PART. MAX7401CSA 0 C to +70 C 8 SO MAX7405EPA MAX7401ESA MAX7405CSA MAX7405CPA MAX7405ESA V SUPPLY CLOCK

Size: px
Start display at page:

Download "PART. MAX7401CSA 0 C to +70 C 8 SO MAX7405EPA MAX7401ESA MAX7405CSA MAX7405CPA MAX7405ESA V SUPPLY CLOCK"

Transcription

1 ; Rev 1; 6/99 8th-Order, Lowpass, Bessel, General Description The / 8th-order, lowpass, Bessel, switched-capacitor filters (SCFs) operate from a single +5 () or +3 () supply. These devices draw only 2mA of supply current and allow corner frequencies from 1Hz to 5kHz, making them ideal for low-power post-dac filtering and anti-aliasing applications. They feature a shutdown mode that reduces supply current to.2. Two clocking options are available on these devices: self-clocking (through the use of an external capacitor) or external clocking for tighter corner-frequency control. An offset adjust pin allows for adjustment of the DC output level. The / Bessel filters provide low overshoot and fast settling. Their fixed response simplifies the design task to selecting a clock frequency. ADC Anti-Aliasing Post-DAC Filtering Air-Bag Electronics TOP IEW Applications CT2 Base Stations Speech Processing Pin Configuration Features 8th-Order, Lowpass Bessel Filters Low Noise and Distortion: -82 THD + Noise Clock-Tunable Corner Frequency (1Hz to 5kHz) 1:1 Clock-to-Corner Ratio Single-Supply Operation +5 () +3 () Low Power 2mA (Operating Mode).2 (Shutdown Mode) Available in 8-Pin SO/DIP Packages Low Output Offset: ±5m PART CPA ESA EPA Ordering Information TEMP. RANGE CSA C to +7 C 8 SO CSA CPA ESA EPA C to +7 C -4 C to +85 C -4 C to +85 C PIN-PACKAGE 8 Plastic DIP 8 SO C to +7 C 8 SO C to +7 C -4 C to +85 C -4 C to +85 C 8 Plastic DIP 8 Plastic DIP 8 SO 8 Plastic DIP / COM IN GND CLK SHDN OS Typical Operating Circuit DD 4 5 OUT SUPPLY SO/DIP.1µF DD SHDN INPUT IN OUT OUTPUT CLOCK CLK COM GND OS.1µF Maxim Integrated Products 1 For free samples & the latest literature: or phone For small orders, phone

2 / ABSOLUTE MAXIMUM RATINGS DD to GND to to +4 IN, OUT, COM, OS, CLK to ( DD +.3) SHDN to +6 OUT Short-Circuit Duration...1sec Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS Continuous Power Dissipation (T A = +7 C) 8-Pin SO (derate 5.88mW/ C above +7 C)...471mW 8-Pin DIP (derate 9.9mW/ C above +7 C)...727mW Operating Temperature Ranges MAX74 _C_A... C to +7 C MAX74 _E_A...-4 C to +85 C Storage Temperature Range C to +15 C Lead Temperature (soldering, 1sec)...+3 C ( DD = +5, filter output measured at OUT, 1kΩ 5pF load to GND at OUT, OS = COM,.1µF from COM to GND, SHDN = DD, f CLK = 1kHz, T A = T MIN to T MAX, unless otherwise noted. Typical values are at T A = +25 C.) PARAMETER FILTER CHARACTERISTICS Corner Frequency Clock-to-Corner Ratio Clock-to-Corner Tempco Output oltage Range Output Offset oltage DC Insertion Gain with Output Offset Removed SYMBOL f C f CLK /f C OFFSET (Note 1) IN = COM = DD / 2 CONDITIONS COM = DD / 2 (Note 2) MIN TYP MAX.1 to 5 1: DD -.25 ±5 ± UNITS khz ppm/ C m Total Harmonic Distortion plus Noise THD+N f IN = 2Hz, IN = 4p-p, measurement bandwidth = 22kHz -82 OS oltage Gain to OUT Input oltage Range at OS A OS OS 1 COM ±.1 / COM oltage Range COM Input, COM externally driven Output, COM internally biased DD / 2 DD / 2 DD / DD / 2 DD / 2 DD / Input Resistance at COM Clock Feedthrough Resistive Output Load Drive R COM R L kω mp-p kω Maximum Capacitive Load at OUT C L 5 5 pf Input Leakage Current at COM Input Leakage Current at OS CLOCK Internal Oscillator Frequency Clock Input Current Clock Input High Clock Input Low f OSC I CLK IH IL SHDN = GND, COM = to DD OS = to ( DD - 1) (Note 3) C OSC = 1pF (Note 4) CLK = or 5 ±.1 ±1 ±.1 ± ±15 ±3 DD khz 2

3 ELECTRICAL CHARACTERISTICS (continued) ( DD = +5, filter output measured at OUT, 1kΩ 5pF load to GND at OUT, OS = COM,.1µF from COM to GND, SHDN = DD, f CLK = 1kHz, T A = T MIN to T MAX, unless otherwise noted. Typical values are at T A = +25 C.) PARAMETER POWER REQUIREMENTS SYMBOL Measured at DC ELECTRICAL CHARACTERISTICS CONDITIONS MIN TYP MAX Supply oltage DD Supply Current I DD Operating mode, no load, IN = OS = COM Shutdown Current Power-Supply Rejection Ratio SHUTDOWN SHDN Input High SHDN Input Low I SHDN PSRR SDH SDL SHDN = GND, CLK driven from to DD DD SHDN Input Leakage Current SHDN = to DD ±.1 ±1 ( DD = +3, filter output measured at OUT, 1kΩ 5pF load to GND at OUT, OS = COM,.1µF from COM to GND, SHDN = DD, f CLK = 1kHz, T A = T MIN to T MAX, unless otherwise noted. Typical values are at T A = +25 C.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX FILTER CHARACTERISTICS Corner Frequency f C (Note 1).1 to 5 Clock-to-Corner Ratio f CLK /f C 1:1 Clock-to-Corner Tempco 1 Output oltage Range.25 DD -.25 Output Offset oltage OFFSET IN = COM = DD / 2 ±5 ±25 DC Insertion Gain with Output Offset Removed COM = DD / 2 (Note 2) UNITS ma UNITS khz ppm/ C m / Total Harmonic Distortion plus Noise Maximum Capacitive Load at OUT Input Leakage Current at COM Input Leakage Current at OS f THD+N IN = 2Hz, IN = 2.5p-p, -84 measurement bandwidth = 22kHz OS oltage Gain to OUT A OS 1 Input oltage Range at OS OS COM ±.1 COM oltage Range DD / 2 COM DD / 2 DD / 2 COM internally biased or externally driven Input Resistance at COM R COM Clock Feedthrough 1 Resistance Output Load Drive R L 1 1 C L 5 5 SHDN = GND, COM = to DD OS = to ( DD - 1) (Note 3) ±.1 ±1 ±.1 ±1 / kω mp-p kω pf 3

4 / ELECTRICAL CHARACTERISTICS (continued) ( DD = +3, filter output measured at OUT, 1kΩ 5pF load to GND at OUT, OS = COM,.1µF from COM to GND, SHDN = DD, f CLK = 1kHz, T A = T MIN to T MAX, unless otherwise noted. Typical values are at T A = +25 C.) CLOCK PARAMETER Internal Oscillator Frequency Clock Input Current Clock Input High Clock Input Low POWER REQUIREMENTS Supply oltage Supply Current Shutdown Current Power-Supply Rejection Ratio SHUTDOWN SHDN Input High SHDN Input Low SYMBOL f OSC I CLK IH IL DD I DD I SHDN PSRR SDH SDL CONDITIONS C OSC = 1pF (Note 4) CLK = or 3 Operating mode, no load, IN = OS = COM SHDN = GND, CLK driven from to DD Measured at DC MIN TYP MAX DD DD -.5 ±15 ± SHDN Input Leakage Current SHDN = to DD ±.1 ± UNITS khz ma FILTER CHARACTERISTICS / ( DD = +5 for, DD = +3 for ; filter output measured at OUT; 1kΩ 5pF load to GND at OUT; SHDN = DD ; COM = OS = DD /2; f CLK = 1kHz; T A = T MIN to T MAX ; unless otherwise noted. Typical values are at T A = +25 C.) PARAMETER Insertion Gain Relative to DC Gain CONDITIONS MIN TYP MAX f IN =.5f C f IN = f C f IN = 3f C f IN = 6f C UNITS Note 1: The maximum f C is defined as the clock frequency, f CLK = 1 f C, at which the peak SINAD drops to 68 with a sinusoidal input at.2f C. Note 2: DC insertion gain is defined as OUT / IN. Note 3: OS voltages above DD - 1 saturate the input and result in a 75 typical input leakage current. Note 4: For, f OSC (khz) / C OSC (pf). For, f OSC (khz) / C OSC (pf). 4

5 GAIN () FREQUENCY RESPONSE INPUT FREQUENCY (khz) f C = 1kHz toc1 GAIN () PASSBAND FREQUENCY RESPONSE INPUT FREQUENCY (Hz) Typical Operating Characteristics ( DD = +5 for, DD = +3 for ; f CLK = 1kHz; SHDN = DD ; COM = OS = DD / 2; T A = +25 C; unless otherwise noted.) f C = 1kHz MAX749 toc2 PHASE SHIFT (DEGREES) PHASE RESPONSE INPUT FREQUENCY (Hz) f C = 1kHz toc3 / SUPPLY CURRENT (ma) NO LOAD SUPPLY CURRENT vs. SUPPLY OLTAGE toc4 SUPPLY CURRENT (ma) SUPPLY CURRENT vs. TEMPERATURE NO LOAD toc5 OFFSET OLTAGE (m) OFFSET OLTAGE vs. SUPPLY OLTAGE IN = COM = DD / 2 toc SUPPLY OLTAGE () TEMPERATURE ( C) SUPPLY OLTAGE () OFFSET OLTAGE (m) OFFSET OLTAGE vs. TEMPERATURE IN = COM = DD / 2 toc7 OSCILLATOR FREQUENCY (khz) 1, INTERNAL OSCILLATOR FREQUENCY vs. C OSC CAPACITANCE toc8 NORMALIZED OSCILLATOR FREQUENCY NORMALIZED OSCILLATOR FREQUENCY vs. SUPPLY OLTAGE C OSC = 39pF toc TEMPERATURE ( C) C OSC CAPACITANCE (nf) SUPPLY OLTAGE () 5

6 / Typical Operating Characteristics (continued) ( DD = +5 for, DD = +3 for ; f CLK = 1kHz; SHDN = DD ; COM = OS = DD / 2; T A = +25 C; unless otherwise noted.) NORMALIZED OSCILLATOR FREQUENCY NORMALIZED OSCILLATOR FREQUENCY vs. TEMPERATURE C OSC = 39pF TEMPERATURE ( C) toc1 THD + NOISE () THD PLUS NOISE vs. INPUT SIGNAL AMPLITUDE NO LOAD (SEE TABLE A) AMPLITUDE (p-p) B A toc11 THD + NOISE () THD PLUS NOISE vs. INPUT SIGNAL AMPLITUDE AND RESISTIE LOAD f IN = 2Hz f C = 1kHz MEASUREMENT BW = 22kHz R L = 5Ω R L = 1kΩ R L = 1kΩ AMPLITUDE (p-p) toc THD PLUS NOISE vs. INPUT SIGNAL AMPLITUDE NO LOAD (SEE TABLE A) toc THD PLUS NOISE vs. INPUT SIGNAL AMPLITUDE AND RESISTIE LOAD f IN = 2Hz f C = 1kHz MEASUREMENT BW = 22kHz toc14 THD + NOISE () A B THD + NOISE () R L = 5Ω R L = 1kΩ R L = 1kΩ AMPLITUDE (p-p) AMPLITUDE (p-p) Table A. THD Plus Noise vs. Input Signal Amplitude Test Conditions TRACE f IN (Hz) f C (khz) A 1 5 B 2 1 f CLK (khz) 5 1 MEASUREMENT BANDWIDTH (khz)

7 PIN NAME 1 COM 2 IN Filter Input 3 GND Ground FUNCTION Common Input. Biased internally at mid-supply. Bypass externally to GND with a.1µf capacitor. To override internal biasing, drive with an external supply. 4 DD Positive Supply Input: +5 for, +3 for 5 OUT Filter Output 6 OS 7 SHDN Shutdown Input. Drive low to enable shutdown mode; drive high or connect to DD for normal operation. 8 CLK Offset Adjust Input. To adjust output offset, bias OS externally. Connect OS to COM if no offset adjustment is needed. Refer to Offset and Common-Mode Input Adjustment section. Clock Input. To override the internal oscillator, connect to an external clock; otherwise, connect an external capacitor (C OSC ) from CLK to GND to set the internal oscillator frequency. Detailed Description The / Bessel filters provide low overshoot and fast settling responses. Both parts operate with a 1:1 clock-to-corner frequency ratio and a 5kHz maximum corner frequency. Lowpass Bessel filters such as the / delay all frequency components equally, preserving the shape of step inputs (subject to the attenuation of the higher frequencies). Bessel filters settle quickly an important characteristic in applications that use a multiplexer (mux) to select an input signal for an analog-todigital converter (ADC). An anti-aliasing filter placed between the mux and the ADC must settle quickly after a new channel is selected. Figure 1 shows the difference between Bessel and Butterworth filters when a 1kHz square wave is applied to the filter input. With the filter cutoff frequencies set at 5kHz, trace B shows the Bessel filter response and trace C shows the Butterworth filter response. Background Information Most switched-capacitor filters (SCFs) are designed with biquadratic sections. Each section implements two filtering poles, and the sections are cascaded to produce higher order filters. The advantage to this approach is ease of design. However, this type of design is highly sensitive to component variations if any section s Q is high. An alternative approach is to emulate a passive network using switched-capacitor integrators with summing and scaling. Figure 2 shows a basic 8th-order ladder filter structure. A B C 2µs/div A: 1kHz INPUT SIGNAL B: BESSEL FILTER RESPONSE; f C = 5kHz C: BUTTERWORTH FILTER RESPONSE; f C = 5kHz Figure 1. Bessel vs. Butterworth Filter Response + - R1 IN L1 C2 Pin Description L3 L5 L7 Figure 2. 8th-Order Ladder Filter Network C4 C6 C8 2/div 2/div 2/div R2 / 7

8 / A switched-capacitor filter such as the / emulates a passive ladder filter. The filter s component sensitivity is low when compared to a cascaded biquad design because each component affects the entire filter shape, not just one pole-zero pair. In other words, a mismatched component in a biquad design will have a concentrated error on its respective poles, while the same mismatch in a ladder filter design results in an error distributed over all poles. Clock Signal External Clock The / family of SCFs is designed for use with external clocks that have a 4% to 6% duty cycle. When using an external clock with these devices, drive CLK with a CMOS gate powered from to DD. arying the rate of the external clock adjusts the corner frequency of the filter as follows: f C = f CLK / 1 Internal Clock When using the internal oscillator, connect a capacitor (C OSC ) between CLK and ground. The value of the capacitor determines the oscillator frequency as follows: f OSC (khz) = where K = 38 for and K = 34 for. Minimize the stray capacitance at CLK so that it does not affect the internal oscillator frequency. ary the rate of the internal oscillator to adjust the filter s corner frequency by a 1:1 clock-to-corner frequency ratio. For example, an internal oscillator frequency of 1kHz produces a nominal corner frequency of 1kHz. Input Impedance vs. Clock Frequencies The / s input impedance is effectively that of a switched-capacitor resistor and is inversely proportional to frequency. The input impedance values determined below represent the average input impedance since the input current is not continuous. As a rule, use a driver with an output impedance less than 1% of the filter s input impedance. Estimate the input impedance of the filter using the following formula: ZIN K13 ; C OSC in pf COSC 1 f CLK CIN = ( ) where f CLK = clock frequency and C IN = 3.37pF. Low-Power Shutdown Mode These devices feature a shutdown mode that is activated by driving SHDN low. In shutdown mode, the filter s supply current reduces to.2 (typ) and its output becomes high impedance. For normal operation, drive SHDN high or connect to DD. Applications Information Offset and Common-Mode Input Adjustment The voltage at COM sets the common-mode input voltage and is biased at mid-supply with an internal resistordivider. Bypass COM with a.1µf capacitor and connect OS to COM. For applications requiring offset adjustment or DC level shifting, apply an external bias voltage through a resistor-divider network to OS, as shown in Figure 3. (Note: Do not leave OS unconnected.) The output voltage is represented by this equation: OUT = ( IN - COM ) + OS with COM = DD / 2 (typical), and where ( IN - COM ) is lowpass filtered by the SCF, and OS is added at the output stage. See the Electrical Characteristics for the voltage range of COM and OS. Changing the voltage on COM or OS significantly from mid-supply reduces the filter s dynamic range. Power Supplies The operates from a single +5 supply, and the operates from a single +3 supply. Bypass DD to GND with a.1µf capacitor. If dual supplies are required (±2.5 for, ±1.5 for ), connect COM to system ground and connect.1µf INPUT CLOCK SUPPLY IN CLK DD GND SHDN OUT COM OS.1µF.1µF OUTPUT 5k 5k 5k Figure 3. Offset Adjustment Circuit 8

9 Table 1. Typical Harmonic Distortion + - FILTER INPUT CLOCK f CLK (khz) IN CLK GND to the negative supply. Figure 4 shows an example of dual-supply operation. Single- and dual-supply performance are equivalent. For either single- or dual-supply operation, drive CLK and SHDN from GND (- in dualsupply operation) to DD. For ±5 dual-supply applications, use the MAX291 MAX DD GND *DRIE SHDN TO - FOR LOW-POWER SHUTDOWN MODE. Figure 4. Dual-Supply Operation - f C (khz) SHDN OUT COM OS * OUTPUT.1µF f IN (Hz) µF IN (p-p) 4 2 TYPICAL HARMONIC DISTORTION () 2nd rd th 5th Anti-Aliasing and Post-DAC Filtering When using the / for anti-aliasing or post-dac filtering, synchronize the DAC and the filter clocks. If the clocks are not synchronized, beat frequencies may alias into the passband. The high clock-to-corner frequency ratio (1:1) also eases the requirements of pre- and post-scf filtering. At the input, a lowpass filter prevents the aliasing of frequencies around the clock frequency into the passband. At the output, a lowpass filter attenuates the clock feedthrough. A high clock-to-corner frequency ratio allows a simple RC lowpass filter, with the cutoff frequency set above the SCF corner frequency, to provide input anti-aliasing and reasonable output clock attenuation Harmonic Distortion Harmonic distortion arises from nonlinearities within the filter. These nonlinearities generate harmonics when a pure sine wave is applied to the filter input. Table 1 lists the / s typical harmonic-distortion values with a 1kΩ load at T A = +25 C. Chip Information / Input Signal Amplitude Range The optimal input signal range is determined by observing the voltage level at which the total harmonic distortion plus noise (THD+N) is minimized for a given corner frequency. The Typical Operating Characteristics show graphs of the devices THD+N response as the input signal s peak-to-peak amplitude is varied. These measurements are made with OS and COM biased at midsupply. TRANSISTOR COUNT:

10 / Package Information SOICN.EPS 1

11 Package Information (continued) PDIPN.EPS / 11

12 / NOTES Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 12 Maxim Integrated Products, 12 San Gabriel Drive, Sunnyvale, CA Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.

PART. MAX7421CUA 0 C to +70 C 8 µmax INPUT CLOCK

PART. MAX7421CUA 0 C to +70 C 8 µmax INPUT CLOCK 19-181; Rev ; 11/ 5th-Order, Lowpass, General Description The MAX718 MAX75 5th-order, low-pass, switchedcapacitor filters (SCFs) operate from a single +5 (MAX718 MAX71) or +3 (MAX7 MAX75) supply. These

More information

PART MAX7427EUA MAX7426CPA MAX7427CPA TOP VIEW. Maxim Integrated Products 1

PART MAX7427EUA MAX7426CPA MAX7427CPA TOP VIEW. Maxim Integrated Products 1 19-171; Rev ; 4/ 5th-Order, Lowpass, Elliptic, General Description The 5th-order, lowpass, elliptic, switched-capacitor filters (SCFs) operate from a single +5 (MAX7426) or +3 (MAX7427) supply. The devices

More information

10µA, Low-Dropout, Precision Voltage References MAX872/MAX874. General Description. Features. Applications. Ordering Information

10µA, Low-Dropout, Precision Voltage References MAX872/MAX874. General Description. Features. Applications. Ordering Information 9-; Rev 2; 6/97, Low-Dropout, General Description The / precision 2. and 4.96 micropower voltage references consume a maximum of only and operate from supply voltages up to. The combination of ultra-low

More information

Low-Jitter, 8kHz Reference Clock Synthesizer Outputs MHz

Low-Jitter, 8kHz Reference Clock Synthesizer Outputs MHz 19-3530; Rev 0; 1/05 Low-Jitter, 8kHz Reference General Description The low-cost, high-performance clock synthesizer with an 8kHz input reference clock provides six buffered LVTTL clock outputs at 35.328MHz.

More information

Rail-to-Rail, 200kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP

Rail-to-Rail, 200kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP 19-579; Rev ; 12/1 EVALUATION KIT AVAILABLE Rail-to-Rail, 2kHz Op Amp General Description The op amp features a maximized ratio of gain bandwidth (GBW) to supply current and is ideal for battery-powered

More information

+2.7V to +5.5V, Low-Power, Dual, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs

+2.7V to +5.5V, Low-Power, Dual, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs 9-565; Rev ; /99 +.7 to +5.5, Low-Power, Dual, Parallel General Description The MAX5 parallel-input, voltage-output, dual 8-bit digital-to-analog converter (DAC) operates from a single +.7 to +5.5 supply

More information

High-Precision, Low-Voltage, Micropower Op Amp MAX480. General Description. Features. Ordering Information. Applications.

High-Precision, Low-Voltage, Micropower Op Amp MAX480. General Description. Features. Ordering Information. Applications. 9-77; Rev a; /98 High-Precision, Low-oltage, General Description The is a precision micropower operational amplifier with flexible power-supply capability. Its guaranteed µ maximum offset voltage (5µ typ)

More information

OUTPUT UP TO 300mA C2 TOP VIEW FAULT- DETECT OUTPUT. Maxim Integrated Products 1

OUTPUT UP TO 300mA C2 TOP VIEW FAULT- DETECT OUTPUT. Maxim Integrated Products 1 19-1422; Rev 2; 1/1 Low-Dropout, 3mA General Description The MAX886 low-noise, low-dropout linear regulator operates from a 2.5 to 6.5 input and is guaranteed to deliver 3mA. Typical output noise for this

More information

Precision, Low-Power, 6-Pin SOT23 Temperature Sensors and Voltage References

Precision, Low-Power, 6-Pin SOT23 Temperature Sensors and Voltage References 19-2457; Rev 2; 11/03 Precision, Low-Power, 6-Pin SOT23 General Description The are precise, low-power analog temperature sensors combined with a precision voltage reference. They are ideal for applications

More information

Not Recommended for New Designs

Not Recommended for New Designs Not Recommended for New Designs This product was manufactured for Maxim by an outside wafer foundry using a process that is no longer available. It is not recommended for new designs. The data sheet remains

More information

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References 19-38; Rev 3; 6/7 Low-Power, Low-Drift, +2.5V/+5V/+1V General Description The precision 2.5V, 5V, and 1V references offer excellent accuracy and very low power consumption. Extremely low temperature drift

More information

High-Voltage, Low-Power Linear Regulators for

High-Voltage, Low-Power Linear Regulators for 19-3495; Rev ; 11/4 High-oltage, Low-Power Linear Regulators for General Description The are micropower, 8-pin TDFN linear regulators that supply always-on, keep-alive power to CMOS RAM, real-time clocks

More information

6500V/µs, Wideband, High-Output-Current, Single- Ended-to-Differential Line Drivers with Enable

6500V/µs, Wideband, High-Output-Current, Single- Ended-to-Differential Line Drivers with Enable 99 Rev ; /99 EVALUATION KIT AVAILABLE 65V/µs, Wideband, High-Output-Current, Single- General Description The // single-ended-todifferential line drivers are designed for high-speed communications. Using

More information

HART Modem DS8500. Features

HART Modem DS8500. Features Rev 1; 2/09 EVALUATION KIT AVAILABLE General Description The is a single-chip modem with Highway Addressable Remote Transducer (HART) capabilities and satisfies the HART physical layer requirements. The

More information

PART MAX4144ESD MAX4146ESD. Typical Application Circuit. R t IN- IN+ TWISTED-PAIR-TO-COAX CABLE CONVERTER

PART MAX4144ESD MAX4146ESD. Typical Application Circuit. R t IN- IN+ TWISTED-PAIR-TO-COAX CABLE CONVERTER 9-47; Rev ; 9/9 EVALUATION KIT AVAILABLE General Description The / differential line receivers offer unparalleled high-speed performance. Utilizing a threeop-amp instrumentation amplifier architecture,

More information

Precision, High-Bandwidth Op Amp

Precision, High-Bandwidth Op Amp EVALUATION KIT AVAILABLE MAX9622 General Description The MAX9622 op amp features rail-to-rail output and MHz GBW at just 1mA supply current. At power-up, this device autocalibrates its input offset voltage

More information

MAX471CSA. I LOAD TO LOAD or CHARGER LOGIC SUPPLY DISCHARGE/CHARGE

MAX471CSA. I LOAD TO LOAD or CHARGER LOGIC SUPPLY DISCHARGE/CHARGE 19-; Rev 2; 12/96 Precision, High-Side General Description The / are complete, bidirectional, highside current-sense amplifiers for portable PCs, telephones, and other systems where battery/dc power-line

More information

5Ω, Quad, SPST, CMOS Analog Switches

5Ω, Quad, SPST, CMOS Analog Switches 9-393; Rev ; 8/99 5Ω, Quad, SPST, CMOS Analog Switches General Description The quad analog switches feature 5Ω max on-resistance. On-resistance is matched between switches to.5ω max and is flat (.5Ω max)

More information

Not Recommended for New Designs

Not Recommended for New Designs Not Recommended for New Designs The MAX9 was manufactured for Maxim by an outside wafer foundry using a process that is no longer available. It is not recommended for new designs. A Maxim replacement or

More information

Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers MAX4194 MAX4197

Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers MAX4194 MAX4197 General Description The is a variable-gain precision instrumentation amplifier that combines Rail-to-Rail single-supply operation, outstanding precision specifications, and a high gain bandwidth. This

More information

2.5V Video Amplifier with Reconstruction Filter

2.5V Video Amplifier with Reconstruction Filter 19-3674; Rev ; 5/5 2.5V Video Amplifier with Reconstruction Filter General Description The small, low-power video amplifier with integrated reconstruction filter operates from a supply voltage as low as

More information

+3V/+5V, 12-Bit, Serial, Multiplying DACs

+3V/+5V, 12-Bit, Serial, Multiplying DACs 19-126; Rev 1; 9/2 +3/+5, 12-Bit, Serial, Multiplying DACs General Description The are 12-bit, current-output, 4-quadrant multiplying digital-to-analog converters (DACs). These devices are capable of providing

More information

PART 20 IF_IN LO_V CC 10 TANK 11 TANK 13 LO_GND I_IN 5 Q_IN 6 Q_IN 7 Q_IN 18 V CC

PART 20 IF_IN LO_V CC 10 TANK 11 TANK 13 LO_GND I_IN 5 Q_IN 6 Q_IN 7 Q_IN 18 V CC 19-0455; Rev 1; 9/98 EALUATION KIT AAILABLE 3, Ultra-Low-Power Quadrature General Description The combines a quadrature modulator and quadrature demodulator with a supporting oscillator and divide-by-8

More information

Low-Cost, Precision, High-Side Current-Sense Amplifier MAX4172. Features

Low-Cost, Precision, High-Side Current-Sense Amplifier MAX4172. Features 19-1184; Rev 0; 12/96 Low-Cost, Precision, High-Side General Description The is a low-cost, precision, high-side currentsense amplifier for portable PCs, telephones, and other systems where battery/dc

More information

PART MPEG DECODER 10-BIT DAC 10-BIT DAC 10-BIT DAC. Maxim Integrated Products 1

PART MPEG DECODER 10-BIT DAC 10-BIT DAC 10-BIT DAC. Maxim Integrated Products 1 19-3779; Rev 4; 1/7 EVALUATION KIT AVAILABLE Triple-Channel HDTV Filters General Description The are fully integrated solutions for filtering and buffering HDTV signals. The MAX95 operates from a single

More information

Three-Channel, Standard-Definition Video Filters MAX11501/MAX11502

Three-Channel, Standard-Definition Video Filters MAX11501/MAX11502 19-32; Rev 1; 4/8 EVALUATION KIT AVAILABLE Three-Channel, General Description The / integrated filters offer three channels of 5th-order filters for standard-definition video and include output buffers

More information

PART MAX4503CPA MAX4503CSA. Pin Configurations 1 5 V+ COM N.C. V+ 4 MAX4504 MAX4503 DIP/SO

PART MAX4503CPA MAX4503CSA. Pin Configurations 1 5 V+ COM N.C. V+ 4 MAX4504 MAX4503 DIP/SO 9-064; Rev ; /07 Low-Voltage, Dual-Supply, SPST, General Description The are low-voltage, dual-supply, single-pole/single-throw (SPST), CMOS analog switches. The is normally open (NO). The is normally

More information

300MHz, Low-Power, High-Output-Current, Differential Line Driver

300MHz, Low-Power, High-Output-Current, Differential Line Driver 9-; Rev ; /9 EVALUATION KIT AVAILABLE 3MHz, Low-Power, General Description The differential line driver offers high-speed performance while consuming only mw of power. Its amplifier has fully symmetrical

More information

Low-Cost, Micropower, High-Side Current-Sense Amplifier + Comparator + Reference ICs

Low-Cost, Micropower, High-Side Current-Sense Amplifier + Comparator + Reference ICs 9-63; Rev ; /3 Low-Cost, Micropower, High-Side Current-Sense General Description The low-cost, micropower, high-side current-sense supervisors contain a highside current-sense amplifier, bandgap reference,

More information

150mA, Low-Dropout Linear Regulator with Power-OK Output

150mA, Low-Dropout Linear Regulator with Power-OK Output 9-576; Rev ; /99 5mA, Low-Dropout Linear Regulator General Description The low-dropout (LDO) linear regulator operates from a +2.5V to +6.5V input voltage range and delivers up to 5mA. It uses a P-channel

More information

10-Bit, Low-Power, Rail-to-Rail Voltage-Output Serial DAC in SOT23

10-Bit, Low-Power, Rail-to-Rail Voltage-Output Serial DAC in SOT23 19-195; Rev 1; 1/4 1-Bit, Low-Power, Rail-to-Rail General Description The is a small footprint, low-power, 1-bit digital-to-analog converter (DAC) that operates from a single +.7V to +5.5V supply. The

More information

500mA Low-Dropout Linear Regulator in UCSP

500mA Low-Dropout Linear Regulator in UCSP 19-272; Rev ; 1/2 5mA Low-Dropout Linear Regulator in UCSP General Description The low-dropout linear regulator operates from a 2.5V to 5.5V supply and delivers a guaranteed 5mA load current with low 12mV

More information

Receiver for Optical Distance Measurement

Receiver for Optical Distance Measurement 19-47; Rev ; 7/9 EVALUATION KIT AVAILABLE Receiver for Optical Distance Measurement General Description The is a high-gain linear preamplifier for distance measurement applications using a laser beam.

More information

Low-Voltage, 1.8kHz PWM Output Temperature Sensors

Low-Voltage, 1.8kHz PWM Output Temperature Sensors 19-266; Rev 1; 1/3 Low-Voltage, 1.8kHz PWM Output Temperature General Description The are high-accuracy, low-power temperature sensors with a single-wire output. The convert the ambient temperature into

More information

SCLK 4 CS 1. Maxim Integrated Products 1

SCLK 4 CS 1. Maxim Integrated Products 1 19-172; Rev ; 4/ Dual, 8-Bit, Voltage-Output General Description The contains two 8-bit, buffered, voltage-output digital-to-analog converters (DAC A and DAC B) in a small 8-pin SOT23 package. Both DAC

More information

Quad, Rail-to-Rail, Fault-Protected, SPST Analog Switches

Quad, Rail-to-Rail, Fault-Protected, SPST Analog Switches 19-2418; Rev ; 4/2 Quad, Rail-to-Rail, Fault-Protected, General Description The are quad, single-pole/single-throw (SPST), fault-protected analog switches. They are pin compatible with the industry-standard

More information

V OUT. +Denotes lead(pb)-free/rohs-compliant package. PART

V OUT. +Denotes lead(pb)-free/rohs-compliant package. PART 9-346; Rev 2; / 2kHz, 4µA, Rail-to-Rail General Description The single MAX99/MAX99 and dual MAX992/ MAX993 operational amplifiers (op amps) feature a maximized ratio of gain bandwidth (GBW) to supply current

More information

EVALUATION KIT AVAILABLE 10-Bit, Dual, Nonvolatile, Linear-Taper Digital Potentiometers TOP VIEW

EVALUATION KIT AVAILABLE 10-Bit, Dual, Nonvolatile, Linear-Taper Digital Potentiometers TOP VIEW 19-3562; Rev 2; 1/6 EVALUATION KIT AVAILABLE 1-Bit, Dual, Nonvolatile, Linear-Taper General Description The 1-bit (124-tap), dual, nonvolatile, linear-taper, programmable voltage-dividers and variable

More information

I/O Op Amps with Shutdown

I/O Op Amps with Shutdown MHz, μa, Rail-to-Rail General Description The single MAX994/MAX995 and dual MAX996/ MAX997 operational amplifiers feature maximized ratio of gain bandwidth to supply current and are ideal for battery-powered

More information

256-Tap SOT-PoT, Low-Drift Digital Potentiometers in SOT23

256-Tap SOT-PoT, Low-Drift Digital Potentiometers in SOT23 19-1848; Rev ; 1/ 256-Tap SOT-PoT, General Description The MAX54/MAX541 digital potentiometers offer 256-tap SOT-PoT digitally controlled variable resistors in tiny 8-pin SOT23 packages. Each device functions

More information

PART MAX1658C/D MAX1659C/D TOP VIEW

PART MAX1658C/D MAX1659C/D TOP VIEW 19-1263; Rev 0; 7/97 350mA, 16.5V Input, General Description The linear regulators maximize battery life by combining ultra-low supply currents and low dropout voltages. They feature Dual Mode operation,

More information

PART* MAX5354EUA MAX5354EPA TOP VIEW OUT. SPI and QSPI are trademarks of Motorola, Inc. Microwire is a trademark of National Semiconductor Corp.

PART* MAX5354EUA MAX5354EPA TOP VIEW OUT. SPI and QSPI are trademarks of Motorola, Inc. Microwire is a trademark of National Semiconductor Corp. 19-1167; Rev 1; 2/97 1-Bit Voltage-Output DACs General Description The combine a low-power, voltageoutput, 1-bit digital-to-analog converter (DAC) and a precision output amplifier in an 8-pin µmax or DIP

More information

Low-Voltage, High-Speed, Quad, SPST CMOS Analog Switches

Low-Voltage, High-Speed, Quad, SPST CMOS Analog Switches 9-5; Rev ; 7/99 Low-Voltage, High-Speed, Quad, SPST General Description The quad, low-voltage, high-speed, single-pole/single-throw (SPST) analog switches are pin compatible with the industry-standard

More information

Precision, Low-Power and Low-Noise Op Amp with RRIO

Precision, Low-Power and Low-Noise Op Amp with RRIO MAX41 General Description The MAX41 is a low-power, zero-drift operational amplifier available in a space-saving, 6-bump, wafer-level package (WLP). Designed for use in portable consumer, medical, and

More information

TOP VIEW. Maxim Integrated Products 1

TOP VIEW. Maxim Integrated Products 1 19-295; Rev ; 8/1 High-Current VCOM Drive Buffer General Description The is a high-current operational transconductance amplifier. The is ideal for driving the backplane of an active matrix, dot inversion

More information

TOP VIEW. OUTPUT PRESET 2.5V TO 5V 200mA SHDN 3 4 BP GND. Maxim Integrated Products 1

TOP VIEW. OUTPUT PRESET 2.5V TO 5V 200mA SHDN 3 4 BP GND. Maxim Integrated Products 1 19-2584; Rev ; 1/2 Low-Noise, Low-Dropout, 2mA General Description The low-noise, low-dropout linear regulator operates from a 2.5V to 6.5V input and delivers up to 2mA. Typical output noise is 3µV RMS,

More information

OUT+ OUT- PV CC MAX4295 GND PGND VCM SHDN PGND SS FS2. Maxim Integrated Products 1

OUT+ OUT- PV CC MAX4295 GND PGND VCM SHDN PGND SS FS2. Maxim Integrated Products 1 9-746; Rev 3; 3/5 Mono, 2W, Switch-Mode (Class D) General Description The mono, switch-mode (Class D) audio power amplifier operates from a single +2.7V to +5.5V supply. The has >85% efficiency and is

More information

TOP VIEW. HD Recorders TSSOP

TOP VIEW. HD Recorders TSSOP 9-446; Rev ; /8 EVALUATION KIT AVAILABLE Low-Cost, -Channel, HD/PS/SD/BP General Description The / integrated -channel video filters for high-definition (HD), progressive-scan (PS), standard-definition

More information

OSC2 Selector Guide appears at end of data sheet. Maxim Integrated Products 1

OSC2 Selector Guide appears at end of data sheet. Maxim Integrated Products 1 9-3697; Rev 0; 4/05 3-Pin Silicon Oscillator General Description The is a silicon oscillator intended as a low-cost improvement to ceramic resonators, crystals, and crystal oscillator modules as the clock

More information

10Ω, Quad, SPST, +3V Logic-Compatible Analog Switches

10Ω, Quad, SPST, +3V Logic-Compatible Analog Switches 19-218; Rev 1; 9/8 1Ω, Quad, SPST, +3V Logic-Compatible General Description Maxim s analog switches feature low on-resistance (1Ω max) and 1.5Ω onresistance matching between channels. These switches are

More information

+2.7V to +5.5V, Low-Power, Triple, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs

+2.7V to +5.5V, Low-Power, Triple, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs 19-1560; Rev 1; 7/05 +2.7V to +5.5V, Low-Power, Triple, Parallel General Description The parallel-input, voltage-output, triple 8-bit digital-to-analog converter (DAC) operates from a single +2.7V to +5.5V

More information

EVALUATION KIT AVAILABLE Precision, High-Bandwidth Op Amp

EVALUATION KIT AVAILABLE Precision, High-Bandwidth Op Amp 19-227; Rev ; 9/1 EVALUATION KIT AVAILABLE Precision, High-Bandwidth Op Amp General Description The op amp features rail-to-rail output and MHz GBW at just 1mA supply current. At power-up, this device

More information

PART. Maxim Integrated Products 1

PART. Maxim Integrated Products 1 - + 9-; Rev ; / Low-Cost, High-Slew-Rate, Rail-to-Rail I/O Op Amps in SC7 General Description The MAX9/MAX9/MAX9 single/dual/quad, low-cost CMOS op amps feature Rail-to-Rail input and output capability

More information

TOP VIEW. Maxim Integrated Products 1

TOP VIEW. Maxim Integrated Products 1 19-3474; Rev 2; 8/07 Silicon Oscillator with Low-Power General Description The dual-speed silicon oscillator with reset is a replacement for ceramic resonators, crystals, crystal oscillator modules, and

More information

50mA, Frequency-Selectable, Switched-Capacitor Voltage Converters

50mA, Frequency-Selectable, Switched-Capacitor Voltage Converters 19-39; Rev ; /9 5mA, Frequency-Selectable, General Description The MAX6/MAX61 charge-pump voltage converters invert input voltages ranging from 1.5V to 5.5V, or double input voltages ranging from.5v to

More information

MAX9812/MAX9813 Tiny, Low-Cost, Single/Dual-Input, Fixed-Gain Microphone Amplifiers with Integrated Bias

MAX9812/MAX9813 Tiny, Low-Cost, Single/Dual-Input, Fixed-Gain Microphone Amplifiers with Integrated Bias General Description The MAX982/MAX983 are single/dual-input, 20dB fixed-gain microphone amplifiers. They offer tiny packaging and a low-noise, integrated microphone bias, making them ideal for portable

More information

17µA Max, Dual/Quad, Single-Supply, Precision Op Amps

17µA Max, Dual/Quad, Single-Supply, Precision Op Amps 19-127; Rev. 1; 11/98 General Description The MAX478 and MAX479 are dual and quad micropower, precision op amps available in 8-pin and 14-pin DIP and small-outline packages, respectively. Both devices

More information

CLK_EN CLK_SEL. Q3 THIN QFN-EP** (4mm x 4mm) Maxim Integrated Products 1

CLK_EN CLK_SEL. Q3 THIN QFN-EP** (4mm x 4mm) Maxim Integrated Products 1 19-2575; Rev 0; 10/02 One-to-Four LVCMOS-to-LVPECL General Description The low-skew, low-jitter, clock and data driver distributes one of two single-ended LVCMOS inputs to four differential LVPECL outputs.

More information

Precision, Micropower, 1.8V Supply, Low-Dropout, SOT23 Voltage Reference

Precision, Micropower, 1.8V Supply, Low-Dropout, SOT23 Voltage Reference 19-2211; Rev 2; 12/2 Precision, Micropower, 1.8V Supply, General Description The is a precision, low-voltage, low-dropout, micropower voltage reference in a SOT23 package. This three-terminal reference

More information

Four-Channel, Standard-Definition Video Filters MAX11504/MAX11505

Four-Channel, Standard-Definition Video Filters MAX11504/MAX11505 9-57; Rev ; /7 EVALUATION KIT AVAILABLE Four-Channel, Standard-Definition General Description The integrated filters offer four channels of 5th order filters for standard-definition video and include output

More information

Not Recommended for New Designs

Not Recommended for New Designs Not Recommended for New Designs The MAX99 was manufactured for Maxim by an outside wafer foundry using a process that is no longer available. It is not recommended for new designs. A Maxim replacement

More information

EVALUATION KIT AVAILABLE 28V, PWM, Step-Up DC-DC Converter PART V IN 3V TO 28V

EVALUATION KIT AVAILABLE 28V, PWM, Step-Up DC-DC Converter PART V IN 3V TO 28V 19-1462; Rev ; 6/99 EVALUATION KIT AVAILABLE 28V, PWM, Step-Up DC-DC Converter General Description The CMOS, PWM, step-up DC-DC converter generates output voltages up to 28V and accepts inputs from +3V

More information

TOP VIEW. Maxim Integrated Products 1

TOP VIEW. Maxim Integrated Products 1 19-1857; Rev ; 11/ EVALUATION KIT AVAILABLE General Description The low-power, 8-bit, dual-channel, analog-to-digital converters (ADCs) feature an internal track/hold (T/H) voltage reference (/), clock,

More information

PART MAX5166NECM MAX5166MCCM MAX5166LECM MAX5166MECM OUT31 MAX5166 TQFP. Maxim Integrated Products 1

PART MAX5166NECM MAX5166MCCM MAX5166LECM MAX5166MECM OUT31 MAX5166 TQFP. Maxim Integrated Products 1 9-456; Rev ; 8/99 32-Channel Sample/Hold Amplifier General Description The MAX566 contains four -to-8 multiplexers and 32 sample/hold amplifiers. The sample/hold amplifiers are organized into four octal

More information

TOP VIEW. Maxim Integrated Products 1

TOP VIEW. Maxim Integrated Products 1 19-1812; Rev ; 1/1 5mA, Low-Dropout, General Description The low-dropout linear regulator operates from a +2.5V to +5.5V supply and delivers a guaranteed 5mA load current with low 12mV dropout. The high-accuracy

More information

High-Accuracy, 76V, High-Side Current Monitors in SOT23 MAX4007/MAX4008. Features

High-Accuracy, 76V, High-Side Current Monitors in SOT23 MAX4007/MAX4008. Features 19-2743; Rev 3; 4/07 High-Accuracy, 76V, High-Side General Description The precision, high-side, high-voltage current monitors are specifically designed for monitoring photodiode current in fiber applications.

More information

Not Recommended for New Designs

Not Recommended for New Designs Not Recommended for New Designs This product was manufactured for Maxim by an outside wafer foundry using a process that is no longer available. It is not recommended for new designs. The data sheet remains

More information

1.25Gbps/2.5Gbps, +3V to +5.5V, Low-Noise Transimpedance Preamplifiers for LANs

1.25Gbps/2.5Gbps, +3V to +5.5V, Low-Noise Transimpedance Preamplifiers for LANs 19-4796; Rev 1; 6/00 EVALUATION KIT AVAILABLE 1.25Gbps/2.5Gbps, +3V to +5.5V, Low-Noise General Description The is a transimpedance preamplifier for 1.25Gbps local area network (LAN) fiber optic receivers.

More information

Dual, Audio, Log Taper Digital Potentiometers

Dual, Audio, Log Taper Digital Potentiometers 19-2049; Rev 3; 1/05 Dual, Audio, Log Taper Digital Potentiometers General Description The dual, logarithmic taper digital potentiometers, with 32-tap points each, replace mechanical potentiometers in

More information

High-Voltage, Low-Power Linear Regulators for Notebook Computers

High-Voltage, Low-Power Linear Regulators for Notebook Computers 19-1225; Rev 3; 9/4 High-Voltage, Low-Power Linear Regulators General Description The are micropower, SOT23-5 linear regulators that supply always-on, keep-alive power to CMOS RAM and microcontrollers

More information

PART MAX5304EUA TOP VIEW OUT 8 CONTROL INPUT REGISTER. Maxim Integrated Products 1

PART MAX5304EUA TOP VIEW OUT 8 CONTROL INPUT REGISTER. Maxim Integrated Products 1 19-1562; Rev ; 1/99 1-Bit Voltage-Output General Description The combines a low-power, voltage-output, 1-bit digital-to-analog converter () and a precision output amplifier in an 8-pin µmax package. It

More information

Dual 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometers

Dual 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometers EVALUATION KIT AVAILABLE MAX5391/MAX5393 General Description The MAX5391/MAX5393 dual 256-tap, volatile, lowvoltage linear taper digital potentiometers offer three end-to-end resistance values of 1kΩ,

More information

PART MAX2265 MAX2266 TOP VIEW. TDMA AT +30dBm. Maxim Integrated Products 1

PART MAX2265 MAX2266 TOP VIEW. TDMA AT +30dBm. Maxim Integrated Products 1 19-; Rev 3; 2/1 EVALUATION KIT MANUAL FOLLOWS DATA SHEET 2.7V, Single-Supply, Cellular-Band General Description The // power amplifiers are designed for operation in IS-9-based CDMA, IS-136- based TDMA,

More information

TOP VIEW COM2. Maxim Integrated Products 1

TOP VIEW COM2. Maxim Integrated Products 1 19-3472; Rev ; 1/4 Quad SPST Switches General Description The quad single-pole/single-throw (SPST) switch operates from a single +2V to +5.5V supply and can handle signals greater than the supply rail.

More information

±80V Fault-Protected, 2Mbps, Low Supply Current CAN Transceiver

±80V Fault-Protected, 2Mbps, Low Supply Current CAN Transceiver 19-2425; Rev 0; 4/02 General Description The interfaces between the control area network (CAN) protocol controller and the physical wires of the bus lines in a CAN. It is primarily intended for industrial

More information

MAX889TESA -40 C to +85 C 8 SO 2MHz MAX889SESA -40 C to +85 C 8 SO 1MHz MAX889RESA -40 C to +85 C 8 SO 0.5MHz. Maxim Integrated Products 1

MAX889TESA -40 C to +85 C 8 SO 2MHz MAX889SESA -40 C to +85 C 8 SO 1MHz MAX889RESA -40 C to +85 C 8 SO 0.5MHz. Maxim Integrated Products 1 19-1774; Rev ; 7/ EVALUATION KIT AVAILABLE High-Frequency, Regulated, General Description The inverting charge pump delivers a regulated negative output voltage at loads of up to 2. The device operates

More information

MAX2387/MAX2388/MAX2389

MAX2387/MAX2388/MAX2389 19-13; Rev 1; /1 EVALUATION KIT AVAILABLE W-CDMA LNA/Mixer ICs General Description The MAX37/MAX3/ low-noise amplifier (LNA), downconverter mixers designed for W-CDMA applications, are ideal for ARIB (Japan)

More information

ECL/PECL Dual Differential 2:1 Multiplexer

ECL/PECL Dual Differential 2:1 Multiplexer 19-2484; Rev 0; 7/02 ECL/PECL Dual Differential 2:1 Multiplexer General Description The fully differential dual 2:1 multiplexer (mux) features extremely low propagation delay (560ps max) and output-to-output

More information

Maxim Integrated Products 1

Maxim Integrated Products 1 19-9; Rev ; 7/ +V Precision Voltage Reference General Description The is a precision voltage reference that is pretrimmed to within ±.1% of V. The reference features excellent temperature stability (as

More information

High-Speed, 3V/5V, Rail-to-Rail, Single-Supply Comparators MAX961/MAX962

High-Speed, 3V/5V, Rail-to-Rail, Single-Supply Comparators MAX961/MAX962 19-119; Rev 0; 9/96 High-Speed, 3/, Rail-to-Rail, General Description The are high-speed, single/dual comparators with internal hysteresis. These devices are optimized for single +3 or + operation. The

More information

MAX5452EUB 10 µmax 50 U10C-4 MAX5451EUD 14 TSSOP 10 U14-1

MAX5452EUB 10 µmax 50 U10C-4 MAX5451EUD 14 TSSOP 10 U14-1 9-997; Rev 2; 2/06 Dual, 256-Tap, Up/Down Interface, General Description The are a family of dual digital potentiometers that perform the same function as a mechanical potentiometer or variable resistor.

More information

PART MXD1013C/D MXD1013PD MXD1013UA MXD1013SE PART NUMBER EXTENSION (MXD1013 )

PART MXD1013C/D MXD1013PD MXD1013UA MXD1013SE PART NUMBER EXTENSION (MXD1013 ) 19-094; Rev 0; /97 -in-1 Silicon Delay Line General Description The contai three independent, monolithic, logic-buffered delay lines with delays ranging from 10 to 200. Nominal accuracy is ±2 for a 10

More information

TOP VIEW COUT1 COM2. Maxim Integrated Products 1

TOP VIEW COUT1 COM2. Maxim Integrated Products 1 19-77; Rev ; 7/4.75Ω, Dual SPDT Audio Switch with General Description The dual, single-pole/double-throw (SPDT) switch operates from a single +2V to +5.5V supply and features rail-to-rail signal handling.

More information

Single-Supply, Low-Power, Serial 8-Bit ADCs

Single-Supply, Low-Power, Serial 8-Bit ADCs 19-1822; Rev 1; 2/2 Single-Supply, Low-Power, Serial 8-Bit ADCs General Description The / low-power, 8-bit, analog-todigital converters (ADCs) feature an internal track/hold (T/H), voltage reference, monitor,

More information

S 500µA (typ) Supply Current S TSSOP 16-Pin Package S -40 C to +85 C Ambient Temperature Range S Functionally Compatible to DG411, DG412, and DG413

S 500µA (typ) Supply Current S TSSOP 16-Pin Package S -40 C to +85 C Ambient Temperature Range S Functionally Compatible to DG411, DG412, and DG413 19-572; Rev ; 12/1 Quad SPST +7V Analog Switches General Description The are analog switches with a low on-resistance of 1I (max) that conduct equally well in both directions. All devices have a rail-to-rail

More information

MAX4661CWE. Pin Configurations/Functional Diagrams/Truth Tables IN2 NC2 V- NO2 MAX4662 NO3 COM3 IN3 SSOP/SO/DIP MAX4662 LOGIC SWITCH OFF

MAX4661CWE. Pin Configurations/Functional Diagrams/Truth Tables IN2 NC2 V- NO2 MAX4662 NO3 COM3 IN3 SSOP/SO/DIP MAX4662 LOGIC SWITCH OFF 9-56; Rev ; 7/99 General Description The // quad analog switches feature low on-resistance of 2.5Ω max. On-resistance is matched between switches to.5ω max and is flat (.5Ω max) over the specified signal

More information

Dual SPDT Negative Rail Analog Switches with ±VCC Capability

Dual SPDT Negative Rail Analog Switches with ±VCC Capability 19-4244; Rev 1; 12/8 EVALUATION KIT AVAILABLE Dual SPDT Negative Rail Analog Switches General Description The MAX1454/MAX1455/MAX1455A/MAX1456 dual single-pole/double-throw (SPDT) audio switches feature

More information

Dual, Low-Noise, Low-Dropout, 160mA Linear Regulators in SOT23

Dual, Low-Noise, Low-Dropout, 160mA Linear Regulators in SOT23 19-1818; Rev 1; 1/1 Dual, Low-Noise, Low-Dropout, 16mA Linear General Description The dual, low-noise, low-dropout linear regulators operate from a +2.5V to +6.5V input and deliver up to 16mA each of continuous

More information

Low-Power, Low-Glitch, Octal 12-Bit Voltage- Output DACs with Serial Interface

Low-Power, Low-Glitch, Octal 12-Bit Voltage- Output DACs with Serial Interface 9-232; Rev 0; 8/0 Low-Power, Low-Glitch, Octal 2-Bit Voltage- Output s with Serial Interface General Description The are 2-bit, eight channel, lowpower, voltage-output, digital-to-analog converters (s)

More information

Single/Dual/Quad High-Speed, Ultra Low-Power, Single-Supply TTL Comparators

Single/Dual/Quad High-Speed, Ultra Low-Power, Single-Supply TTL Comparators 19-129; Rev. 3; 7/94 Single/Dual/Quad High-Speed, Ultra Low-Power, General Description The MAX97/MAX98/MAX99 dual, quad, and single high-speed, ultra low-power voltage comparators are designed for use

More information

Low-Cost, UCSP/SOT23, Micropower, High-Side Current-Sense Amplifier with Voltage Output

Low-Cost, UCSP/SOT23, Micropower, High-Side Current-Sense Amplifier with Voltage Output 19-1548; Rev 3; 12/5 Low-Cost, UCSP/SOT23, Micropower, High-Side General Description The MAX4372 low-cost, precision, high-side currentsense amplifier is available in a tiny, space-saving SOT23-5-pin package.

More information

MAX V Capable, Low-R ON, Beyond-the-Rails DPDT Analog Switch

MAX V Capable, Low-R ON, Beyond-the-Rails DPDT Analog Switch Click here for production status of specific part numbers. MAX2327 12V Capable, Low-R ON, General Description The MAX2327 ultra-small, low-on-resistance (R ON ) double-pole/double-throw (DPDT) analog switches

More information

Universal Input Switchmode Controller

Universal Input Switchmode Controller Universal Input Switchmode Controller Si9120 FEATURES 10- to 0- Input Range Current-Mode Control 12-mA Output Drive Internal Start-Up Circuit Internal Oscillator (1 MHz) and DESCRIPTION The Si9120 is a

More information

W-CDMA Upconverter and PA Driver with Power Control

W-CDMA Upconverter and PA Driver with Power Control 19-2108; Rev 1; 8/03 EVALUATION KIT AVAILABLE W-CDMA Upconverter and PA Driver General Description The upconverter and PA driver IC is designed for emerging ARIB (Japan) and ETSI-UMTS (Europe) W-CDMA applications.

More information

Precision, Micropower, Low-Dropout, SC70 Series Voltage Reference

Precision, Micropower, Low-Dropout, SC70 Series Voltage Reference 19-2428; Rev ; 4/2 Precision, Micropower, Low-Dropout, SC7 General Description The family of precision, low-dropout, micropower voltage references are available in the miniature 3-pin SC7 surface-mount

More information

Low-Noise, Precision, +2.5V/+4.096V/+5V Voltage References

Low-Noise, Precision, +2.5V/+4.096V/+5V Voltage References 19-1139; Rev 4; 1/1 Low-Noise, Precision, +2.5V/+4.96V/+5V General Description The // are low-noise, precision voltage references with extremely low 1ppm/ C temperature coefficients and excellent ±.2%

More information

Not Recommended for New Designs

Not Recommended for New Designs Not Recommended for New Designs This product was manufactured for Maxim by an outside wafer foundry using a process that is no longer available. It is not recommended for new designs. The data sheet remains

More information

PART MAX4631ESE MAX4633CPE MAX4632EPE MAX4633MJE MAX4632CSE MAX4632CPE MAX4632ESE MAX4632MJE MAX4633CSE MAX4633ESE MAX4633EPE

PART MAX4631ESE MAX4633CPE MAX4632EPE MAX4633MJE MAX4632CSE MAX4632CPE MAX4632ESE MAX4632MJE MAX4633CSE MAX4633ESE MAX4633EPE 19-1515; Rev ; 7/99 Fault-Protected, High-oltage, General Description The high-voltage, dual analog switches are pin compatible with the industry-standard DG41/DG43/DG45. They upgrade the existing devices

More information

Dual, 256-Tap, Nonvolatile, SPI-Interface, Linear-Taper Digital Potentiometers

Dual, 256-Tap, Nonvolatile, SPI-Interface, Linear-Taper Digital Potentiometers 19-3478; Rev 4; 4/1 EVALUATION KIT AVAILABLE Dual, 256-Tap, Nonvolatile, SPI-Interface, General Description The dual, linear-taper, digital potentiometers function as mechanical potentiometers with a simple

More information

MAX4601CWE. Pin Configurations/Functional Diagrams/Truth Tables IN2 NO2 MAX4602 NO3 COM3 IN3 SSOP/SO/DIP MAX4602 LOGIC SWITCH OFF

MAX4601CWE. Pin Configurations/Functional Diagrams/Truth Tables IN2 NO2 MAX4602 NO3 COM3 IN3 SSOP/SO/DIP MAX4602 LOGIC SWITCH OFF 9-396; Rev ; /99 2.5Ω, Quad, SPST, General Description The MAX46/MAX462/MAX463 quad analog switches feature low on-resistance of 2.5Ω max. On-resistance is matched between switches to.5ω max and is flat

More information