The Essence of Chapter 3

Size: px
Start display at page:

Download "The Essence of Chapter 3"

Transcription

1 The Essence of Chapter 3 A short summary of the essence of Chapter 3 in MEDICAL INSTRUMENTATION, APPLICATION AND DESIGN, 3 rd edition By Fred- Johan Pettersen, Oslo University Hospital This is primarily meant as notes for the lecturer, but if the students find it useful, that s fine, but keep in mind that it is not defining the syllabus in FYS4250/FYS9250 in any way Analog signal processing We have a selection of building blocks available when we re about to make a circuit for linear signal processing Most of these are based on the opamp It is mostly used in one of three basic configurations: figure 1 a) non- inverting amplifier, figure 1 b) inverding amplifier, and figure 1 c) differential amplifier In addition, there are two special variants: figure 1 d) unity- hain amplifier/buffer, and figure 1 e) summation amplifier a) Non- inverting amplifier b) Inverting amplifier c) Difference amplifier d) Unity- gain amplifier, a special case of the non- inverting amplifier 1

2 e) Summation amplifier, a special case of the inverting amplifier Figur 1: Lineære opamp circuits The ideal opamp The ideal opamp has a number of characteristics: " "# 0! "# =!"! "! This makes our analysis a bit simpler There are some requirements, though The opamp should not go into saturation (try to give an output voltage higher than it is supposed to), one must stay within legal input voltage range, and a (somewhat) linear circuit with feedback is normally required, like the circuits in figure 1 The simplifications are: The voltage on both inputs are the same It will not flow any current at all into the inputs Figure 2: Opamp 2

3 The non- inverting amplifier Have a look at figure 1 a) Since this is an idealistic circuit, we know that = And since the two resistors form a voltage divider, we have enough to work with, and we end up with V IN = V UT R 2 R 1 + R 2! V UT V IN = R 1 + R 2 R 2 =1+ R 1 R 2 In the special case where =, ie removes it, and/or let " = 0, ie shorts it, we get the circuit in figure 1 e) We can easily fint the gain for this amplifier by using the expression above, and get V UT V IN =1+ 0 R 2 =1+ R 1! =1+ 0! =1 The inverting amplifier Shave a peek at figure 1 b) Again, the opamp is ideal, and the voltage on both inputs are 0 V This means that " = " " And since IIN cannot enter the opamp, it has to find it s way through RF which causes a voltage drop And due to the idealistic opamp, the left side of the RF is 0 V, the right side voltage is given by wich means that = 0 " = " " " = " A special variant is shown in figure 1 d) Instead of only one input voltage & resistor, there is a bunch of them IIN will now be a sum of the currents through all input reisitors, and given by " = "! "! + "! "! + + "# "# So if all input resistor are identical, we have made a circuit that sums the input voltages! Neat, don t you think? The difference amplifier The difference amplifier in 1 c) won t be analysed to death, but I simply state that where AD is differential gain =!! =!! If =! =!, =! =! and the opamp is really ideal, this is correct But unfortunately, such idealism is more common in political programs than in real life So 3

4 we introduce a new and important quantity called ACM, or common- mode gain if you prefer Inserted into the previous equation, we get =!! + "!! The fun thing now is that with a new quantity, we may define even more quantities (and it s not for bugging you, even it may seem so) CMRR, Common Mode Rejection Ratio is defined as!"#! = 20 log " The circuit has a number of drawbacks: Denne kretsen har flere ulemper: Relatively low CMRR, especially at high AD Input impedance is low (equal to RIN) IIN will vary with VCM Let s try to fix this We can fix the low imput impedance by adding a couple of unity- gain amplifiers to each of the inputs (shown in figure 3 a) This is nice, but what we have not fixed is the low CMRR, and the requirements on resistor matching is still very high In other words: Close, but no cigar Let s try again The circuit in figure 3 b) has it all The input impedance is OK since the inputs are connected directly to the opamp inputs And since we are living in a (semi- )ideal world, we know that the voltage across R1 is!!, and then we get =!!! And since this current must go through the two R2s, we can find the voltage at the output of the opamps:!!!! = 2 + =!!!! In other words, the diferential signal is amplified by!!, while the common- mode signal is the same, 1 We got =!! and " = 1 for this stage The next stage is known: We can choose between low AD & low ACM or high AD & high ACM If we are smart, and I dare say that we are, we go for low AD & low ACM Since we have introduced a gain in the input stage, we don t need much gain in the second stage, and that gives us the opportunity to make a difference amplifier (or a subtractor, if you prefer) with low ACM So what do we end up with? Differential gain is taken care of by the input stage + a small contribution from the second stage The first stage does not contribute to the common- mode gain, but ACM of the second stage is lowered So all- in- all, we have the same gain as we got in a simple difference amplifier, but the common- mode gain is lower, giving us an improved CMRR! Oh, and lets not forget that we also get high- impedance inputs The expression for the differential gain is! =!! 4

5 To make your life easier, some companies have made small ICs that contain one or more instrumentation amplifiers These will normally miss R1, but let the user connect a suitable resistor, and thus let the user control gain How nice In other words: The Instrumentation Amplifier is a difference amplifier on steroids! a) Differanseforsterker med forbedret inngangsimpedans b: Instrumenteringsforsterker Figur 3: Differanse- og instrumenteringsforsterkere Frequency domain If we expand our view a bit, we can replace all resistances in the above equations with impedances Frequency dependent impedances that are complex numbers Signals: o Voltages:! " o Currents:! " Resistors: o Resistors:!!" =! o Capacitors:!!" =!!"# o Inductors:!!" =!"# The!" is the imaginary number times omega which is frequency given in radians An example of how we can alter our basic inverting amplifier is shown in figure 4 5

6 Figur 4: Lavpassfilter / integrator The gain of the circuit in figure 4 is given by " = "!"#$!"#$%&!" "!" =!"!" =!"#! =!!"! We can see that for high frequencies, the equation goes towards zero, while it is very high for low frequencies, and for DC, it goes towards infinity This means that we must change it a bit to get a circuit that will work We add RFF The gain can now be re- calculated, and we get Quick verification:!" = " =!"#! =! "!"!"!!!!" a) Set frequency to 0, and evaluate the equation above You ll see that gain is the same as for a normal noninverting amplifier This makes sense since the capacitor can be considered a open connection at DC b) Set frequency to, and evaluate the equation above You ll see that gain is zero This makes sence since the capacitor is effectively a short for very high frequencies, and the output is now shorted to the +- input of the opamp which is equal to zero thanks to it s idealism This means that we can create a number of circuits that has frequency- dependent characteristics Examples are low- pass filters like the one above, or we can move the capacitor to the input, and get a high- pass filter, or we can make band- pass or band- stop filters Just for the fun of it: Let s try to have a look at the circuit in figure 4 in the time- domain You (might or might not) remember that the voltage- current relationship for a capacitor is given by! = 1!" Let s disregard the RFF for simplicity, and let s see what we got Well, we know that the output voltage is minus whatever voltage drop we got across the feedback device (the capacitor), and we know the current that is goind to flow through it, se let s put this into a equation: 6

7 = 1!"!" = 1! " = 1!!"! We got an integrator! How cool is that? And since you are so incredible col too, I m sure you can imagine what opportunities we have if we play around with inductors as well Or capacitors in other positions Non- linear analogue functions Fun with diodes It was fun replacing the resistors in figure 1 with inductors and capacitors Bt what happens if we replace a resistor by a nonlinear device such as a diode? The diode has voltage- current relations that is more or less given by =!! 1!! or! ln So if we replace RI by a diode in forward- direction as shown in figure 5 a, we get This is an exponential amplifier! Thrilling =!"!!! And is we put the diode where RF used to be, we get an logarithmic amplifier described by = ln!! ln "! Fun facts: 1 If we let VIN be constant for the circuit in figure 5 b, we will have a circuit with an output propotional to temperature since VT is, indeed, propotional to temperature 2 Want to do multiplication? Check out this, and consider the two circuits in figure 5!" = "!!!"! Witsome imagination, it is possible to do division as well Det var vel fint? Morsom fakta: Med konstant VIN vil VO være direkte proposjonal med diodetemperaturen temperatursensor! 7

8 a) Exponential amplifier b) Logaritmic amplifier Figure 5: Non- linear amplifiers Rectifiers This sections is not about amplifiers, and we will just explain the principles It is possible to refine these circuits, but that is beyond the scope of this piece of text Have a look at the circuit in figure 6 a) Add a sinus- ike the one in figure 6 b) Since the diode conduct current in only one direction, the output is something like the one shown in figure 6 b) If we refine the circuit, we get something like the circuit in figure 6 c) The new waveforms is shown in figure 6 d a) Half- wave rectifier b) Waveform from half- wave rectifier c) Full wave rectifier d) Waveform from full- wave rectifier Figure 6: Rectifiers and waveforms Comparator If you want to behave really unlinearly, you may use a comparator As the name implies, it compares It is basically an opamp with an output stage that gives a logical output Figure 7 says it all Comparators may be made with or without hysteresis 8

9 a) Symbol b) Waveforms Figure 7: Comparator Phase- sensitive demodulators If we should feel the desire of picking only one frequency component out of a signal, then a phase- sensitive demodulator is our choise It can be made both in hardware and software, so we ll only look at the principle here It is really simple: Multiplicate a reference signal with values 1 and - 1 to the input signal as shown in figure 8 a) Then use a low- pass filter to remove the higher frequency components Figure 8 b) shows three set of waveforms illustrating different cases Signals A show what happens if the reference signal and input signal has different frequency Average output is 0 Signals B show what happens if the reference signal and input signal has same frequency and phaseaverage output is max Signals C show what happens if the reference signal and input signal has same frequency, but phase difference is 90 degreesaverage output is 0 For those of you without anything else to do, go ahead and draw more examples and/or phases! Be my guest! a) Principle for a phase- sensitive demodulator 9

10 b) Waveforms Figure 8: Phase- sensitive demodulator Last words Open- loop gain tells us something about circuit stability Closed- loop gain tells us how a circuit amplifies our signal Gain- Bandwidt, GBW, is simply gain multiplied by frequency for an opamp at a given frequency For simplicity, choose a frequency where gain is 1, and GBW is equal to that frequency Slew- rate tells us how fast an opamp can alter it s output voltage Important for large signals since it may limit the opamps high- frequency performance Offset voltage is how far away from desired voltage a signal is For instance, opamps typically has 1 mv offset on the inputs This may be amplified Noise is both generated within most devices and is received from the outside Rule of thumb: Place as much gain as possible as early as possible in a chain of amplifiers Bode- plot is useful, and you may read more here: 10

Operational Amplifiers

Operational Amplifiers Fundamentals of op-amp Operation modes Golden rules of op-amp Op-amp circuits Inverting & non-inverting amplifier Unity follower, integrator & differentiator Introduction An operational amplifier, or op-amp,

More information

Op-amp characteristics Operational amplifiers have several very important characteristics that make them so useful:

Op-amp characteristics Operational amplifiers have several very important characteristics that make them so useful: Operational Amplifiers A. Stolp, 4/22/01 rev, 2/6/12 An operational amplifier is basically a complete high-gain voltage amplifier in a small package. Op-amps were originally developed to perform mathematical

More information

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance Differential amplifiers are widely used in engineering instrumentation Differential Amplifier : input resistance v 2 v 1 ir 1 ir 1 2iR 1 R in v 2 i v 1 2R 1 Differential

More information

EE LINEAR INTEGRATED CIRCUITS & APPLICATIONS

EE LINEAR INTEGRATED CIRCUITS & APPLICATIONS UNITII CHARACTERISTICS OF OPAMP 1. What is an opamp? List its functions. The opamp is a multi terminal device, which internally is quite complex. It is a direct coupled high gain amplifier consisting of

More information

Analog Electronics. Lecture Pearson Education. Upper Saddle River, NJ, All rights reserved.

Analog Electronics. Lecture Pearson Education. Upper Saddle River, NJ, All rights reserved. Analog Electronics V Lecture 5 V Operational Amplifers Op-amp is an electronic device that amplify the difference of voltage at its two inputs. V V 8 1 DIP 8 1 DIP 20 SMT 1 8 1 SMT Operational Amplifers

More information

Operational amplifiers

Operational amplifiers Operational amplifiers Bởi: Sy Hien Dinh INTRODUCTION Having learned the basic laws and theorems for circuit analysis, we are now ready to study an active circuit element of paramount importance: the operational

More information

ELT 215 Operational Amplifiers (LECTURE) Chapter 5

ELT 215 Operational Amplifiers (LECTURE) Chapter 5 CHAPTER 5 Nonlinear Signal Processing Circuits INTRODUCTION ELT 215 Operational Amplifiers (LECTURE) In this chapter, we shall present several nonlinear circuits using op-amps, which include those situations

More information

Analog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology-Bombay

Analog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology-Bombay Analog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology-Bombay Week -02 Module -01 Non Idealities in Op-Amp (Finite Gain, Finite Bandwidth and Slew Rate)

More information

Introduction to Op Amps

Introduction to Op Amps Introduction to Op Amps ENGI 242 ELEC 222 Basic Op-Amp The op-amp is a differential amplifier with a very high open loop gain 25k AVOL 500k (much higher for FET inputs) high input impedance 500kΩ ZIN 10MΩ

More information

tyuiopasdfghjklzxcvbnmqwertyuiopas dfghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq

tyuiopasdfghjklzxcvbnmqwertyuiopas dfghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq qwertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfgh jklzxcvbnmqwertyuiopasdfghjklzxcvb nmqwertyuiopasdfghjklzxcvbnmqwer Instrumentation Device Components Semester 2 nd tyuiopasdfghjklzxcvbnmqwertyuiopas

More information

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Linear Integrated Circuits Applications

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Linear Integrated Circuits Applications About the Tutorial Linear Integrated Circuits are solid state analog devices that can operate over a continuous range of input signals. Theoretically, they are characterized by an infinite number of operating

More information

Applied Electronics II

Applied Electronics II Applied Electronics II Chapter 3: Operational Amplifier Part 1- Op Amp Basics School of Electrical and Computer Engineering Addis Ababa Institute of Technology Addis Ababa University Daniel D./Getachew

More information

Operational Amplifier (Op-Amp)

Operational Amplifier (Op-Amp) Operational Amplifier (Op-Amp) 1 Contents Op-Amp Characteristics Op-Amp Circuits - Noninverting Amplifier - Inverting Amplifier - Comparator - Differential - Summing - Integrator - Differentiator 2 Introduction

More information

Lesson number one. Operational Amplifier Basics

Lesson number one. Operational Amplifier Basics What About Lesson number one Operational Amplifier Basics As well as resistors and capacitors, Operational Amplifiers, or Op-amps as they are more commonly called, are one of the basic building blocks

More information

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A. Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica Analogue Electronics Paolo Colantonio A.A. 2056 Operational amplifiers (op amps) Operational amplifiers (op amps) are among

More information

EEE118: Electronic Devices and Circuits

EEE118: Electronic Devices and Circuits EEE118: Electronic Devices and Circuits Lecture XVII James E Green Department of Electronic Engineering University of Sheffield j.e.green@sheffield.ac.uk Review Looked (again) at Feedback for signals and

More information

Special-Purpose Operational Amplifier Circuits

Special-Purpose Operational Amplifier Circuits Special-Purpose Operational Amplifier Circuits Instrumentation Amplifier An instrumentation amplifier (IA) is a differential voltagegain device that amplifies the difference between the voltages existing

More information

6. The Operational Amplifier

6. The Operational Amplifier 1 6. The Operational Amplifier This chapter introduces a new component which, although technically nonlinear, can be treated effectively with linear models This element known as the operational amplifier

More information

Chapter 10: Operational Amplifiers

Chapter 10: Operational Amplifiers Chapter 10: Operational Amplifiers Differential Amplifier Differential amplifier has two identical transistors with two inputs and two outputs. 2 Differential Amplifier Differential amplifier has two identical

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com 8.1 Operational Amplifier (Op-Amp) UNIT 8: Operational Amplifier An operational amplifier ("op-amp") is a DC-coupled high-gain electronic voltage amplifier with a differential input and, usually, a single-ended

More information

Lecture 2 Analog circuits. Seeing the light..

Lecture 2 Analog circuits. Seeing the light.. Lecture 2 Analog circuits Seeing the light.. I t IR light V1 9V +V IR detection Noise sources: Electrical (60Hz, 120Hz, 180Hz.) Other electrical IR from lights IR from cameras (autofocus) Visible light

More information

Operational Amplifiers

Operational Amplifiers CHAPTER 5 Operational Amplifiers Operational amplifiers (or Op Amp) is an active circuit element that can perform mathematical operations between signals (e.g., amplify, sum, subtract, multiply, divide,

More information

Operational Amplifiers. Boylestad Chapter 10

Operational Amplifiers. Boylestad Chapter 10 Operational Amplifiers Boylestad Chapter 10 DC-Offset Parameters Even when the input voltage is zero, an op-amp can have an output offset. The following can cause this offset: Input offset voltage Input

More information

Operational Amplifier BME 360 Lecture Notes Ying Sun

Operational Amplifier BME 360 Lecture Notes Ying Sun Operational Amplifier BME 360 Lecture Notes Ying Sun Characteristics of Op-Amp An operational amplifier (op-amp) is an analog integrated circuit that consists of several stages of transistor amplification

More information

Integrators, differentiators, and simple filters

Integrators, differentiators, and simple filters BEE 233 Laboratory-4 Integrators, differentiators, and simple filters 1. Objectives Analyze and measure characteristics of circuits built with opamps. Design and test circuits with opamps. Plot gain vs.

More information

Positive Feedback and Oscillators

Positive Feedback and Oscillators Physics 3330 Experiment #5 Fall 2011 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active

More information

Laboratory 4 Operational Amplifier Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170

Laboratory 4 Operational Amplifier Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170 Laboratory 4 Operational Amplifier Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170 Megan Ong Diana Wu Wong B01 Tuesday 11am April 28 st, 2015 Abstract: The

More information

ETIN25 Analogue IC Design. Laboratory Manual Lab 2

ETIN25 Analogue IC Design. Laboratory Manual Lab 2 Department of Electrical and Information Technology LTH ETIN25 Analogue IC Design Laboratory Manual Lab 2 Jonas Lindstrand Martin Liliebladh Markus Törmänen September 2011 Laboratory 2: Design and Simulation

More information

Basic electronics Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras Lecture- 24

Basic electronics Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras Lecture- 24 Basic electronics Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras Lecture- 24 Mathematical operations (Summing Amplifier, The Averager, D/A Converter..) Hello everybody!

More information

Lecture 2 Analog circuits. Seeing the light..

Lecture 2 Analog circuits. Seeing the light.. Lecture 2 Analog circuits Seeing the light.. I t IR light V1 9V +V IR detection Noise sources: Electrical (60Hz, 120Hz, 180Hz.) Other electrical IR from lights IR from cameras (autofocus) Visible light

More information

UNIT - 1 OPERATIONAL AMPLIFIER FUNDAMENTALS

UNIT - 1 OPERATIONAL AMPLIFIER FUNDAMENTALS UNIT - 1 OPERATIONAL AMPLIFIER FUNDAMENTALS 1.1 Basic operational amplifier circuit- hte basic circuit of an operational amplifier is as shown in above fig. has a differential amplifier input stage and

More information

EE301 Electronics I , Fall

EE301 Electronics I , Fall EE301 Electronics I 2018-2019, Fall 1. Introduction to Microelectronics (1 Week/3 Hrs.) Introduction, Historical Background, Basic Consepts 2. Rewiev of Semiconductors (1 Week/3 Hrs.) Semiconductor materials

More information

Operational Amplifiers

Operational Amplifiers Basic Electronics Syllabus: Introduction to : Ideal OPAMP, Inverting and Non Inverting OPAMP circuits, OPAMP applications: voltage follower, addition, subtraction, integration, differentiation; Numerical

More information

Linear IC s and applications

Linear IC s and applications Questions and Solutions PART-A Unit-1 INTRODUCTION TO OP-AMPS 1. Explain data acquisition system Jan13 DATA ACQUISITION SYSYTEM BLOCK DIAGRAM: Input stage Intermediate stage Level shifting stage Output

More information

Experiments #7. Operational Amplifier part 1

Experiments #7. Operational Amplifier part 1 Experiments #7 Operational Amplifier part 1 1) Objectives: The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op-amp

More information

Assume availability of the following components to DESIGN and DRAW the circuits of the op. amp. applications listed below:

Assume availability of the following components to DESIGN and DRAW the circuits of the op. amp. applications listed below: ========================================================================================== UNIVERSITY OF SOUTHERN MAINE Dept. of Electrical Engineering TEST #3 Prof. M.G.Guvench ELE343/02 ==========================================================================================

More information

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page!

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page! ECE3204 D2015 Lab 1 The Operational Amplifier: Inverting and Non-inverting Gain Configurations Gain-Bandwidth Product Relationship Frequency Response Limitation Transfer Function Measurement DC Errors

More information

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps Introduction to Analog Interfacing ECE/CS 5780/6780: Embedded System Design Scott R. Little Lecture 19: Operational Amplifiers Most embedded systems include components that measure and/or control real-world

More information

Emitter Coupled Differential Amplifier

Emitter Coupled Differential Amplifier Emitter Coupled Differential Amplifier Returning to the transistor, a very common and useful circuit is the differential amplifier. It's basic circuit is: Vcc Q1 Q2 Re Vee To see how this circuit works,

More information

Scheme I Sample Question Paper

Scheme I Sample Question Paper Sample Question Paper Marks : 70 Time: 3 Hrs. Q.1) Attempt any FIVE of the following. 10 Marks a) Classify configuration of differential amplifier. b) Draw equivalent circuit of an OPAMP c) Suggest and

More information

L02 Operational Amplifiers Applications 1

L02 Operational Amplifiers Applications 1 L02 Operational Amplifiers Applications 1 Chapter 9 Ideal Operational Amplifiers and Op-Amp Circuits Donald A. Neamen (2009). Microelectronics: Circuit Analysis and Design, 4th Edition, Mc-Graw-Hill Prepared

More information

DMI COLLEGE OF ENGINEERING

DMI COLLEGE OF ENGINEERING DMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING EC8453 - LINEAR INTEGRATED CIRCUITS Question Bank (II-ECE) UNIT I BASICS OF OPERATIONAL AMPLIFIERS PART A 1.Mention the

More information

EE 3305 Lab I Revised July 18, 2003

EE 3305 Lab I Revised July 18, 2003 Operational Amplifiers Operational amplifiers are high-gain amplifiers with a similar general description typified by the most famous example, the LM741. The LM741 is used for many amplifier varieties

More information

Operational amplifiers

Operational amplifiers Chapter 8 Operational amplifiers An operational amplifier is a device with two inputs and one output. It takes the difference between the voltages at the two inputs, multiplies by some very large gain,

More information

Chapter 2. Operational Amplifiers

Chapter 2. Operational Amplifiers Chapter 2. Operational Amplifiers Tong In Oh 1 Objective Terminal characteristics of the ideal op amp How to analyze op amp circuits How to use op amps to design amplifiers How to design more sophisticated

More information

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 019.101 Introductory Analog Electronics Laboratory Laboratory No. READING ASSIGNMENT

More information

Analog Electronics. Lecture. Op-amp Circuits and Active Filters. Muhammad Amir Yousaf

Analog Electronics. Lecture. Op-amp Circuits and Active Filters. Muhammad Amir Yousaf Analog Electronics Lecture Op-amp Circuits and Active Filters Muhammad Amir Yousaf Instrumentation Amplifiers An instrumentation amplifier (IA) amplifies the voltage difference between its terminals. It

More information

LINEAR IC APPLICATIONS

LINEAR IC APPLICATIONS 1 B.Tech III Year I Semester (R09) Regular & Supplementary Examinations December/January 2013/14 1 (a) Why is R e in an emitter-coupled differential amplifier replaced by a constant current source? (b)

More information

Lecture #4 Basic Op-Amp Circuits

Lecture #4 Basic Op-Amp Circuits Summer 2015 Ahmad El-Banna Faculty of Engineering Department of Electronics and Communications GEE336 Electronic Circuits II Lecture #4 Basic Op-Amp Circuits Instructor: Dr. Ahmad El-Banna Agenda Some

More information

Operational Amplifier as A Black Box

Operational Amplifier as A Black Box Chapter 8 Operational Amplifier as A Black Box 8. General Considerations 8.2 Op-Amp-Based Circuits 8.3 Nonlinear Functions 8.4 Op-Amp Nonidealities 8.5 Design Examples Chapter Outline CH8 Operational Amplifier

More information

Experiments #6. Differential Amplifier

Experiments #6. Differential Amplifier Experiments #6 Differential Amplifier 1) Objectives: To understand the DC and AC operation of a differential amplifier. To measure DC voltages and currents in differential amplifier. To obtain measured

More information

UNIT- IV ELECTRONICS

UNIT- IV ELECTRONICS UNIT- IV ELECTRONICS INTRODUCTION An operational amplifier or OP-AMP is a DC-coupled voltage amplifier with a very high voltage gain. Op-amp is basically a multistage amplifier in which a number of amplifier

More information

EET 438a Automatic Control Systems Technology Laboratory 1 Analog Sensor Signal Conditioning

EET 438a Automatic Control Systems Technology Laboratory 1 Analog Sensor Signal Conditioning EET 438a Automatic Control Systems Technology Laboratory 1 Analog Sensor Signal Conditioning Objectives: Use analog OP AMP circuits to scale the output of a sensor to signal levels commonly found in practical

More information

LESSON PLAN. SUBJECT: LINEAR IC S AND APPLICATION NO OF HOURS: 52 FACULTY NAME: Mr. Lokesh.L, Hema. B DEPT: ECE. Portions to be covered

LESSON PLAN. SUBJECT: LINEAR IC S AND APPLICATION NO OF HOURS: 52 FACULTY NAME: Mr. Lokesh.L, Hema. B DEPT: ECE. Portions to be covered LESSON PLAN SUBJECT: LINEAR IC S AND APPLICATION SUB CODE: 15EC46 NO OF HOURS: 52 FACULTY NAME: Mr. Lokesh.L, Hema. B DEPT: ECE Class# Chapter title/reference literature Portions to be covered MODULE I

More information

Lab 2: Discrete BJT Op-Amps (Part I)

Lab 2: Discrete BJT Op-Amps (Part I) Lab 2: Discrete BJT Op-Amps (Part I) This is a three-week laboratory. You are required to write only one lab report for all parts of this experiment. 1.0. INTRODUCTION In this lab, we will introduce and

More information

Unit WorkBook 1 Level 4 ENG U22 Electronic Circuits and Devices 2018 UniCourse Ltd. All Rights Reserved. Sample

Unit WorkBook 1 Level 4 ENG U22 Electronic Circuits and Devices 2018 UniCourse Ltd. All Rights Reserved. Sample Pearson BTEC Level 4 Higher Nationals in Engineering (RQF) Unit 22: Electronic Circuits and Devices Unit Workbook 1 in a series of 4 for this unit Learning Outcome 1 Operational Amplifiers Page 1 of 23

More information

Op-Amp Simulation Part II

Op-Amp Simulation Part II Op-Amp Simulation Part II EE/CS 5720/6720 This assignment continues the simulation and characterization of a simple operational amplifier. Turn in a copy of this assignment with answers in the appropriate

More information

KINGS COLLEGE OF ENGINEERING* DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING* DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING* DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : LINEAR INTEGRATED CIRCUITS SUB CODE: EC1254 YEAR / SEMESTER : II / IV UNIT- I IC FABRICATION

More information

Analog Filter and. Circuit Design Handbook. Arthur B. Williams. Singapore Sydney Toronto. Mc Graw Hill Education

Analog Filter and. Circuit Design Handbook. Arthur B. Williams. Singapore Sydney Toronto. Mc Graw Hill Education Analog Filter and Circuit Design Handbook Arthur B. Williams Mc Graw Hill Education New York Chicago San Francisco Athens London Madrid Mexico City Milan New Delhi Singapore Sydney Toronto Contents Preface

More information

EECE251 Circuit Analysis I Set 5: Operational Amplifiers

EECE251 Circuit Analysis I Set 5: Operational Amplifiers EECE251 Circuit Analysis I Set 5: Operational Amplifiers Shahriar Mirabbasi Department of Electrical and Computer Engineering University of British Columbia shahriar@ece.ubc.ca 1 Amplifiers There are various

More information

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 019 Spring Term 00.101 Introductory Analog Electronics Laboratory Laboratory No.

More information

Başkent University Department of Electrical and Electronics Engineering EEM 311 Electronics II Experiment 8 OPERATIONAL AMPLIFIERS

Başkent University Department of Electrical and Electronics Engineering EEM 311 Electronics II Experiment 8 OPERATIONAL AMPLIFIERS Başkent University Department of Electrical and Electronics Engineering EEM 311 Electronics II Experiment 8 Objectives: OPERATIONAL AMPLIFIERS 1.To demonstrate an inverting operational amplifier circuit.

More information

inverting V CC v O -V EE non-inverting

inverting V CC v O -V EE non-inverting Chapter 4 Operational Amplifiers 4.1 Introduction The operational amplifier (opamp for short) is perhaps the most important building block for the design of analog circuits. Combined with simple negative

More information

(Refer Slide Time: 2:29)

(Refer Slide Time: 2:29) Analog Electronic Circuits Professor S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology Delhi Lecture no 20 Module no 01 Differential Amplifiers We start our discussion

More information

I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab

I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab Lab 3: 74 Op amp Purpose: The purpose of this laboratory is to become familiar with a two stage operational amplifier (op amp). Students will analyze the circuit manually and compare the results with SPICE.

More information

An electronic unit that behaves like a voltagecontrolled

An electronic unit that behaves like a voltagecontrolled 1 An electronic unit that behaves like a voltagecontrolled voltage source. An active circuit element that amplifies, sums, subtracts, multiply, divide, differentiate or integrates a signal 2 A typical

More information

Section 4: Operational Amplifiers

Section 4: Operational Amplifiers Section 4: Operational Amplifiers Op Amps Integrated circuits Simpler to understand than transistors Get back to linear systems, but now with gain Come in various forms Comparators Full Op Amps Differential

More information

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz ) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz Solution: a) Input is of constant amplitude of 2 V from 0 to 0. ms and 2 V from 0. ms to 0.2 ms. The output

More information

ES250: Electrical Science. HW6: The Operational Amplifier

ES250: Electrical Science. HW6: The Operational Amplifier ES250: Electrical Science HW6: The Operational Amplifier Introduction This chapter introduces the operational amplifier or op amp We will learn how to analyze and design circuits that contain op amps,

More information

Lecture 2 Analog circuits...or How to detect the Alarm beacon

Lecture 2 Analog circuits...or How to detect the Alarm beacon Lecture 2 Analog circuits..or How to detect the Alarm beacon I t IR light generates collector current V1 9V +V I c Q1 OP805 IR detection Vout Noise sources: Electrical (60Hz, 120Hz, 180Hz.) Other electrical

More information

ECEN 325 Lab 5: Operational Amplifiers Part III

ECEN 325 Lab 5: Operational Amplifiers Part III ECEN Lab : Operational Amplifiers Part III Objectives The purpose of the lab is to study some of the opamp configurations commonly found in practical applications and also investigate the non-idealities

More information

Operational Amplifiers (Op Amps)

Operational Amplifiers (Op Amps) Operational Amplifiers (Op Amps) Introduction * An operational amplifier is modeled as a voltage controlled voltage source. * An operational amplifier has a very high input impedance and a very high gain.

More information

Question Paper Code: 21398

Question Paper Code: 21398 Reg. No. : Question Paper Code: 21398 B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013 Fourth Semester Electrical and Electronics Engineering EE2254 LINEAR INTEGRATED CIRCUITS AND APPLICATIONS (Regulation

More information

Chapter 10: The Operational Amplifiers

Chapter 10: The Operational Amplifiers Chapter 10: The Operational Amplifiers Electronic Devices Operational Amplifiers (op-amp) Op-amp is an electronic device that amplify the difference of voltage at its two inputs. It has two input terminals,

More information

Chapter 9: Operational Amplifiers

Chapter 9: Operational Amplifiers Chapter 9: Operational Amplifiers The Operational Amplifier (or op-amp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,

More information

C H A P T E R 02. Operational Amplifiers

C H A P T E R 02. Operational Amplifiers C H A P T E R 02 Operational Amplifiers The Op-amp Figure 2.1 Circuit symbol for the op amp. Figure 2.2 The op amp shown connected to dc power supplies. The Ideal Op-amp 1. Infinite input impedance 2.

More information

+ power. V out. - power +12 V -12 V +12 V -12 V

+ power. V out. - power +12 V -12 V +12 V -12 V Question 1 Questions An operational amplifier is a particular type of differential amplifier. Most op-amps receive two input voltage signals and output one voltage signal: power 1 2 - power Here is a single

More information

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering EE320L Electronics I Laboratory Laboratory Exercise #2 Basic Op-Amp Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective: The purpose of

More information

Lecture 2 Analog circuits. Seeing the light..

Lecture 2 Analog circuits. Seeing the light.. Lecture 2 Analog circuits Seeing the light.. I t IR light V1 9V +V Q1 OP805 RL IR detection Vout Noise sources: Electrical (60Hz, 120Hz, 180Hz.) Other electrical IR from lights IR from cameras (autofocus)

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Jim Emery 4/7/2011 Contents 1 Operational Amplifiers 1 11 The Inverting Amplifier 3 12 The Slew rate 5 13 The Noninverting Amplifier 5 14 The Voltage Follower 6 15 The Differentiating

More information

Electronics I. laboratory measurement guide

Electronics I. laboratory measurement guide Electronics I. laboratory measurement guide Andras Meszaros, Mark Horvath 2015.02.01. 5. Measurement Basic circuits with operational amplifiers 2015.02.01. In this measurement you will need both controllable

More information

IFB270 Advanced Electronic Circuits

IFB270 Advanced Electronic Circuits IFB270 Advanced Electronic Circuits Chapter 13: Basic op-amp circuits Prof. Manar Mohaisen Department of EEC Engineering Introduction Review of the Precedent Lecture Op-amp operation modes and parameters

More information

GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION MARCH-2012 SCHEME OF VALUATION

GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION MARCH-2012 SCHEME OF VALUATION GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD II YEAR PUC EXAMINATION MARCH-0 SCHEME OF VALUATION Subject Code: 0 Subject: Qn. PART - A 0. Which is the largest of three

More information

2. There are many circuit simulators available today, here are just few of them. They have different flavors (mostly SPICE-based), platforms,

2. There are many circuit simulators available today, here are just few of them. They have different flavors (mostly SPICE-based), platforms, 1. 2. There are many circuit simulators available today, here are just few of them. They have different flavors (mostly SPICE-based), platforms, complexity, performance, capabilities, and of course price.

More information

Analog Circuits. Operational Amplifiers (Opamps) DC Power Supplies Oscillators

Analog Circuits. Operational Amplifiers (Opamps) DC Power Supplies Oscillators Analog Circuits Operational Amplifiers (Opamps) DC Power Supplies Oscillators Operational Amplifiers Highgain differential amplifier, using voltage feedback, providing stabilized voltage gain Symbol of

More information

EKT 314 ELECTRONIC INSTRUMENTATION

EKT 314 ELECTRONIC INSTRUMENTATION EKT 314 ELECTRONIC INSTRUMENTATION Elektronik Instrumentasi Semester 2 2012/2013 Chapter 3 Analog Signal Conditioning Session 2 Mr. Fazrul Faiz Zakaria school of computer and communication engineering.

More information

Digital Applications of the Operational Amplifier

Digital Applications of the Operational Amplifier Lab Procedure 1. Objective This project will show the versatile operation of an operational amplifier in a voltage comparator (Schmitt Trigger) circuit and a sample and hold circuit. 2. Components Qty

More information

Modeling Amplifiers as Analog Filters Increases SPICE Simulation Speed

Modeling Amplifiers as Analog Filters Increases SPICE Simulation Speed Modeling Amplifiers as Analog Filters Increases SPICE Simulation Speed By David Karpaty Introduction Simulation models for amplifiers are typically implemented with resistors, capacitors, transistors,

More information

EE501 Lab 7 Opamp Measurement

EE501 Lab 7 Opamp Measurement EE501 Lab 7 Opamp Measurement Report due: Nov. 6, 2014 Objective: 1. Understand basic opamp measurement circuits. 2. Build testbench circuits for opamp measurement. Tasks: Op amps are very high gain amplifiers

More information

Lecture #2 Operational Amplifiers

Lecture #2 Operational Amplifiers Spring 2015 Benha University Faculty of Engineering at Shoubra ECE-322 Electronic Circuits (B) Lecture #2 Operational Amplifiers Instructor: Dr. Ahmad El-Banna Agenda Introduction Op-Amps Input Modes and

More information

Testing and Stabilizing Feedback Loops in Today s Power Supplies

Testing and Stabilizing Feedback Loops in Today s Power Supplies Keywords Venable, frequency response analyzer, impedance, injection transformer, oscillator, feedback loop, Bode Plot, power supply design, open loop transfer function, voltage loop gain, error amplifier,

More information

IFB270 Advanced Electronic Circuits

IFB270 Advanced Electronic Circuits IFB270 Advanced Electronic Circuits Chapter 14: Special-purpose op-amp circuits Prof. Manar Mohaisen Department of EEC Engineering eview of the Precedent Lecture Introduce the level detection op-amp circuits

More information

To configure op-amp in inverting and non-inverting amplifier mode and measure their gain.

To configure op-amp in inverting and non-inverting amplifier mode and measure their gain. AIM: SUBJECT: ANALOG ELECTRONICS (2392) EXPERIMENT NO. 5 DATE : TITLE: TO CONFIGURE OP-AMP IN INVERTING AND NON- INVERTING AMPLIFIER MODE AND MEASURE THEIR GAIN. DOC. CODE : DIET/EE/3 rd SEM REV. NO. :./JUNE-25

More information

Common Reference Example

Common Reference Example Operational Amplifiers Overview Common reference circuit diagrams Real models of operational amplifiers Ideal models operational amplifiers Inverting amplifiers Noninverting amplifiers Summing amplifiers

More information

ECEN 474/704 Lab 8: Two-Stage Miller Operational Amplifier

ECEN 474/704 Lab 8: Two-Stage Miller Operational Amplifier ECEN 474/704 Lab 8: Two-Stage Miller Operational Amplifier Objective Design, simulate and test a two-stage operational amplifier Introduction Operational amplifiers (opamp) are essential components of

More information

MAS.836 HOW TO BIAS AN OP-AMP

MAS.836 HOW TO BIAS AN OP-AMP MAS.836 HOW TO BIAS AN OP-AMP Op-Amp Circuits: Bias, in an electronic circuit, describes the steady state operating characteristics with no signal being applied. In an op-amp circuit, the operating characteristic

More information

First a quick announcement. In case you have forgotten, your lab notebooks are due tomorrow with the post-lab

First a quick announcement. In case you have forgotten, your lab notebooks are due tomorrow with the post-lab MITOCW L09a-6002 All right. Let's get started. I guess this watch is a couple minutes fast. First a quick announcement. In case you have forgotten, your lab notebooks are due tomorrow with the post-lab

More information

ENGR 201 Homework, Fall 2018

ENGR 201 Homework, Fall 2018 Chapter 1 Voltage, Current, Circuit Laws (Selected contents from Chapter 1-3 in the text book) 1. What are the following instruments? Draw lines to match them to their cables: Fig. 1-1 2. Complete the

More information

Kent Bertilsson Muhammad Amir Yousaf

Kent Bertilsson Muhammad Amir Yousaf Today s topics Analog System (Rev) Frequency Domain Signals in Frequency domain Frequency analysis of signals and systems Transfer Function Basic elements: R, C, L Filters RC Filters jw method (Complex

More information

The Operational Amplifier This lab is adapted from the Kwantlen Lab Manual

The Operational Amplifier This lab is adapted from the Kwantlen Lab Manual Name: Partner(s): Desk #: Date: Purpose The Operational Amplifier This lab is adapted from the Kwantlen Lab Manual The purpose of this lab is to examine the functions of operational amplifiers (op amps)

More information