Embracing Randomness A Roadmap to Truly Disappearing Electronics

Size: px
Start display at page:

Download "Embracing Randomness A Roadmap to Truly Disappearing Electronics"

Transcription

1 Embracing Randomness A Roadmap to Truly Disappearing Electronics I&C Research Days Lausanne July 8, 04 Jan M. Rabaey and the PicoRadio Group Berkeley Wireless Research Center Department of EECS, University of California, Berkeley

2 Bell s Law: A New Computer Class Every 10 Years log (people per computer) Meaning in the Device Meaning in the Connection Meaning in the Collection 1940 s 2000 s Year Source: R. Newton

3 Ambient Intelligence (The Concept) An environment where technology is embedded, hidden in the background An environment that is sensitive, adaptive, and responsive to the presence of people and object An environment that augments activities through smart nonexplicit assistance An environment that preserves security, privacy and trustworthiness while utilizing information when needed and appropriate Fred Boekhorst, Philips, ISSCC02

4 Tackling Societal Scale Problems Disaster Mitigation Smart buildings Traffic management Infrastructure maintenance Energy management Medical

5 The Technology is Not Quite There Yet From 10 s of cm 3 and 10 s to 100 s of mw To 10 s of mm 3 and 10 s of µw

6 The Road to Truly Disappearing Electronics Mesoscale lowcost wireless transceivers for ubiquitous wireless data acquisition that are fully integrated Size smaller than 1 cm 3 are dirt cheap ( the Dutch treat ) At or below 1$ minimize power/energy dissipation Limiting power dissipation to 100 µw enables energy scavenging and form selfconfiguring, robust, adhoc networks containing 100 s to 1000 s of nodes Berkeley PicoRadio Project

7 Energy/Power as the Limiting Factor Power Source P/cm 3 (µw/cm 3 ) E/cm 3 (J/cm 3 ) P/cm 3 /yr (µw/cm 3 /Yr) Primary Battery Secondary Battery MicroFuel Cell Ultracapacitor Heat engine Radioactive( 63 Ni) Solar (outside) Solar (inside) 10 Temperature 40 Human Power 330 Air flow 380 Pressure Variation 17 Vibrations 200 Reasonable Target: 100 µw/cm 3 (/year) Courtesy Shad Roundy (ANU and UCB)

8 Practical Means of Energy Scavenging Piezoelectric bimorphs PVDF PZT 90 µw/cm 3 Photovoltaic µw/cm 2 Capacitive converter using MEMS microvibrator 30 µw/cm 3 (on microwave oven) [Shad Roundy (IML,UCB)]

9 Towards a sub100 µw W Integrated Node RF + Antenna Digital Processor(s) Baseband (mixedsignal) Sensors Clock Generation Power Supply Network Some Overall Guidelines Some Overall Guidelines Keep it simple! Minimize the supply voltage and the ambient currents as much as possible Aggressive use of new technologies (RFMEMS, integrated passives, ) Manufacturability is key

10 Towards a sub100 µw W Integrated Node Base Band Voltage Conv RF + Antenna Baseband (mixedsignal) Clock Generation 64K memory GPIO Serial Interface Interface DW8051 µc Locationing Engine Neighbor List DLL System Supervisor Network Queues Digital Processor(s) Sensors Power Supply Network Simplest possible processor Dedicated accelerators when needed Aggressive power management 1V supply, 16 MHz clock 300 mv standby voltage < 1 mw in full operation; < 1 µw standby

11 Towards a sub100 µw W Integrated Node RF + Antenna Baseband (mixedsignal) Clock Generation Energy Source 1 (solar) Energy Source 2 (vibration, ) Conversion Network 1 Reservoir 1 (capacitor) Reservoir 2 (microbattery) Conversion Network 2 Digital Processor(s) Sensors Energy generation and conversion network Power Supply Network Anchor Spring flexure Comb fingers Electrostatic MEMS vibration converters Microbattery

12 Towards a sub100 µw W Integrated Node RF + Antenna Baseband (mixedsignal) Clock Generation MEMS resonator die flips directly onto CMOS for a compact, integrated clock module. Digital Processor(s) Sensors Power Supply Network 1 µw oscillator Wineglass MEMS resonator

13 LowPower RF: Back to The Future (Courtesy of Brian Otis) 2000 Direct Conversion f c = 2GHz >10000 active devices no offchip components 1949 superregenerative fc= 500MHz 2 active devices high quality offchip passives hand tuning D. Yee, UCB

14 Back to the Future ThinFilm Bulk Acoustic Resonator OSC1 MOD1 OSC2 Preamp PA Matching Network MOD2 FBARbased RF Filter A RF Filter RF Filter Env Det Env Det f clock f clock Minimizes use of active components exploits new technologies Uses simple modulation scheme (OOK) Allows efficient nonlinear PA Downconversion through nonlinearity (Envelope Detector) Tx and Rx in 12 mw range (when on)

15 The Incredibly Shrinking Radio FBAR MOD1 MOD2 OSC1 OSC2 Preamp PA Matching Network TX TX On: On: 4 mw mw Stby: 1 mw mw Off: Off: 0 mw mw 130 nm CMOS Carrier frequency: 1.9 GHz 0 dbm OOK Channel Spacing ~ 50MHz kbps/channel 10 µs startup time Total area < 5 mm 2 RF Filter LNA RF Filter RF Filter Env Det Env Det f clock f clock RX RX On: On: 3 mw mw Off: Off: 0 mw mw

16 PicoBeacon: An EnergyScavenging Radio Regulator Energy Storage Capacitor (10 µf) Antenna (ceramic) Single solar cell An exercise in miniaturization and energy scavenging RF Transmitter Light Level Duty Cycle Low Indoor Light 0.36% Fluorescent Indoor Light 0.53% Partly Cloudy Outdoor Light 5.6% Bright Indoor Lamp 11% High Light Conditions Vibration Level 100% Duty Cycle 2.2m/s2 1.6% 5.7m/s2 2.6%

17 The Return of Superregenerative regenerative Fully Integrated Receiver Frontend 400µA when active (~200µW) with 50% quench duty cycle 1200µm 1500µm 1 0 OOK modulated (80 dbm signal)

18 How to go even further? Trading off accuracy for power! Example: subthreshold RF oscillator using integrated LCs 2.4 ns startup time Measurement bias conditions: Vdd=0.5V, Itail=400µA 2layer inductor 3layer inductor Simulations Oscillation Frequency GHz GHz 1.5GHz Diff. Output Swing 76mV 124mV 150mV

19 The Roadmap to Ultradense Networks Trading off accuracy for power Superregenerative: < 500 µw Untuned Subthreshold < 50 µw Untuned mostly passive < 5 µw Resonant body Finfet (NEMS)

20 The Challenge: Simplicity Threatens Reliability Narrowband radios very sensitive to fast fading effects 20 kbps, +1.5dBm 40 kbps, +3dBm 80 kbps, +4.5dBm Broadcast Success Rate [%] /19 h 11/31 h 12/43 h 13/55 h 15/07 h 16/19 h 17/31 h Time BER PicoRadio Meeting NAMP Meeting effective path loss Factor 10 5 in error rate 6 db

21 A Host of Reliability Issues Channels are unreliable Rapidly changing multipath environment Nodes are inherently unreliable May appear at will May move May temporarily run out of energy May break down Cost and power concerns explicitly decrease reliability Narrowband radios increase sensitivity to fast fading Nodes are duty cycled to preserve energy Further reductions in power affect tuning and calibration Other issues such as sensor calibration

22 Providing Robustness Traditional radio s provide robustness through diversity: Frequency: e.g. wideband solutions (hopping) Time: e.g. spreading Spatial: e.g. multiple antenna s All these approaches either come with complexity, synchronization, or acquisition overhead, or might not even be applicable Data traffic irregular, and in very short bursts A more attractive approach: Exploit redundancy Embrace randomness

23 Exploiting Redundancy and Randomness at the Network Level Multihop sensor network Multihop approach reduces transmission overhead Shortest path algorithm seems to be the optimal choice But Tends to exhaust some paths faster Breaks down in presence of unreliable nodes R. Shah et al, 2003.

24 The Impact of Spatial Diversity nodes Broadcast success rate [%] Deep fade due to multipath distance [cm] 2 nodes Data gathered using PicoNodeI testbed Adding a single node already changes broadcast reliability dramatically spatial diversity is the preferred way to provide robustness in sensor networks

25 Regionbased Opportunistic Routing Onehop neighbors Forwarding region Energy per node Opportunistic routing: Network specifies forwarding region MAC randomly chooses nexthop based on connectivity Improves reliability and energy efficiency Probability of packet success

26 Maximizing SleepTime Average power of node Dominated by TX (+RX) power Parameters: 3 packets/sec 200 bits/packet 20 bit preamble 5 neighbors Range: 10 m Synchronization using cycled receiver with Ton/T = 0.1 Dominated by channel monitoring power *based on analytical model including actual PicoRadio power numbers EnYi Lin et al, ICC 2004

27 Maximizing SleepTime A pseudoasynchronous approach: The Cycled Receiver Src T wait DATA (T p ) Wakeup beacon (T b ) ACK (T b ) Dest T Every node wakes up occasionally and asks for work Allows deep sleep mode of node at the expense of rendezvous overhead (power and time) How to choose the wakeup periodicity?

28 Randomizing the Sleep Discipline SLEEP IF YOU CAN If the node is not necessary, goes to sleep and saves power Maintain sufficient connectivity Create a sense of virtual density Allows nodes that run low in power to back off Incoming traffic Controller Sensors For how long should the node be allowed to sleep? Incoming traffic Given: 1. Loss rate 2. Delay constraint 3. Data generation requirement Choose wakeup time Adaptive Traffic & node density Random Exponentially distributed sleeping times. Avoid phase synchronization.

29 Maximizing the SleepTime Nodes estimate traffic and density based on perhop delay. Adaptively change their mean wakeup time based on estimated wakeup rate and latency requirements Sleep time an exponential random variable Dutycycle as a function of density & channel quality Changing densities Deteriorating channel Under all network conditions, only 1% of the packets fail to meet the latency constraints JanaVan Greunen et al, ICC 2004

30 Going One Step Further: Narrowband Untuned Radios Distribution f tol f LO freq Carrierfrequency variance much larger than the bandwidth Challenge: How to make these unmatched radios communicate?

31 A Statistical Communication Paradigm Strength in Numbers Source Forwarding node Destination H Random frequency multihopping Information packet traverses from source to destination in a multihop fashion. Transmitter broadcasts signal to neighboring block on random channel (as determined by process variations). Receivers randomly select channel to listen to K 2 Rx s 4 Rx s 1 Rx 6 Rx s No Tx Collisions Receptions Legal transmission only when single TX, multiple RX

32 A Statistical Communication Paradigm Some Amazing Properties Reliable communication over this unreliable platform indeed possible. Even more, reliability improves EXPONENTIALLY with a linear increase in network density. Few Tx s clean channels Too many Tx s cause collisions And the process is selfregulating D. Petrovic et al., 2004

33 Summary And Perspectives Scaling of technology leads to ever smaller communication and computation nodes Severe energy (power) constraints can only be met by compromising on complexity (or size). But simple nodes/algorithms tend to be unreliable An appealing solution: exploit the power of the numbers, and avoid brittleness by embracing randomness An opportunity for bold innovation! "Research is what I'm doing when I don't know what I'm doing." W. Von Braun The support of CEC, NSF, DARPA, GSRC Marco, and the BWRC sponsoring companies is greatly appreciated.

Ultra Low Power Design The Road to Disappearing Electronics

Ultra Low Power Design The Road to Disappearing Electronics Ultra Low Power Design The Road to Disappearing Electronics Sasimi Workshop, Kanazawa, Japan October 18, 2004 Jan M. Rabaey and the the PicoRadio Group Berkeley Berkeley Wireless Wireless Research Center

More information

Low Power Communication Circuits for WSN

Low Power Communication Circuits for WSN Low Power Communication Circuits for WSN Nate Pletcher, Prof. Jan Rabaey, (B. Otis, Y.H. Chee, S. Gambini, D. Guermandi) Berkeley Wireless Research Center Towards A Micropower Integrated Node power management

More information

Short Distance Wireless and Its Opportunities

Short Distance Wireless and Its Opportunities Short Distance Wireless and Its Opportunities Jan M. Rabaey Fred Burghardt, Yuen-Hui Chee, David Chen, Luca De Nardis, Simone Gambini,, Davide Guermandi, Michael Mark, and Nathan Pletcher BWRC, EECS Dept.

More information

ISSCC 2006 / SESSION 20 / WLAN/WPAN / 20.5

ISSCC 2006 / SESSION 20 / WLAN/WPAN / 20.5 20.5 An Ultra-Low Power 2.4GHz RF Transceiver for Wireless Sensor Networks in 0.13µm CMOS with 400mV Supply and an Integrated Passive RX Front-End Ben W. Cook, Axel D. Berny, Alyosha Molnar, Steven Lanzisera,

More information

Zippy: On-Demand Network Flooding

Zippy: On-Demand Network Flooding Zippy: On-Demand etwork Flooding Felix utton, Bernhard Buchli, Jan Beutel, and Lothar Thiele enys 2015, eoul, outh Korea, 1 st 4 th ovember 2015 enys 2015 Problem tatement Energy-efficient wireless dissemination

More information

UCB Picocube A modular approach to miniature wireless 1 cm μw P avg

UCB Picocube A modular approach to miniature wireless 1 cm μw P avg switch/power board Magnetic shaker uc board radio board sensor board UCB Picocube A modular approach to miniature wireless 1 cm 3 6-10 μw P avg Energy-scavenged pressure, temp and acceleration (3D) sensor

More information

Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso

Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso Node energy consumption The batteries are limited and usually they can t support long term tasks

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [IMEC UWB PHY Proposal] Date Submitted: [4 May, 2009] Source: Dries Neirynck, Olivier Rousseaux (Stichting

More information

Ultra-Low Power Wake-Up Receivers for Wireless Sensor Networks. Nathan Michael Pletcher

Ultra-Low Power Wake-Up Receivers for Wireless Sensor Networks. Nathan Michael Pletcher Ultra-Low Power Wake-Up Receivers for Wireless Sensor Networks by Nathan Michael Pletcher B.S. (Case Western Reserve University) 2002 M.S. (University of California, Berkeley) 2004 A dissertation submitted

More information

WUR-MAC: Energy efficient Wakeup Receiver based MAC Protocol

WUR-MAC: Energy efficient Wakeup Receiver based MAC Protocol WUR-MAC: Energy efficient Wakeup Receiver based MAC Protocol S. Mahlknecht, M. Spinola Durante Institute of Computer Technology Vienna University of Technology Vienna, Austria {mahlknecht,spinola}@ict.tuwien.ac.at

More information

Jan M. Rabaey BWRC University of Berkeley ISLPED 2001, Huntington Beach

Jan M. Rabaey BWRC University of Berkeley   ISLPED 2001, Huntington Beach Wireless Beyond the Third Generation Facing The Energy Challenge Jan M. Rabaey BWRC University of California @ Berkeley http://www.eecs.berkeley.edu/~jan ISLPED 2001, Huntington Beach It s all about Laws

More information

Switched-Capacitor Converters: Big & Small. Michael Seeman Ph.D. 2009, UC Berkeley SCV-PELS April 21, 2010

Switched-Capacitor Converters: Big & Small. Michael Seeman Ph.D. 2009, UC Berkeley SCV-PELS April 21, 2010 Switched-Capacitor Converters: Big & Small Michael Seeman Ph.D. 2009, UC Berkeley SCV-PELS April 21, 2010 Outline Problem & motivation Applications for SC converters Switched-capacitor fundamentals Power

More information

Fachbereich Informatik und Elektrotechnik Ubicomp. Ubiquitous Computing. Ubiquitous Computing, Helmut Dispert

Fachbereich Informatik und Elektrotechnik Ubicomp. Ubiquitous Computing. Ubiquitous Computing, Helmut Dispert Ubicomp Ubiquitous Computing Ubicomp Ubiquitous Computing PicoCube Concept e-cube Concept Ubicomp Picocube: A 1cm3 Sensor Node Powered by Harvested Energy Yuen-Hui Chee, Mike Koplow, Michael Mark, Nathan

More information

SiNANO-NEREID Workshop:

SiNANO-NEREID Workshop: SiNANO-NEREID Workshop: Towards a new NanoElectronics Roadmap for Europe Leuven, September 11 th, 2017 WP3/Task 3.2 Connectivity RF and mmw Design Outline Connectivity, what connectivity? High data rates

More information

Design of Low Power Wake-up Receiver for Wireless Sensor Network

Design of Low Power Wake-up Receiver for Wireless Sensor Network Design of Low Power Wake-up Receiver for Wireless Sensor Network Nikita Patel Dept. of ECE Mody University of Sci. & Tech. Lakshmangarh (Rajasthan), India Satyajit Anand Dept. of ECE Mody University of

More information

Comparison between Preamble Sampling and Wake-Up Receivers in Wireless Sensor Networks

Comparison between Preamble Sampling and Wake-Up Receivers in Wireless Sensor Networks Comparison between Preamble Sampling and Wake-Up Receivers in Wireless Sensor Networks Richard Su, Thomas Watteyne, Kristofer S. J. Pister BSAC, University of California, Berkeley, USA {yukuwan,watteyne,pister}@eecs.berkeley.edu

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.5 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [Elements of an IR-UWB PHY for Body Area Networks] Date Submitted: [0 March, 2009] Source: Olivier Rousseaux,

More information

Pulse-Based Ultra-Wideband Transmitters for Digital Communication

Pulse-Based Ultra-Wideband Transmitters for Digital Communication Pulse-Based Ultra-Wideband Transmitters for Digital Communication Ph.D. Thesis Defense David Wentzloff Thesis Committee: Prof. Anantha Chandrakasan (Advisor) Prof. Joel Dawson Prof. Charles Sodini Ultra-Wideband

More information

Traveling the Wild Frontiers of Ultra-Low Voltage Design

Traveling the Wild Frontiers of Ultra-Low Voltage Design Traveling the Wild Frontiers of Ultra-Low Voltage Design Jan M. Rabaey Director Gigascale Silicon Research Center Co-Director Berkeley Wireless Research Center University of California at Berkeley PATMOS,

More information

RECENT advances in MEMS technology, coupled with

RECENT advances in MEMS technology, coupled with 1740 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 8, AUGUST 2006 An Ultra-Low-Power Injection Locked Transmitter for Wireless Sensor Networks Yuen Hui Chee, Student Member, IEEE, Ali M. Niknejad,

More information

A 1.9GHz RF Transmit Beacon using Environmentally Scavenged Energy

A 1.9GHz RF Transmit Beacon using Environmentally Scavenged Energy A 1.9GHz RF Transmit Beacon using Environmentally Scavenged Energy Shad Roundy, Brian P. Otis*, Yuen-Hui Chee*, Jan M. Rabaey*, Paul Wright *Department of Electrical Engineering and Computer Sciences Mechanical

More information

INTRODUCTION TO WIRELESS SENSOR NETWORKS. CHAPTER 3: RADIO COMMUNICATIONS Anna Förster

INTRODUCTION TO WIRELESS SENSOR NETWORKS. CHAPTER 3: RADIO COMMUNICATIONS Anna Förster INTRODUCTION TO WIRELESS SENSOR NETWORKS CHAPTER 3: RADIO COMMUNICATIONS Anna Förster OVERVIEW 1. Radio Waves and Modulation/Demodulation 2. Properties of Wireless Communications 1. Interference and noise

More information

Wireless Technology for Aerospace Applications. June 3 rd, 2012

Wireless Technology for Aerospace Applications. June 3 rd, 2012 Wireless Technology for Aerospace Applications June 3 rd, 2012 OUTLINE The case for wireless in aircraft and aerospace applications System level limits of wireless technology Security Power (self powered,

More information

Wireless Energy for Battery-less Sensors

Wireless Energy for Battery-less Sensors Wireless Energy for Battery-less Sensors Hao Gao Mixed-Signal Microelectronics Outline System of Wireless Power Transfer (WPT) RF Wireless Power Transfer RF Wireless Power Transfer Ultra Low Power sions

More information

RF MEMS for Low-Power Communications

RF MEMS for Low-Power Communications RF MEMS for Low-Power Communications Clark T.-C. Nguyen Center for Wireless Integrated Microsystems Dept. of Electrical Engineering and Computer Science University of Michigan Ann Arbor, Michigan 48109-2122

More information

Digi-Wave Technology Williams Sound Digi-Wave White Paper

Digi-Wave Technology Williams Sound Digi-Wave White Paper Digi-Wave Technology Williams Sound Digi-Wave White Paper TECHNICAL DESCRIPTION Operating Frequency: The Digi-Wave System operates on the 2.4 GHz Industrial, Scientific, and Medical (ISM) Band, which is

More information

Wireless Networked Systems

Wireless Networked Systems Wireless Networked Systems CS 795/895 - Spring 2013 Lec #4: Medium Access Control Power/CarrierSense Control, Multi-Channel, Directional Antenna Tamer Nadeem Dept. of Computer Science Power & Carrier Sense

More information

Wireless Sensor Networks (aka, Active RFID)

Wireless Sensor Networks (aka, Active RFID) Politecnico di Milano Advanced Network Technologies Laboratory Wireless Sensor Networks (aka, Active RFID) Hardware and Hardware Abstractions Design Challenges/Guidelines/Opportunities 1 Let s start From

More information

DNT900. Low Cost 900 MHz FHSS Transceiver Module with I/O

DNT900. Low Cost 900 MHz FHSS Transceiver Module with I/O DEVELOPMENT KIT (Info Click here) 900 MHz Frequency Hopping Spread Spectrum Transceiver Point-to-point, Point-to-multipoint, Peer-to-peer and Tree-routing Networks Transmitter Power Configurable from 1

More information

DNT2400. Low Cost 2.4 GHz FHSS Transceiver Module with I/O

DNT2400. Low Cost 2.4 GHz FHSS Transceiver Module with I/O 2.4 GHz Frequency Hopping Spread Spectrum Transceiver Point-to-point, Point-to-multipoint, Peer-to-peer and Tree-routing Networks Transmitter Power Configurable from 1 to 63 mw RF Data Rate Configurable

More information

Overview: Trends and Implementation Challenges for Multi-Band/Wideband Communication

Overview: Trends and Implementation Challenges for Multi-Band/Wideband Communication Overview: Trends and Implementation Challenges for Multi-Band/Wideband Communication Mona Mostafa Hella Assistant Professor, ESCE Department Rensselaer Polytechnic Institute What is RFIC? Any integrated

More information

The Mote Revolution: Low Power Wireless Sensor Network Devices

The Mote Revolution: Low Power Wireless Sensor Network Devices The Mote Revolution: Low Power Wireless Sensor Network Devices University of California, Berkeley Joseph Polastre Robert Szewczyk Cory Sharp David Culler The Mote Revolution: Low Power Wireless Sensor

More information

Micromechanical Circuits for Wireless Communications

Micromechanical Circuits for Wireless Communications Micromechanical Circuits for Wireless Communications Clark T.-C. Nguyen Center for Integrated Microsystems Dept. of Electrical Engineering and Computer Science University of Michigan Ann Arbor, Michigan

More information

2.45 GHz Power and Data Transmission for a Low-Power Autonomous Sensors Platform

2.45 GHz Power and Data Transmission for a Low-Power Autonomous Sensors Platform 9.4.45 GHz Power and Data Transmission for a Low-Power Autonomous Sensors Platform Stefano Gregori 1, Yunlei Li 1, Huijuan Li 1, Jin Liu 1, Franco Maloberti 1, 1 Department of Electrical Engineering, University

More information

A Remote-Powered RFID Tag with 10Mb/s UWB Uplink and -18.5dBm-Sensitivity UHF Downlink in 0.18μm CMOS

A Remote-Powered RFID Tag with 10Mb/s UWB Uplink and -18.5dBm-Sensitivity UHF Downlink in 0.18μm CMOS A Remote-Powered RFID Tag with 10Mb/s UWB Uplink and -18.5dBm-Sensitivity UHF Downlink in 0.18μm CMOS Majid Baghaei-Nejad 1, David S. Mendoza 1, Zhuo Zou 1, Soheil Radiom 2, Georges Gielen 2, Li-Rong Zheng

More information

HIGH-SPEED LOW-POWER ON-CHIP GLOBAL SIGNALING DESIGN OVERVIEW. Xi Chen, John Wilson, John Poulton, Rizwan Bashirullah, Tom Gray

HIGH-SPEED LOW-POWER ON-CHIP GLOBAL SIGNALING DESIGN OVERVIEW. Xi Chen, John Wilson, John Poulton, Rizwan Bashirullah, Tom Gray HIGH-SPEED LOW-POWER ON-CHIP GLOBAL SIGNALING DESIGN OVERVIEW Xi Chen, John Wilson, John Poulton, Rizwan Bashirullah, Tom Gray Agenda Problems of On-chip Global Signaling Channel Design Considerations

More information

PAR4CR: THE DEVELOPMENT OF A NEW SDR-BASED PLATFORM TOWARDS COGNITIVE RADIO

PAR4CR: THE DEVELOPMENT OF A NEW SDR-BASED PLATFORM TOWARDS COGNITIVE RADIO PAR4CR: THE DEVELOPMENT OF A NEW SDR-BASED PLATFORM TOWARDS COGNITIVE RADIO Olga Zlydareva Co-authors: Martha Suarez Rob Mestrom Fabian Riviere Outline 1 Introduction System Requirements Methodology System

More information

On-Demand Radio Wave Sensor for Wireless Sensor Networks: Towards a Zero Idle Listening and Zero Sleep Delay MAC Protocol

On-Demand Radio Wave Sensor for Wireless Sensor Networks: Towards a Zero Idle Listening and Zero Sleep Delay MAC Protocol On-Demand Radio Wave Sensor for Wireless Sensor Networks: Towards a Zero Idle Listening and Zero Sleep Delay MAC Protocol Sang Hoon Lee, Yong Soo Bae and Lynn Choi School of Electrical Engineering Korea

More information

Smart Antenna Techniques and Their Application to Wireless Ad Hoc Networks. Plenary Talk at: Jack H. Winters. September 13, 2005

Smart Antenna Techniques and Their Application to Wireless Ad Hoc Networks. Plenary Talk at: Jack H. Winters. September 13, 2005 Smart Antenna Techniques and Their Application to Wireless Ad Hoc Networks Plenary Talk at: Jack H. Winters September 13, 2005 jwinters@motia.com 12/05/03 Slide 1 1 Outline Service Limitations Smart Antennas

More information

Wireless Communication

Wireless Communication Wireless Communication Systems @CS.NCTU Lecture 14: Full-Duplex Communications Instructor: Kate Ching-Ju Lin ( 林靖茹 ) 1 Outline What s full-duplex Self-Interference Cancellation Full-duplex and Half-duplex

More information

Radio Research Directions. Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles

Radio Research Directions. Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles Radio Research Directions Behzad Razavi Communication Circuits Laboratory Electrical Engineering Department University of California, Los Angeles Outline Introduction Millimeter-Wave Transceivers - Applications

More information

SourceSync. Exploiting Sender Diversity

SourceSync. Exploiting Sender Diversity SourceSync Exploiting Sender Diversity Why Develop SourceSync? Wireless diversity is intrinsic to wireless networks Many distributed protocols exploit receiver diversity Sender diversity is a largely unexplored

More information

A 3-10GHz Ultra-Wideband Pulser

A 3-10GHz Ultra-Wideband Pulser A 3-10GHz Ultra-Wideband Pulser Jan M. Rabaey Simone Gambini Davide Guermandi Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2006-136 http://www.eecs.berkeley.edu/pubs/techrpts/2006/eecs-2006-136.html

More information

Ultra Low Power Transceiver for Wireless Body Area Networks

Ultra Low Power Transceiver for Wireless Body Area Networks Ultra Low Power Transceiver for Wireless Body Area Networks Bearbeitet von Jens Masuch, Manuel Delgado-Restituto 1. Auflage 2013. Buch. viii, 122 S. Hardcover ISBN 978 3 319 00097 8 Format (B x L): 15,5

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 20.5 A 2.4GHz CMOS Transceiver and Baseband Processor Chipset for 802.11b Wireless LAN Application George Chien, Weishi Feng, Yungping

More information

Session 3. CMOS RF IC Design Principles

Session 3. CMOS RF IC Design Principles Session 3 CMOS RF IC Design Principles Session Delivered by: D. Varun 1 Session Topics Standards RF wireless communications Multi standard RF transceivers RF front end architectures Frequency down conversion

More information

K.NARSING RAO(08R31A0425) DEPT OF ELECTRONICS & COMMUNICATION ENGINEERING (NOVH).

K.NARSING RAO(08R31A0425) DEPT OF ELECTRONICS & COMMUNICATION ENGINEERING (NOVH). Smart Antenna K.NARSING RAO(08R31A0425) DEPT OF ELECTRONICS & COMMUNICATION ENGINEERING (NOVH). ABSTRACT:- One of the most rapidly developing areas of communications is Smart Antenna systems. This paper

More information

A Brief Review on Low Power Wake-Up Receiver for WSN

A Brief Review on Low Power Wake-Up Receiver for WSN A Brief Review on Low Power Wake-Up Receiver for WSN Nikita patel 1, Neetu kumari 2, Satyajit Anand 3 and Partha Pratim Bhattacharya 4 M.Tech. Student, Dept. of ECE, Mody Institute of Technology and Science,

More information

Power Reduction in RF

Power Reduction in RF Power Reduction in RF SoC Architecture using MEMS Eric Mercier 1 RF domain overview Technologies Piezoelectric materials Acoustic systems Ferroelectric materials Meta materials Magnetic materials RF MEMS

More information

Design of an energy efficient Medium Access Control protocol for wireless sensor networks. Thesis Committee

Design of an energy efficient Medium Access Control protocol for wireless sensor networks. Thesis Committee Design of an energy efficient Medium Access Control protocol for wireless sensor networks Thesis Committee Masters Thesis Defense Kiran Tatapudi Dr. Chansu Yu, Dr. Wenbing Zhao, Dr. Yongjian Fu Organization

More information

Features +5V ASK DATA INPUT. 1.0pF. 8.2pF. 10nH. 100pF. 27nH. 100k. Figure 1

Features +5V ASK DATA INPUT. 1.0pF. 8.2pF. 10nH. 100pF. 27nH. 100k. Figure 1 QwikRadio UHF ASK Transmitter Final General Description The is a single chip Transmitter IC for remote wireless applications. The device employs s latest QwikRadio technology. This device is a true data-in,

More information

All Beamforming Solutions Are Not Equal

All Beamforming Solutions Are Not Equal White Paper All Beamforming Solutions Are Not Equal Executive Summary This white paper compares and contrasts the two major implementations of beamforming found in the market today: Switched array beamforming

More information

LOW COST PHASED ARRAY ANTENNA TRANSCEIVER FOR WPAN APPLICATIONS

LOW COST PHASED ARRAY ANTENNA TRANSCEIVER FOR WPAN APPLICATIONS LOW COST PHASED ARRAY ANTENNA TRANSCEIVER FOR WPAN APPLICATIONS Introduction WPAN (Wireless Personal Area Network) transceivers are being designed to operate in the 60 GHz frequency band and will mainly

More information

Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity

Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity Marvin Onabajo Assistant Professor Analog and Mixed-Signal Integrated Circuits (AMSIC) Research Laboratory Dept.

More information

Maximizing MIMO Effectiveness by Multiplying WLAN Radios x3

Maximizing MIMO Effectiveness by Multiplying WLAN Radios x3 ATHEROS COMMUNICATIONS, INC. Maximizing MIMO Effectiveness by Multiplying WLAN Radios x3 By Winston Sun, Ph.D. Member of Technical Staff May 2006 Introduction The recent approval of the draft 802.11n specification

More information

Increasing Broadcast Reliability for Vehicular Ad Hoc Networks. Nathan Balon and Jinhua Guo University of Michigan - Dearborn

Increasing Broadcast Reliability for Vehicular Ad Hoc Networks. Nathan Balon and Jinhua Guo University of Michigan - Dearborn Increasing Broadcast Reliability for Vehicular Ad Hoc Networks Nathan Balon and Jinhua Guo University of Michigan - Dearborn I n t r o d u c t i o n General Information on VANETs Background on 802.11 Background

More information

Harvesting a Clock from a GSM Signal for the Wake-Up of a Wireless Sensor Network

Harvesting a Clock from a GSM Signal for the Wake-Up of a Wireless Sensor Network Harvesting a Clock from a GSM Signal for the Wake-Up of a Wireless Sensor Network Jonathan K. Brown and David D. Wentzloff University of Michigan Ann Arbor, MI, USA ISCAS 2010 Acknowledgment: This material

More information

CS263: Wireless Communications and Sensor Networks

CS263: Wireless Communications and Sensor Networks CS263: Wireless Communications and Sensor Networks Matt Welsh Lecture 3: Antennas, Propagation, and Spread Spectrum September 30, 2004 2004 Matt Welsh Harvard University 1 Today's Lecture Antennas and

More information

ODMA Opportunity Driven Multiple Access

ODMA Opportunity Driven Multiple Access ODMA Opportunity Driven Multiple Access by Keith Mayes & James Larsen Opportunity Driven Multiple Access is a mechanism for maximizing the potential for effective communication. This is achieved by distributing

More information

VC7300-Series Product Brief

VC7300-Series Product Brief VC7300-Series Product Brief Version: 1.0 Release Date: Jan 16, 2019 Specifications are subject to change without notice. 2018 Vertexcom Technologies, Inc. This document contains information that is proprietary

More information

Data Gathering. Chapter 4. Ad Hoc and Sensor Networks Roger Wattenhofer 4/1

Data Gathering. Chapter 4. Ad Hoc and Sensor Networks Roger Wattenhofer 4/1 Data Gathering Chapter 4 Ad Hoc and Sensor Networks Roger Wattenhofer 4/1 Environmental Monitoring (PermaSense) Understand global warming in alpine environment Harsh environmental conditions Swiss made

More information

An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver

An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver Farbod Behbahani John Leete Alexandre Kral Shahrzad Tadjpour Karapet Khanoyan Paul J. Chang Hooman Darabi Maryam Rofougaran

More information

Opportunistic Communication in Wireless Networks

Opportunistic Communication in Wireless Networks Opportunistic Communication in Wireless Networks David Tse Department of EECS, U.C. Berkeley October 10, 2001 Networking, Communications and DSP Seminar Communication over Wireless Channels Fundamental

More information

15. ZBM2: low power Zigbee wireless sensor module for low frequency measurements

15. ZBM2: low power Zigbee wireless sensor module for low frequency measurements 15. ZBM2: low power Zigbee wireless sensor module for low frequency measurements Simas Joneliunas 1, Darius Gailius 2, Stasys Vygantas Augutis 3, Pranas Kuzas 4 Kaunas University of Technology, Department

More information

Wavedancer A new ultra low power ISM band transceiver RFIC

Wavedancer A new ultra low power ISM band transceiver RFIC Wavedancer 400 - A new ultra low power ISM band transceiver RFIC R.W.S. Harrison, Dr. M. Hickson Roke Manor Research Ltd, Old Salisbury Lane, Romsey, Hampshire, SO51 0ZN. e-mail: roscoe.harrison@roke.co.uk

More information

Utilization Based Duty Cycle Tuning MAC Protocol for Wireless Sensor Networks

Utilization Based Duty Cycle Tuning MAC Protocol for Wireless Sensor Networks Utilization Based Duty Cycle Tuning MAC Protocol for Wireless Sensor Networks Shih-Hsien Yang, Hung-Wei Tseng, Eric Hsiao-Kuang Wu, and Gen-Huey Chen Dept. of Computer Science and Information Engineering,

More information

A 400 MHz 4.5 nw 63.8 dbm Sensitivity Wake-up Receiver Employing an Active Pseudo-Balun Envelope Detector

A 400 MHz 4.5 nw 63.8 dbm Sensitivity Wake-up Receiver Employing an Active Pseudo-Balun Envelope Detector A 400 MHz 4.5 nw 63.8 dbm Sensitivity Wake-up Receiver Employing an Active Pseudo-Balun Envelope Detector Po-Han Peter Wang, Haowei Jiang, Li Gao, Pinar Sen, Young-Han Kim, Gabriel M. Rebeiz, Patrick P.

More information

SAME 2013 Conference BLUETOOTH SMART LOW POWER SENSORS. Atef AL NUKARI, Pascal CIAIS, Insight SiP. Sophia-Antipolis, France

SAME 2013 Conference BLUETOOTH SMART LOW POWER SENSORS. Atef AL NUKARI, Pascal CIAIS, Insight SiP. Sophia-Antipolis, France SAME 2013 Conference BLUETOOTH SMART LOW POWER SENSORS Atef AL NUKARI, Pascal CIAIS, Insight SiP Sophia-Antipolis, France Abstract Low power wireless sensing applications pose great challenges for hardware/software

More information

Wireless Communication in Embedded System. Prof. Prabhat Ranjan

Wireless Communication in Embedded System. Prof. Prabhat Ranjan Wireless Communication in Embedded System Prof. Prabhat Ranjan Material based on White papers from www.radiotronix.com Networked embedded devices In the past embedded devices were standalone Typically

More information

Energy harvester powered wireless sensors

Energy harvester powered wireless sensors Energy harvester powered wireless sensors Francesco Orfei NiPS Lab, Dept. of Physics, University of Perugia, IT francesco.orfei@nipslab.org Index Why autonomous wireless sensors? Power requirements Sources

More information

Today s mobile devices

Today s mobile devices PAGE 1 NOVEMBER 2013 Highly Integrated, High Performance Microwave Radio IC Chipsets cover 6-42 GHz Bands Complete Upconversion & Downconversion Chipsets for Microwave Point-to-Point Outdoor Units (ODUs)

More information

Cognitive Ultra Wideband Radio

Cognitive Ultra Wideband Radio Cognitive Ultra Wideband Radio Soodeh Amiri M.S student of the communication engineering The Electrical & Computer Department of Isfahan University of Technology, IUT E-Mail : s.amiridoomari@ec.iut.ac.ir

More information

Short-Range Ultra- Wideband Systems

Short-Range Ultra- Wideband Systems Short-Range Ultra- Wideband Systems R. A. Scholtz Principal Investigator A MURI Team Effort between University of Southern California University of California, Berkeley University of Massachusetts, Amherst

More information

RF Micro/Nano Resonators for Signal Processing

RF Micro/Nano Resonators for Signal Processing RF Micro/Nano Resonators for Signal Processing Roger T. Howe Depts. of EECS and ME Berkeley Sensor & Actuator Center University of California at Berkeley Outline FBARs vs. lateral bulk resonators Electrical

More information

Power Management in Energy Harvesting Power Supplies

Power Management in Energy Harvesting Power Supplies Power Management in Energy Harvesting Power Supplies 1st International Workshop on Power Supply on Chip (PwrSoC) 08 22.09.08, Cork, Ireland Peter Spies, Frank Förster, Loreto Mateu, Markus Pollak peter.spies@iis.fraunhofer.de

More information

A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator*

A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator* WP 23.6 A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator* Christopher Lam, Behzad Razavi University of California, Los Angeles, CA New wireless local area network (WLAN) standards have recently emerged

More information

DNT24MCA DNT24MPA. Low Cost 2.4 GHz FHSS Transceiver Modules with I/O. DNT24MCA/MPA Absolute Maximum Ratings. DNT24MCA/MPA Electrical Characteristics

DNT24MCA DNT24MPA. Low Cost 2.4 GHz FHSS Transceiver Modules with I/O. DNT24MCA/MPA Absolute Maximum Ratings. DNT24MCA/MPA Electrical Characteristics - 2.4 GHz Frequency Hopping Spread Spectrum Transceivers - Direct Peer-to-peer Low Latency Communication - Transmitter RF Power Configurable - 10 or 63 mw - Built-in Chip Antenna - 250 kbps RF Data Rate

More information

Motivation. Approach. Requirements. Optimal Transmission Frequency for Ultra-Low Power Short-Range Medical Telemetry

Motivation. Approach. Requirements. Optimal Transmission Frequency for Ultra-Low Power Short-Range Medical Telemetry Motivation Optimal Transmission Frequency for Ultra-Low Power Short-Range Medical Telemetry Develop wireless medical telemetry to allow unobtrusive health monitoring Patients can be conveniently monitored

More information

Smart Antenna ABSTRACT

Smart Antenna ABSTRACT Smart Antenna ABSTRACT One of the most rapidly developing areas of communications is Smart Antenna systems. This paper deals with the principle and working of smart antennas and the elegance of their applications

More information

RF Basics 15/11/2013

RF Basics 15/11/2013 27 RF Basics 15/11/2013 Basic Terminology 1/2 dbm is a measure of RF Power referred to 1 mw (0 dbm) 10mW(10dBm), 500 mw (27dBm) PER Packet Error Rate [%] percentage of the packets not successfully received

More information

Some thoughts on Narrow-band Ultra-lowpower Radio and Energy Harvesting

Some thoughts on Narrow-band Ultra-lowpower Radio and Energy Harvesting Some thoughts on Narrow-band Ultra-lowpower Radio and Energy Harvesting Andrew S Holmes Optical and Semiconductor Devices Group Department of Electrical and Electronic Engineering Imperial College London

More information

A Novel Wireless Wake-up Mechanism for Energy-efficient Ubiquitous Networks

A Novel Wireless Wake-up Mechanism for Energy-efficient Ubiquitous Networks 1 A Novel Wireless Mechanism for Energy-efficient Ubiquitous Networks Takahiro Takiguchi, Shunsuke Saruwatari, Takashi Morito, Shigemi Ishida, Masateru Minami, and Hiroyuki Morikawa Morikawa Laboratory,

More information

Instantaneous Inventory. Gain ICs

Instantaneous Inventory. Gain ICs Instantaneous Inventory Gain ICs INSTANTANEOUS WIRELESS Perhaps the most succinct figure of merit for summation of all efficiencies in wireless transmission is the ratio of carrier frequency to bitrate,

More information

A Low Power Integrated UWB Transceiver with Solar Energy Harvesting for Wireless Image Sensor Networks

A Low Power Integrated UWB Transceiver with Solar Energy Harvesting for Wireless Image Sensor Networks A Low Power Integrated UWB Transceiver with Solar Energy Harvesting for Wireless Image Sensor Networks Minjoo Yoo / Jaehyuk Choi / Ming hao Wang April. 13 th. 2009 Contents Introduction Circuit Description

More information

The Mote Revolution: Low Power Wireless Sensor Network Devices

The Mote Revolution: Low Power Wireless Sensor Network Devices The Mote Revolution: Low Power Wireless Sensor Network Devices University of California, Berkeley Joseph Polastre Robert Szewczyk Cory Sharp David Culler The Mote Revolution: Low Power Wireless Sensor

More information

Short Range UWB Radio Systems. Finding the power/area limits of

Short Range UWB Radio Systems. Finding the power/area limits of Short Range UWB Radio Systems Finding the power/area limits of CMOS Bob Brodersen Ian O Donnell Mike Chen Stanley Wang Integrated Impulse Transceiver RF Front-End LNA Pulser Amp Analog CLK GEN PMF Digital

More information

DISCONTINUED. Modulation Type Number of RF Channels 15

DISCONTINUED. Modulation Type Number of RF Channels 15 RFM Products are now Murata products. 2.4 GHz Spread Spectrum Transceiver Module Small Size, Light Weight, Built-In Antenna Sleep Current less than 3 µa FCC, Canadian IC and ETSI Certified for Unlicensed

More information

Reinventing the Transmit Chain for Next-Generation Multimode Wireless Devices. By: Richard Harlan, Director of Technical Marketing, ParkerVision

Reinventing the Transmit Chain for Next-Generation Multimode Wireless Devices. By: Richard Harlan, Director of Technical Marketing, ParkerVision Reinventing the Transmit Chain for Next-Generation Multimode Wireless Devices By: Richard Harlan, Director of Technical Marketing, ParkerVision Upcoming generations of radio access standards are placing

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P80.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [UWB Direct Chaotic Communications Technology] Date Submitted: [15 November, 004] Source: [(1) Y. Kim, C.

More information

Evolution of Cellular Systems. Challenges for Broadband Wireless Systems. Convergence of Wireless, Computing and Internet is on the Way

Evolution of Cellular Systems. Challenges for Broadband Wireless Systems. Convergence of Wireless, Computing and Internet is on the Way International Technology Conference, 14~15 Jan. 2003, Hong Kong Technology Drivers for Tomorrow Challenges for Broadband Systems Fumiyuki Adachi Dept. of Electrical and Communications Engineering, Tohoku

More information

Value Units -0.3 to +4.0 V -50 to

Value Units -0.3 to +4.0 V -50 to Designed for Short-Range Wireless Data Communications Supports 2.4-19.2 kbps Encoded Data Transmissions 3 V, Low Current Operation plus Sleep Mode Ready to Use OEM Module The DR3100 transceiver module

More information

Long Range Passive RF-ID Tag With UWB Transmitter

Long Range Passive RF-ID Tag With UWB Transmitter Long Range Passive RF-ID Tag With UWB Transmitter Seunghyun Lee Seunghyun Oh Yonghyun Shim seansl@umich.edu austeban@umich.edu yhshim@umich.edu About RF-ID Tag What is a RF-ID Tag? An object for the identification

More information

Keywords: ISM, RF, transmitter, short-range, RFIC, switching power amplifier, ETSI

Keywords: ISM, RF, transmitter, short-range, RFIC, switching power amplifier, ETSI Maxim > Design Support > Technical Documents > Application Notes > Wireless and RF > APP 4929 Keywords: ISM, RF, transmitter, short-range, RFIC, switching power amplifier, ETSI APPLICATION NOTE 4929 Adapting

More information

UNIT- 7. Frequencies above 30Mhz tend to travel in straight lines they are limited in their propagation by the curvature of the earth.

UNIT- 7. Frequencies above 30Mhz tend to travel in straight lines they are limited in their propagation by the curvature of the earth. UNIT- 7 Radio wave propagation and propagation models EM waves below 2Mhz tend to travel as ground waves, These wave tend to follow the curvature of the earth and lose strength rapidly as they travel away

More information

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss Introduction Small-scale fading is used to describe the rapid fluctuation of the amplitude of a radio

More information

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4 33.4 A Dual-Channel Direct-Conversion CMOS Receiver for Mobile Multimedia Broadcasting Vincenzo Peluso, Yang Xu, Peter Gazzerro, Yiwu Tang, Li Liu, Zhenbiao Li, Wei Xiong, Charles Persico Qualcomm, San

More information

Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy

Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy RFIC2014, Tampa Bay June 1-3, 2014 Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy High data rate wireless networks MAN / LAN PAN ~7GHz of unlicensed

More information

UTILIZATION OF AN IEEE 1588 TIMING REFERENCE SOURCE IN THE inet RF TRANSCEIVER

UTILIZATION OF AN IEEE 1588 TIMING REFERENCE SOURCE IN THE inet RF TRANSCEIVER UTILIZATION OF AN IEEE 1588 TIMING REFERENCE SOURCE IN THE inet RF TRANSCEIVER Dr. Cheng Lu, Chief Communications System Engineer John Roach, Vice President, Network Products Division Dr. George Sasvari,

More information

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P.

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. The Radio Channel COS 463: Wireless Networks Lecture 14 Kyle Jamieson [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. Steenkiste] Motivation The radio channel is what limits most radio

More information

Smart Antenna Techniques and Their Application to Wireless Ad Hoc Networks

Smart Antenna Techniques and Their Application to Wireless Ad Hoc Networks Smart Antenna Techniques and Their Application to Wireless Ad Hoc Networks Jack H. Winters May 31, 2004 jwinters@motia.com 12/05/03 Slide 1 Outline Service Limitations Smart Antennas Ad Hoc Networks Smart

More information