites SGLI specification and IRS overview

More information

Cross Track Infrared Sounder (CrIS) Flight Model 1 Test Results

Cross Track Infrared Sounder (CrIS) Flight Model 1 Test Results May 6, 2009 Ronald Glumb, Joseph P. Predina, Robert Hookman, Chris Ellsworth, John Bobilya, Steve Wells, Lawrence Suwinski, Rebecca Frain, and Larry Crawford For Publication at the ASS-FTS14 Conference

More information

Wesley J. Moses., Washington, D.C., USA.

Wesley J. Moses., Washington, D.C., USA. Wesley J. Moses, Washington, D.C., USA. Sensor Characteristics 2 Spatial Resolution Spectral Resolution Signal-to-Noise Ratio Temporal Resolution Spatial Resolution 3 What is the dominant spatial scale

More information

FOR 353: Air Photo Interpretation and Photogrammetry. Lecture 2. Electromagnetic Energy/Camera and Film characteristics

FOR 353: Air Photo Interpretation and Photogrammetry. Lecture 2. Electromagnetic Energy/Camera and Film characteristics FOR 353: Air Photo Interpretation and Photogrammetry Lecture 2 Electromagnetic Energy/Camera and Film characteristics Lecture Outline Electromagnetic Radiation Theory Digital vs. Analog (i.e. film ) Systems

More information

Application of GIS to Fast Track Planning and Monitoring of Development Agenda

Application of GIS to Fast Track Planning and Monitoring of Development Agenda Application of GIS to Fast Track Planning and Monitoring of Development Agenda Radiometric, Atmospheric & Geometric Preprocessing of Optical Remote Sensing 13 17 June 2018 Outline 1. Why pre-process remotely

More information

Radia%on at the Top of the Atmosphere

Radia%on at the Top of the Atmosphere Radia%on at the Top of the Atmosphere Seiji Kato, Norman G. Loeb, Takmeng Wong, and Wenying Su NASA Langley Research Center Outline of this talk Scien%fic ques%on How are TOA net radia%on and ocean hea%ng

More information

Int n r t o r d o u d c u ti t on o n to t o Remote Sensing

Int n r t o r d o u d c u ti t on o n to t o Remote Sensing Introduction to Remote Sensing Definition of Remote Sensing Remote sensing refers to the activities of recording/observing/perceiving(sensing)objects or events at far away (remote) places. In remote sensing,

More information

Lecture 13: Remotely Sensed Geospatial Data

Lecture 13: Remotely Sensed Geospatial Data Lecture 13: Remotely Sensed Geospatial Data A. The Electromagnetic Spectrum: The electromagnetic spectrum (Figure 1) indicates the different forms of radiation (or simply stated light) emitted by nature.

More information

Detection and Monitoring Through Remote Sensing....The Need For A New Remote Sensing Platform

Detection and Monitoring Through Remote Sensing....The Need For A New Remote Sensing Platform WILDFIRES Detection and Monitoring Through Remote Sensing...The Need For A New Remote Sensing Platform Peter Kimball ASEN 5235 Atmospheric Remote Sensing 5/1/03 1. Abstract This paper investigates the

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing Daniel McInerney Urban Institute Ireland, University College Dublin, Richview Campus, Clonskeagh Drive, Dublin 14. 16th June 2009 Presentation Outline 1 2 Spaceborne Sensors

More information

Results of J1 VIIRS testing using NIST s Traveling SIRCUS

Results of J1 VIIRS testing using NIST s Traveling SIRCUS Results of J1 VIIRS testing using NIST s Traveling SIRCUS Steven W. Brown and Keith R. Lykke, NIST, Gaithersburg, MD Joel McCorkel, Brendan McAndrew, Gene Waluschka, and Jeff McIntire (Sigma Space), NASA

More information

XSAT Ground Segment at CRISP

XSAT Ground Segment at CRISP XSAT Ground Segment at CRISP LIEW Soo Chin Head of Research, CRISP http://www.crisp.nus.edu.sg 5 th JPTM for Sentinel Asia Step-2, 14-16 Nov 2012, Daejeon, Korea Centre for Remote Imaging, Sensing and

More information

Observing Nightlights from Space with TEMPO James L. Carr 1,Xiong Liu 2, Brian D. Baker 3 and Kelly Chance 2

Observing Nightlights from Space with TEMPO James L. Carr 1,Xiong Liu 2, Brian D. Baker 3 and Kelly Chance 2 Observing Nightlights from Space with TEMPO James L. Carr 1,Xiong Liu 2, Brian D. Baker 3 and Kelly Chance 2 September 27, 2016 1 Carr Astronautics Corp., Greenbelt, MD, USA jcarr@carrastro.com 2 Harvard-Smithsonian

More information

SMEX04 Multispectral Radiometer Data: Arizona

SMEX04 Multispectral Radiometer Data: Arizona Notice to Data Users: The documentation for this data set was provided solely by the Principal Investigator(s) and was not further developed, thoroughly reviewed, or edited by NSIDC. Thus, support for

More information

IKONOS High Resolution Multispectral Scanner Sensor Characteristics

IKONOS High Resolution Multispectral Scanner Sensor Characteristics High Spatial Resolution and Hyperspectral Scanners IKONOS High Resolution Multispectral Scanner Sensor Characteristics Launch Date View Angle Orbit 24 September 1999 Vandenberg Air Force Base, California,

More information

Multi-sensor data base over desert sites for calibration purpose. P. Henry ¹, X. Briottet ², C. Miesch ², F. Cabot ¹ ¹CNES, ²ONERA

Multi-sensor data base over desert sites for calibration purpose. P. Henry ¹, X. Briottet ², C. Miesch ², F. Cabot ¹ ¹CNES, ²ONERA Multi-sensor data base over desert sites for calibration purpose P. Henry ¹, X. Briottet ², C. Miesch ², F. Cabot ¹ ¹CNES, ²ONERA Outline Introduction SADE database Calibration method Some results Desert

More information

NASA Missions and Products: Update. Garik Gutman, LCLUC Program Manager NASA Headquarters Washington, DC

NASA Missions and Products: Update. Garik Gutman, LCLUC Program Manager NASA Headquarters Washington, DC NASA Missions and Products: Update Garik Gutman, LCLUC Program Manager NASA Headquarters Washington, DC 1 JPSS-2 (NOAA) SLI-TBD Formulation in 2015 RBI OMPS-Limb [[TSIS-2]] [[TCTE]] Land Monitoring at

More information

Nighttime VIIRS LCLUC Applications

Nighttime VIIRS LCLUC Applications Nighttime VIIRS LCLUC Applications Christopher D. Elvidge, Ph.D. Earth Observation Group NOAA National Geophysical Data Center Boulder, Colorado USA chris.elvidge@noaa.gov Kimberly Baugh, Feng Chi Hsu,

More information

Earth Observations from Space U.S. Geological Survey

Earth Observations from Space U.S. Geological Survey Earth Observations from Space U.S. Geological Survey Geography Land Remote Sensing Program Dr. Bryant Cramer April 1, 2009 U.S. Department of the Interior U.S. Geological Survey USGS Landsat Historical

More information

Wind Imaging Spectrometer and Humidity-sounder (WISH): a Practical NPOESS P3I High-spatial Resolution Sensor

Wind Imaging Spectrometer and Humidity-sounder (WISH): a Practical NPOESS P3I High-spatial Resolution Sensor Wind Imaging Spectrometer and Humidity-sounder (WISH): a Practical NPOESS P3I High-spatial Resolution Sensor Jeffery J. Puschell Raytheon Space and Airborne Systems, El Segundo, California Hung-Lung Huang

More information

Data acquisition and access for the Congo Basin

Data acquisition and access for the Congo Basin MRV Joint Workshop 22-24 June 2010, Guadalajara, Jalisco Mexico Data acquisition and access for the Congo Basin Landing Mané 1, Michael Brady 2, Chris Justice 3 and Alice Altstatt 3 1) Satellite Observatory

More information

DEFENSE APPLICATIONS IN HYPERSPECTRAL REMOTE SENSING

DEFENSE APPLICATIONS IN HYPERSPECTRAL REMOTE SENSING DEFENSE APPLICATIONS IN HYPERSPECTRAL REMOTE SENSING James M. Bishop School of Ocean and Earth Science and Technology University of Hawai i at Mānoa Honolulu, HI 96822 INTRODUCTION This summer I worked

More information

Evaluation and Inter-comparison of MODIS and VIIRS Measures of Daily Albedo

Evaluation and Inter-comparison of MODIS and VIIRS Measures of Daily Albedo Evaluation and Inter-comparison of MODIS and VIIRS Measures of Daily Albedo Zhuosen Wang*, Yan Liu, Qingsong Sun, Crystal Schaaf School for the Environment, University of Massachusetts Boston http://www.umb.edu/spectralmass

More information

Light penetration within a clear water body. E z = E 0 e -kz

Light penetration within a clear water body. E z = E 0 e -kz THE BLUE PLANET 1 2 Light penetration within a clear water body E z = E 0 e -kz 3 4 5 Pure Seawater Phytoplankton b w 10-2 m -1 b w 10-2 m -1 b w, Morel (1974) a w, Pope and Fry (1997) b chl,loisel and

More information

Final Examination Introduction to Remote Sensing. Time: 1.5 hrs Max. Marks: 50. Section-I (50 x 1 = 50 Marks)

Final Examination Introduction to Remote Sensing. Time: 1.5 hrs Max. Marks: 50. Section-I (50 x 1 = 50 Marks) Final Examination Introduction to Remote Sensing Time: 1.5 hrs Max. Marks: 50 Note: Attempt all questions. Section-I (50 x 1 = 50 Marks) 1... is the technology of acquiring information about the Earth's

More information

Japan's Greenhouse Gases Observation from Space

Japan's Greenhouse Gases Observation from Space 1 Workshop on EC CEOS Priority on GHG Monitoring Japan's Greenhouse Gases Observation from Space 18 June, 2018@Ispra, Italy Masakatsu NAKAJIMA Japan Aerospace Exploration Agency Development and Operation

More information

OBERON. XL & XLE XL EOS Direct broadcast polar-orbiting satellite reception ground stations REMOTE SENSING EECWEATHERTECH.COM

OBERON. XL & XLE XL EOS Direct broadcast polar-orbiting satellite reception ground stations REMOTE SENSING EECWEATHERTECH.COM OBERON XL & XLE XL EOS Direct broadcast polar-orbiting satellite reception ground stations REMOTE SENSING EECWEATHERTECH.COM Oberon-XL gives you the complete picture Designed for more than 160 ocean, land,

More information

Project Title: Validation and Correction for the MODIS Spatial Response. NASA Grant #: NAG Period: October 1, May 31, 1999

Project Title: Validation and Correction for the MODIS Spatial Response. NASA Grant #: NAG Period: October 1, May 31, 1999 Project Title: Validation and Correction for the MODIS Spatial Response NASA Grant #: NAG5 6339 Period: October 1, 1997 - May 31, 1999 Robert A. Schowengerdt, Principal Investigator Stuart E. Biggar, Co

More information

University of Texas at San Antonio EES 5053 Term Project CORRELATION BETWEEN NDVI AND SURFACE TEMPERATURES USING LANDSAT ETM + IMAGERY NEWFEL MAZARI

University of Texas at San Antonio EES 5053 Term Project CORRELATION BETWEEN NDVI AND SURFACE TEMPERATURES USING LANDSAT ETM + IMAGERY NEWFEL MAZARI University of Texas at San Antonio EES 5053 Term Project CORRELATION BETWEEN NDVI AND SURFACE TEMPERATURES USING LANDSAT ETM + IMAGERY NEWFEL MAZARI Introduction and Objectives The present study is a correlation

More information

Remote Sensing 1 Principles of visible and radar remote sensing & sensors

Remote Sensing 1 Principles of visible and radar remote sensing & sensors Remote Sensing 1 Principles of visible and radar remote sensing & sensors Nick Barrand School of Geography, Earth & Environmental Sciences University of Birmingham, UK Field glaciologist collecting data

More information

Outline. Data continuity defined. sensors. Discussion points

Outline. Data continuity defined. sensors. Discussion points Outline Overview Data continuity defined Data continuity - Coarse, medium and high resolution sensors Satellite sensors useful for fire research Discussion points Data Continuity - Defined During 1992,

More information