RF MEMS for Low-Power Communications

Size: px
Start display at page:

Download "RF MEMS for Low-Power Communications"

Transcription

1 RF MEMS for Low-Power Communications Clark T.-C. Nguyen Center for Wireless Integrated Microsystems Dept. of Electrical Engineering and Computer Science University of Michigan Ann Arbor, Michigan

2 Outline Miniaturization of Transceivers the need for high-q High-Q Micromechanical Resonators Micromechanical Circuits micromechanical filters micromechanical mixer-filters micromechanical switch micromechanical C s & L s Using MEMS in Comm. Receivers direct replacement of passives trade Q (or selectivity) for power MEMS-based receiver architecture Conclusions

3 Miniaturization of Transceivers High-Q functionality required by oscillators and filters cannot be realized using standard IC components use off-chip mechanical components SAW, ceramic, and crystal resonators pose bottlenecks against ultimate miniaturization

4 So Many Passive Components! The total area on a printed circuit board for a wireless phone is often dominated by passive components passives pose a bottleneck on the ultimate miniaturization of transceivers Transistor Transistor Chips Chips Quartz Quartz Crystal Crystal Inductors Inductors Capacitors Capacitors Resistors Resistors IF IF Filter Filter (SAW) (SAW) RF RF Filter Filter (ceramic) (ceramic) IF IF Filter Filter (SAW) (SAW)

5 Need for High-Q: Selective Low-Loss Filters In resonator-based filters: high tank Q low insertion loss At right: a 0.3% bandwidth 70 MHz (simulated) heavy insertion loss for resonator Q < 5,000

6 Surface Micromachining Fabrication steps compatible with planar IC processing

7 Post-CMOS Circuits+μMechanics Integration Completely monolithic, low phase noise, high-q oscillator (effectively, an integrated crystal oscillator) [Nguyen, Howe] Oscilloscope Output Waveform To allow the use of >600 o C processing temperatures, tungsten (instead of aluminum) is used for metallization

8 Target Application: Integrated Transceivers Off-chip high-q mechanical components present bottlenecks to miniaturization replace them with μmechanical versions

9 Micromechanical Resonators

10 Vertically-Driven Micromechanical Resonator To date, most used design to achieve VHF frequencies Smaller mass higher frequency range and lower series R x

11 HF μmechanical CC-Beam Resonator Surface-micromachined, POCl 3 -doped polycrystalline silicon Extracted Q = 8,000 (vacuum) Freq. and Q influenced by dc-bias and anchor effects

12 92 MHz Free-Free Beam μresonator Free-free beam μmechanical resonator with non-intrusive supports reduce anchor dissipation higher Q

13 92 MHz Free-Free Beam μresonator Free-free beam μmechanical resonator with non-intrusive supports reduce anchor dissipation higher Q

14 156 MHz Radial Contour-Mode Disk μmechanical Resonator Below: Balanced radial-mode disk polysilicon μmechanical resonator (34 μm diameter) μmechanical Disk Resonator Metal Electrode R Design/Performance: R=17μm, t=2μm d=1,000å, V P =35V f o =156.23MHz, Q=9,400 Metal Electrode Anchor f o =156MHz Q=9,400 [Clark, Hsu, Nguyen IEDM 00]

15 Micromechanical Circuits MEMS for Wireless Communications A single mechanical beam can t really do much on its own But use many mechanical beams attached together in a circuit, and attain a more complex, more useful function Input Force F i Output Displacement x o F i x o t Key Design Property: High Q t

16 HF Spring-Coupled Micromechanical Filter

17 High-Order μmechanical Filter

18 Nonlinear Micromechanical Circuits

19 Electromechanical Mixing MEMS for Wireless Communications ω o =ω IF Electrical Signal Input Filter Response ω IF ω LO ω RF ω Mechanical Signal Input ω IF ω LO ω RF ω

20 [Wong, Nguyen 1998] MEMS for Wireless Communications Micromechanical Mixer-Filter

21 Micromechanical Switch MEMS for Wireless Communications Operate the micromechanical beam in an up/down binary fashion [C. Goldsmith, 1995] Performance: I.L.~0.1dB, IIP3 ~ 66dBm (extremely linear) Issues: switching voltage ~ 20V, switching time: 1-5μs

22 Phased Array Antenna MEMS for Wireless Communications

23 Voltage-Tunable High-Q Capacitor Micromachined, movable, aluminum plate-to-plate capacitors Tuning range exceeding that of on-chip diode capacitors and on par with off-chip varactor diode capacitors Challenges: microphonics, tuning range truncated by pull-in

24 Suspended, Stacked Spiral Inductor Strategies for maximizing Q: 15μm-thick, electroplated Cu windings reduces series R suspended above the substrate reduces substrate loss

25 MEMS-Based Receiver Architectures

26 MEMS-Based Receiver Architecture Most Direct Approach: replace off-chip components (in orange) with μmechanical versions (in green) L 1 ~2dB 1 ~2dB L 3 ~6dB 3 ~6dB L 5 ~12dB 5 ~12dB NF NF = 8.8dB 8.8dB Higher Q L 1 ~0.3dB 1 ~0.3dB L 3 ~0.5dB 3 ~0.5dB L 5 ~1dB 5 ~1dB Replace with MEMS Antenna Antenna Diversity Diversity for for resilience resilience against against fading fading Obvious Benefit: substantial size reduction NF NF = 2.8dB 2.8dB

27 MEMS-Based Receiver Front-End Extremely high-q insertion loss no longer a problem Pre-Select Pre-Select Filter Filter not not needed needed LNA LNA not not needed needed

28 MEMS-Based Receiver Front-End Single Single High-Order High-Order μmechanical μmechanical RF RF Image-Reject Image-Reject Filter GHz GHz No No LNA LNA Power Power Reduction Reduction Problem: RF local oscillator synthesizer (w/ PLL and pre-scaler) is a power hog!

29 Single Single High-Order High-Order μmechanical μmechanical RF RF Image-Reject Image-Reject Filter GHz GHz MEMS for Wireless Communications MEMS-Based Receiver Front-End No No LNA LNA Power Power Reduction Reduction Solution: Solution: μmechanical μmechanicalif IF Channel-Selecting Channel-Selecting Mixer- Mixer- Filter Filter Bank MHz; MHz; One One Mixler MixlerPer Per Channel Channel No No longer longer need need freq. freq. tunable tunable LO LO

30 Single Single High-Order High-Order μmechanical μmechanical RF RF Image-Reject Image-Reject Filter GHz GHz MEMS for Wireless Communications MEMS-Based Receiver Front-End No No LNA LNA Power Power Reduction Reduction Solution: Solution: μmechanical μmechanicalif IF Channel-Selecting Channel-Selecting Mixer- Mixer- Filter Filter Bank MHz; MHz; One One Mixler MixlerPer Per Channel Channel Single-Frequency Single-Frequency μmechanical μmechanical RF RF Local Local Oscillator 1.73GHz 1.73GHz No No Tuning Tuning Very Very Low Low Power Power Size Size Reduction Reduction

31 Conclusions MEMS for Wireless Communications Via enhanced selectivity on a massive scale, micromechanical circuits using high-q elements have the potential for shifting communication transceiver design paradigms, greatly enhancing their capabilities Advantages of Micromechanical Circuits: orders of magnitude smaller size than present off-chip passive devices better performance than other single-chip solutions potentially large reduction in power consumption alternative transceiver architectures that maximize the use of high-q, frequency selective devices for improved performance but there is much work yet to be done

32 Acknowledgments Former and present graduate students, especially Kun Wang, Frank Bannon III, and Ark-Chew Wong, who are largely responsible for the micromechanical filter work, and Wan-Thai Hsu and John Clark, who are largely responsible for the resonator work My government funding sources: mainly DARPA and an NSF Engineering Research Center on Wireless Integrated Microsystems (WIMS)

Micromechanical Circuits for Wireless Communications

Micromechanical Circuits for Wireless Communications Micromechanical Circuits for Wireless Communications Clark T.-C. Nguyen Center for Integrated Microsystems Dept. of Electrical Engineering and Computer Science University of Michigan Ann Arbor, Michigan

More information

Vibrating RF MEMS for Low Power Wireless Communications

Vibrating RF MEMS for Low Power Wireless Communications Vibrating RF MEMS for Low Power Wireless Communications Clark T.-C. Nguyen Center for Wireless Integrated Microsystems Dept. of Electrical Engineering and Computer Science University of Michigan Ann Arbor,

More information

MEMS Technologies and Devices for Single-Chip RF Front-Ends

MEMS Technologies and Devices for Single-Chip RF Front-Ends MEMS Technologies and Devices for Single-Chip RF Front-Ends Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Science University of Michigan Ann Arbor, Michigan 48105-2122 CCMT 06 April 25,

More information

MEMS Technologies for Communications

MEMS Technologies for Communications MEMS Technologies for Communications Clark T.-C. Nguyen Program Manager, MPG/CSAC/MX Microsystems Technology Office () Defense Advanced Research Projects Agency Nanotech 03 Feb. 25, 2003 Outline Introduction:

More information

Micromechanical Signal Processors for Low-Power Communications Instructor: Clark T.-C. Nguyen

Micromechanical Signal Processors for Low-Power Communications Instructor: Clark T.-C. Nguyen First International Conference and School on Nanoscale/Molecular Mechanics: Maui, HI; May 2002 School Lecture/Tutorial on Micromechanical Signal Processors for Low-Power Communications Instructor: Clark

More information

Micromachining Technologies for Miniaturized Communication Devices

Micromachining Technologies for Miniaturized Communication Devices Micromachining Technologies for Miniaturized Communication Devices Clark T.-C. Nguyen Center for Integrated Sensors and Circuits Department of Electrical Engineering and Computer Science University of

More information

Microelectromechanical Devices for Wireless Communications

Microelectromechanical Devices for Wireless Communications Microelectromechanical Devices for Wireless Communications Clark T.-C. Nguyen Center for Integrated Sensors and Circuits Department of Electrical Engineering and Computer Science University of Michigan

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2007

EE C245 ME C218 Introduction to MEMS Design Fall 2007 EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 1: Definition

More information

RF MEMS in Wireless Architectures

RF MEMS in Wireless Architectures 26.4 RF MEMS in Wireless Architectures Clark T.-C. Nguyen DARPA/MTO 3701 North Farifax Drive, Arlington, Virginia 22203-1714 (On leave from the University of Michigan, Ann Arbor, Michigan 48109-2122) 1-571-218-4586

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2008 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 2: Benefits

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION C. T.-C. Nguyen, Micromechanical components for miniaturized low-power communications (invited plenary), Proceedings, 1999 IEEE MTT-S International Microwave Symposium RF MEMS Workshop (on Microelectromechanical

More information

Micromechanical Circuits for Wireless Communications

Micromechanical Circuits for Wireless Communications Proceedings, 2000 European Solid-State Device Research Conference, Cork, Ireland, September 11-13, 2000, pp. 2-12. Micromechanical Circuits for Wireless Communications Clark T.-C. Nguyen Center for Integrated

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2008 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 1: Definition

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2010

EE C245 ME C218 Introduction to MEMS Design Fall 2010 Instructor: Prof. Clark T.-C. Nguyen EE C245 ME C218 Introduction to MEMS Design Fall 2010 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2010

EE C245 ME C218 Introduction to MEMS Design Fall 2010 Basic Concept: Scaling Guitar Strings EE C245 ME C218 ntroduction to MEMS Design Fall 21 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley

More information

Introduction to Microeletromechanical Systems (MEMS) Lecture 12 Topics. MEMS Overview

Introduction to Microeletromechanical Systems (MEMS) Lecture 12 Topics. MEMS Overview Introduction to Microeletromechanical Systems (MEMS) Lecture 2 Topics MEMS for Wireless Communication Components for Wireless Communication Mechanical/Electrical Systems Mechanical Resonators o Quality

More information

Micromechanical Circuits for Communication Transceivers

Micromechanical Circuits for Communication Transceivers Micromechanical Circuits for Communication Transceivers C. T.-C. Nguyen, Micromechanical circuits for communication transceivers (invited), Proceedings, 2000 Bipolar/BiCMOS Circuits and Technology Meeting

More information

Vibrating MEMS resonators

Vibrating MEMS resonators Vibrating MEMS resonators Vibrating resonators can be scaled down to micrometer lengths Analogy with IC-technology Reduced dimensions give mass reduction and increased spring constant increased resonance

More information

MEMS for RF, Micro Optics and Scanning Probe Nanotechnology Applications

MEMS for RF, Micro Optics and Scanning Probe Nanotechnology Applications MEMS for RF, Micro Optics and Scanning Probe Nanotechnology Applications Part I: RF Applications Introductions and Motivations What are RF MEMS? Example Devices RFIC RFIC consists of Active components

More information

Micromechanical filters for miniaturized low-power communications

Micromechanical filters for miniaturized low-power communications C. T.-C. Nguyen, Micromechanical filters for miniaturized low-power communications (invited), to be published in Proceedings of SPIE: Smart Structures and Materials (Smart Electronics and MEMS), Newport

More information

Switch-less Dual-frequency Reconfigurable CMOS Oscillator using One Single Piezoelectric AlN MEMS Resonator with Co-existing S0 and S1 Lamb-wave Modes

Switch-less Dual-frequency Reconfigurable CMOS Oscillator using One Single Piezoelectric AlN MEMS Resonator with Co-existing S0 and S1 Lamb-wave Modes From the SelectedWorks of Chengjie Zuo January, 11 Switch-less Dual-frequency Reconfigurable CMOS Oscillator using One Single Piezoelectric AlN MEMS Resonator with Co-existing S and S1 Lamb-wave Modes

More information

Vibrating RF MEMS Overview: Applications to Wireless Communications

Vibrating RF MEMS Overview: Applications to Wireless Communications C. T.-C. Nguyen, Vibrating RF MEMS overview: applications to wireless communications, Proceedings of SPIE: Micromachining and Microfabrication Process Technology, vol. 5715, Photonics West: MOEMS-MEMS

More information

Frequency-Selective MEMS for Miniaturized Low-Power Communication Devices. Clark T.-C. Nguyen, Member, IEEE. (Invited Paper)

Frequency-Selective MEMS for Miniaturized Low-Power Communication Devices. Clark T.-C. Nguyen, Member, IEEE. (Invited Paper) 1486 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 8, AUGUST 1999 Frequency-Selective MEMS for Miniaturized Low-Power Communication Devices Clark T.-C. Nguyen, Member, IEEE (Invited

More information

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver Arvin R. Shahani, Derek K. Shaeffer, Thomas H. Lee Stanford University, Stanford, CA At submicron channel lengths, CMOS is

More information

DEVELOPMENT OF RF MEMS SYSTEMS

DEVELOPMENT OF RF MEMS SYSTEMS DEVELOPMENT OF RF MEMS SYSTEMS Ivan Puchades, Ph.D. Research Assistant Professor Electrical and Microelectronic Engineering Kate Gleason College of Engineering Rochester Institute of Technology 82 Lomb

More information

INF 5490 RF MEMS. LN10: Micromechanical filters. Spring 2011, Oddvar Søråsen Jan Erik Ramstad Department of Informatics, UoO

INF 5490 RF MEMS. LN10: Micromechanical filters. Spring 2011, Oddvar Søråsen Jan Erik Ramstad Department of Informatics, UoO INF 5490 RF MEMS LN10: Micromechanical filters Spring 2011, Oddvar Søråsen Jan Erik Ramstad Department of Informatics, UoO 1 Today s lecture Properties of mechanical filters Visualization and working principle

More information

INF 5490 RF MEMS. L12: Micromechanical filters. S2008, Oddvar Søråsen Department of Informatics, UoO

INF 5490 RF MEMS. L12: Micromechanical filters. S2008, Oddvar Søråsen Department of Informatics, UoO INF 5490 RF MEMS L12: Micromechanical filters S2008, Oddvar Søråsen Department of Informatics, UoO 1 Today s lecture Properties of mechanical filters Visualization and working principle Design, modeling

More information

RF/Microwave Circuits I. Introduction Fall 2003

RF/Microwave Circuits I. Introduction Fall 2003 Introduction Fall 03 Outline Trends for Microwave Designers The Role of Passive Circuits in RF/Microwave Design Examples of Some Passive Circuits Software Laboratory Assignments Grading Trends for Microwave

More information

Micro Electro Mechanical Systems Programs at MTO. Clark T.-C. Nguyen Program Manager, DARPA/MTO

Micro Electro Mechanical Systems Programs at MTO. Clark T.-C. Nguyen Program Manager, DARPA/MTO Micro Electro Mechanical Systems Programs at MTO Clark T.-C. Nguyen Program Manager, DARPA/MTO Microsystems Technology Office Technology for Chip-Level Integration of E. P. M. MEMS Application Domains

More information

INF 5490 RF MEMS. LN10: Micromechanical filters. Spring 2012, Oddvar Søråsen Department of Informatics, UoO

INF 5490 RF MEMS. LN10: Micromechanical filters. Spring 2012, Oddvar Søråsen Department of Informatics, UoO INF 5490 RF MEMS LN10: Micromechanical filters Spring 2012, Oddvar Søråsen Department of Informatics, UoO 1 Today s lecture Properties of mechanical filters Visualization and working principle Modeling

More information

433MHz front-end with the SA601 or SA620

433MHz front-end with the SA601 or SA620 433MHz front-end with the SA60 or SA620 AN9502 Author: Rob Bouwer ABSTRACT Although designed for GHz, the SA60 and SA620 can also be used in the 433MHz ISM band. The SA60 performs amplification of the

More information

EE C247B ME C218. EE C245: Introduction to MEMS Design. Spring EE C247B/ME C218: Introduction to MEMS Lecture 3m: Benefits of Scaling II

EE C247B ME C218. EE C245: Introduction to MEMS Design. Spring EE C247B/ME C218: Introduction to MEMS Lecture 3m: Benefits of Scaling II EE C247B/ME C218: ntroduction to MEMS Basic Concept: Scaling Guitar Strings Guitar String Vib. Amplitude EE C247B ME C218 ntroduction to MEMS Design Spring 2015 Prof. Clark T.- Freq. [Bannon 1996] Freq.

More information

A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator*

A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator* WP 23.6 A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator* Christopher Lam, Behzad Razavi University of California, Los Angeles, CA New wireless local area network (WLAN) standards have recently emerged

More information

Signal Integrity Design of TSV-Based 3D IC

Signal Integrity Design of TSV-Based 3D IC Signal Integrity Design of TSV-Based 3D IC October 24, 21 Joungho Kim at KAIST joungho@ee.kaist.ac.kr http://tera.kaist.ac.kr 1 Contents 1) Driving Forces of TSV based 3D IC 2) Signal Integrity Issues

More information

Integration of AlN Micromechanical Contour- Mode Technology Filters with Three-Finger Dual Beam AlN MEMS Switches

Integration of AlN Micromechanical Contour- Mode Technology Filters with Three-Finger Dual Beam AlN MEMS Switches University of Pennsylvania From the SelectedWorks of Nipun Sinha 29 Integration of AlN Micromechanical Contour- Mode Technology Filters with Three-Finger Dual Beam AlN MEMS Switches Nipun Sinha, University

More information

65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers

65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers 65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers Michael Gordon, Terry Yao, Sorin P. Voinigescu University of Toronto March 10 2006, UBC, Vancouver Outline Motivation mm-wave

More information

Design of the Low Phase Noise Voltage Controlled Oscillator with On-Chip Vs Off- Chip Passive Components.

Design of the Low Phase Noise Voltage Controlled Oscillator with On-Chip Vs Off- Chip Passive Components. 3 rd International Bhurban Conference on Applied Sciences and Technology, Bhurban, Pakistan. June 07-12, 2004 Design of the Low Phase Noise Voltage Controlled Oscillator with On-Chip Vs Off- Chip Passive

More information

VHF and UHF Filters for Wireless Communications Based on Piezoelectrically-Transduced Micromechanical Resonators

VHF and UHF Filters for Wireless Communications Based on Piezoelectrically-Transduced Micromechanical Resonators VHF and UHF Filters for Wireless Communications Based on Piezoelectrically-Transduced Micromechanical Resonators Jing Wang Center for Wireless and Microwave Information Systems Nanotechnology Research

More information

6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators

6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators 6.776 High Speed Communication Circuits and Systems Lecture 14 Voltage Controlled Oscillators Massachusetts Institute of Technology March 29, 2005 Copyright 2005 by Michael H. Perrott VCO Design for Narrowband

More information

Third Order Intermodulation Distortion in Capacitive-Gap Transduced Micromechanical Filters

Third Order Intermodulation Distortion in Capacitive-Gap Transduced Micromechanical Filters Third Order Intermodulation Distortion in Capacitive-Gap Transduced Micromechanical Filters Jalal Naghsh Nilchi, Ruonan Liu, Scott Li, Mehmet Akgul, Tristan O. Rocheleau, and Clark T.-C. Nguyen Berkeley

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2011

EE C245 ME C218 Introduction to MEMS Design Fall 2011 EE C245/ME C218: ntrductin t MEMS Lecture 2m: Benefits f Scaling Lecture Outline EE C245 ME C218 ntrductin t MEMS Design Fall 211 Prf. Clark T.-C. Nguyen Reading: Senturia, Chapter 1 Lecture Tpics: Benefits

More information

Aluminum Nitride Reconfigurable RF-MEMS Front-Ends

Aluminum Nitride Reconfigurable RF-MEMS Front-Ends From the SelectedWorks of Chengjie Zuo October 2011 Aluminum Nitride Reconfigurable RF-MEMS Front-Ends Augusto Tazzoli University of Pennsylvania Matteo Rinaldi University of Pennsylvania Chengjie Zuo

More information

An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver

An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver Farbod Behbahani John Leete Alexandre Kral Shahrzad Tadjpour Karapet Khanoyan Paul J. Chang Hooman Darabi Maryam Rofougaran

More information

MEMS BASED QUARTZ OSCILLATORS and FILTERS for on-chip INTEGRATION

MEMS BASED QUARTZ OSCILLATORS and FILTERS for on-chip INTEGRATION MEMS BASED QUARTZ OSCILLATORS and FILTERS for on-chip INTEGRATION R. L. Kubena, F. P. Stratton, D. T. Chang, R. J. Joyce, and T. Y. Hsu Sensors and Materials Laboratory, HRL Laboratories, LLC Malibu, CA

More information

Frequency-Selective MEMS for Miniaturized Communication Devices

Frequency-Selective MEMS for Miniaturized Communication Devices C. T.-C. Nguyen, Frequency-selective MEMS for miniaturized communication devices (invited), Proceedings, 1998 IEEE Aerospace Conference, vol. 1, Snowmass, Colorado, March 21-28, 1998, pp. 445-460. Frequency-Selective

More information

RF Integrated Circuits

RF Integrated Circuits Introduction and Motivation RF Integrated Circuits The recent explosion in the radio frequency (RF) and wireless market has caught the semiconductor industry by surprise. The increasing demand for affordable

More information

Catalog Continuing Education Courses

Catalog Continuing Education Courses Catalog Continuing Education Courses NanoMEMS Research, LLC P.O. Box 18614 Irvine, CA 92623-8614 Tel.: (949)682-7702 URL: www.nanomems-research.com E-mail: info@nanomems-research.com 2011 NanoMEMS Research,

More information

The New England Radio Discussion Society electronics course (Phase 4, cont d) Introduction to receivers

The New England Radio Discussion Society electronics course (Phase 4, cont d) Introduction to receivers The New England Radio Discussion Society electronics course (Phase 4, cont d) Introduction to receivers AI2Q April 2017 REVIEW: a VFO, phase-locked loop (PLL), or direct digital synthesizer (DDS), can

More information

77 GHz VCO for Car Radar Systems T625_VCO2_W Preliminary Data Sheet

77 GHz VCO for Car Radar Systems T625_VCO2_W Preliminary Data Sheet 77 GHz VCO for Car Radar Systems Preliminary Data Sheet Operating Frequency: 76-77 GHz Tuning Range > 1 GHz Output matched to 50 Ω Application in Car Radar Systems ESD: Electrostatic discharge sensitive

More information

Radio-Frequency Conversion and Synthesis (for a 115mW GPS Receiver)

Radio-Frequency Conversion and Synthesis (for a 115mW GPS Receiver) Radio-Frequency Conversion and Synthesis (for a 115mW GPS Receiver) Arvin Shahani Stanford University Overview GPS Overview Frequency Conversion Frequency Synthesis Conclusion GPS Overview: Signal Structure

More information

High-Q UHF Micromechanical Radial-Contour Mode Disk Resonators

High-Q UHF Micromechanical Radial-Contour Mode Disk Resonators 1298 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 14, NO. 6, DECEMBER 2005 High-Q UHF Micromechanical Radial-Contour Mode Disk Resonators John R. Clark, Member, IEEE, Wan-Thai Hsu, Member, IEEE, Mohamed

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C45 ME C18 Introduction to MEMS Design Fall 008 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 9470 Lecture 7: Noise &

More information

MEMS in ECE at CMU. Gary K. Fedder

MEMS in ECE at CMU. Gary K. Fedder MEMS in ECE at CMU Gary K. Fedder Department of Electrical and Computer Engineering and The Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213-3890 fedder@ece.cmu.edu http://www.ece.cmu.edu/~mems

More information

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4

ISSCC 2006 / SESSION 33 / MOBILE TV / 33.4 33.4 A Dual-Channel Direct-Conversion CMOS Receiver for Mobile Multimedia Broadcasting Vincenzo Peluso, Yang Xu, Peter Gazzerro, Yiwu Tang, Li Liu, Zhenbiao Li, Wei Xiong, Charles Persico Qualcomm, San

More information

RF MEMS Circuits Applications of MEMS switch and tunable capacitor

RF MEMS Circuits Applications of MEMS switch and tunable capacitor RF MEMS Circuits Applications of MEMS switch and tunable capacitor Dr. Jeffrey DeNatale, Manager, MEMS Department Electronics Division jdenatale@rwsc.com 85-373-4439 Panamerican Advanced Studies Institute

More information

Dual-Frequency GNSS Front-End ASIC Design

Dual-Frequency GNSS Front-End ASIC Design Dual-Frequency GNSS Front-End ASIC Design Ed. 01 15/06/11 In the last years Acorde has been involved in the design of ASIC prototypes for several EU-funded projects in the fields of FM-UWB communications

More information

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong

Research and Development Activities in RF and Analog IC Design. RFIC Building Blocks. Single-Chip Transceiver Systems (I) Howard Luong Research and Development Activities in RF and Analog IC Design Howard Luong Analog Research Laboratory Department of Electrical and Electronic Engineering Hong Kong University of Science and Technology

More information

techniques, and gold metalization in the fabrication of this device.

techniques, and gold metalization in the fabrication of this device. Up to 6 GHz Medium Power Silicon Bipolar Transistor Chip Technical Data AT-42 Features High Output Power: 21. dbm Typical P 1 db at 2. GHz 2.5 dbm Typical P 1 db at 4. GHz High Gain at 1 db Compression:

More information

Hot Topics and Cool Ideas in Scaled CMOS Analog Design

Hot Topics and Cool Ideas in Scaled CMOS Analog Design Engineering Insights 2006 Hot Topics and Cool Ideas in Scaled CMOS Analog Design C. Patrick Yue ECE, UCSB October 27, 2006 Slide 1 Our Research Focus High-speed analog and RF circuits Device modeling,

More information

MEMS Reference Oscillators. EECS 242B Fall 2014 Prof. Ali M. Niknejad

MEMS Reference Oscillators. EECS 242B Fall 2014 Prof. Ali M. Niknejad MEMS Reference Oscillators EECS 242B Fall 2014 Prof. Ali M. Niknejad Why replace XTAL Resonators? XTAL resonators have excellent performance in terms of quality factor (Q ~ 100,000), temperature stability

More information

Up to 6 GHz Low Noise Silicon Bipolar Transistor Chip. Technical Data AT-41400

Up to 6 GHz Low Noise Silicon Bipolar Transistor Chip. Technical Data AT-41400 Up to 6 GHz Low Noise Silicon Bipolar Transistor Chip Technical Data AT-1 Features Low Noise Figure: 1.6 db Typical at 3. db Typical at. GHz High Associated Gain: 1.5 db Typical at 1.5 db Typical at. GHz

More information

AN MSI MICROMECHANICAL DIFFERENTIAL DISK-ARRAY FILTER. Dept. of Electrical Engineering & Computer Science, University of Michigan, Ann Arbor, USA 2

AN MSI MICROMECHANICAL DIFFERENTIAL DISK-ARRAY FILTER. Dept. of Electrical Engineering & Computer Science, University of Michigan, Ann Arbor, USA 2 AN MSI MICROMECHANICAL DIFFERENTIAL DISKARRAY FILTER ShengShian Li 1, YuWei Lin 1, Zeying Ren 1, and Clark T.C. Nguyen 2 1 Dept. of Electrical Engineering & Computer Science, University of Michigan, Ann

More information

Synthesis of Optimal On-Chip Baluns

Synthesis of Optimal On-Chip Baluns Synthesis of Optimal On-Chip Baluns Sharad Kapur, David E. Long and Robert C. Frye Integrand Software, Inc. Berkeley Heights, New Jersey Yu-Chia Chen, Ming-Hsiang Cho, Huai-Wen Chang, Jun-Hong Ou and Bigchoug

More information

A CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider for a 5 GHz Wireless LAN Receiver. Hamid Rategh

A CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider for a 5 GHz Wireless LAN Receiver. Hamid Rategh A CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider for a 5 GHz Wireless LAN Receiver Hamid Rategh Center for Integrated Systems Stanford University OUTLINE Motivation Introduction

More information

MP 4.2 A DECT Transceiver Chip Set Using SiGe Technology

MP 4.2 A DECT Transceiver Chip Set Using SiGe Technology MP 4.2 A DECT Transceiver Chip Set Using SiGe Technology Matthias Bopp, Martin Alles, Meinolf Arens, Dirk Eichel, Stephan Gerlach, Rainer Götzfried, Frank Gruson, Michael Kocks, Gerald Krimmer, Reinhard

More information

Session 3. CMOS RF IC Design Principles

Session 3. CMOS RF IC Design Principles Session 3 CMOS RF IC Design Principles Session Delivered by: D. Varun 1 Session Topics Standards RF wireless communications Multi standard RF transceivers RF front end architectures Frequency down conversion

More information

Design and optimization of a 2.4 GHz RF front-end with an on-chip balun

Design and optimization of a 2.4 GHz RF front-end with an on-chip balun Vol. 32, No. 9 Journal of Semiconductors September 2011 Design and optimization of a 2.4 GHz RF front-end with an on-chip balun Xu Hua( 徐化 ) 1;, Wang Lei( 王磊 ) 2, Shi Yin( 石寅 ) 1, and Dai Fa Foster( 代伐

More information

i. At the start-up of oscillation there is an excess negative resistance (-R)

i. At the start-up of oscillation there is an excess negative resistance (-R) OSCILLATORS Andrew Dearn * Introduction The designers of monolithic or integrated oscillators usually have the available process dictated to them by overall system requirements such as frequency of operation

More information

Process Technology to Fabricate High Performance MEMS on Top of Advanced LSI. Shuji Tanaka Tohoku University, Sendai, Japan

Process Technology to Fabricate High Performance MEMS on Top of Advanced LSI. Shuji Tanaka Tohoku University, Sendai, Japan Process Technology to Fabricate High Performance MEMS on Top of Advanced LSI Shuji Tanaka Tohoku University, Sendai, Japan 1 JSAP Integrated MEMS Technology Roadmap More than Moore: Diversification More

More information

Reconfigurable 4-Frequency CMOS Oscillator Based on AlN Contour-Mode MEMS Resonators

Reconfigurable 4-Frequency CMOS Oscillator Based on AlN Contour-Mode MEMS Resonators From the SelectedWorks of Chengjie Zuo October, 2010 Reconfigurable 4-Frequency CMOS Oscillator Based on AlN Contour-Mode MEMS Resonators Matteo Rinaldi, University of Pennsylvania Chengjie Zuo, University

More information

What to do with THz? Ali M. Niknejad Berkeley Wireless Research Center University of California Berkeley. WCA Futures SIG

What to do with THz? Ali M. Niknejad Berkeley Wireless Research Center University of California Berkeley. WCA Futures SIG What to do with THz? Ali M. Niknejad Berkeley Wireless Research Center University of California Berkeley WCA Futures SIG Outline THz Overview Potential THz Applications THz Transceivers in Silicon? Application

More information

RF9986. Micro-Cell PCS Base Stations Portable Battery Powered Equipment

RF9986. Micro-Cell PCS Base Stations Portable Battery Powered Equipment RF996 CDMA/TDMA/DCS900 PCS Systems PHS 500/WLAN 2400 Systems General Purpose Down Converter Micro-Cell PCS Base Stations Portable Battery Powered Equipment The RF996 is a monolithic integrated receiver

More information

ACMOS RF up/down converter would allow a considerable

ACMOS RF up/down converter would allow a considerable IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 32, NO. 7, JULY 1997 1151 Low Voltage Performance of a Microwave CMOS Gilbert Cell Mixer P. J. Sullivan, B. A. Xavier, and W. H. Ku Abstract This paper demonstrates

More information

Surface Micromachining

Surface Micromachining Surface Micromachining An IC-Compatible Sensor Technology Bernhard E. Boser Berkeley Sensor & Actuator Center Dept. of Electrical Engineering and Computer Sciences University of California, Berkeley Sensor

More information

Quiz2: Mixer and VCO Design

Quiz2: Mixer and VCO Design Quiz2: Mixer and VCO Design Fei Sun and Hao Zhong 1 Question1 - Mixer Design 1.1 Design Criteria According to the specifications described in the problem, we can get the design criteria for mixer design:

More information

Quadrature GPS Receiver Front-End in 0.13μm CMOS: The QLMV cell

Quadrature GPS Receiver Front-End in 0.13μm CMOS: The QLMV cell 1 Quadrature GPS Receiver Front-End in 0.13μm CMOS: The QLMV cell Yee-Huan Ng, Po-Chia Lai, and Jia Ruan Abstract This paper presents a GPS receiver front end design that is based on the single-stage quadrature

More information

Low voltage LNA, mixer and VCO 1GHz

Low voltage LNA, mixer and VCO 1GHz DESCRIPTION The is a combined RF amplifier, VCO with tracking bandpass filter and mixer designed for high-performance low-power communication systems from 800-1200MHz. The low-noise preamplifier has a

More information

A generic micromachined silicon platform for high-performance RF passive components

A generic micromachined silicon platform for high-performance RF passive components J. Micromech. Microeng. 10 (2000) 365 371. Printed in the UK PII: S0960-1317(00)10161-5 A generic micromachined silicon platform for high-performance RF passive components Babak Ziaie and Khalil Najafi

More information

Study of MEMS Devices for Space Applications ~Study Status and Subject of RF-MEMS~

Study of MEMS Devices for Space Applications ~Study Status and Subject of RF-MEMS~ Study of MEMS Devices for Space Applications ~Study Status and Subject of RF-MEMS~ The 26 th Microelectronics Workshop October, 2013 Maya Kato Electronic Devices and Materials Group Japan Aerospace Exploration

More information

RF-MEMS Devices Taxonomy

RF-MEMS Devices Taxonomy RF- Devices Taxonomy Dr. Tejinder Pal Singh (T. P. Singh) A. P., Applied Sciences Department RPIIT Bastara, Karnal, Haryana (INDIA) tps5675@gmail.com Abstract The instrumentation and controls in the fields

More information

1GHz low voltage LNA, mixer and VCO

1GHz low voltage LNA, mixer and VCO DESCRIPTION The is a combined RF amplifier, VCO with tracking bandpass filter and mixer designed for high-performance low-power communication systems from 800-1200MHz. The low-noise preamplifier has a

More information

Fully-Integrated Low Phase Noise Bipolar Differential VCOs at 2.9 and 4.4 GHz

Fully-Integrated Low Phase Noise Bipolar Differential VCOs at 2.9 and 4.4 GHz Fully-Integrated Low Phase Noise Bipolar Differential VCOs at 2.9 and 4.4 GHz Ali M. Niknejad Robert G. Meyer Electronics Research Laboratory University of California at Berkeley Joo Leong Tham 1 Conexant

More information

Monolithic Integrated Design of S-Band Switched Filter Bank Based on LTCC Technology

Monolithic Integrated Design of S-Band Switched Filter Bank Based on LTCC Technology Progress In Electromagnetics Research C, Vol. 74, 73 82, 2017 Monolithic Integrated Design of S-Band Switched Filter Bank Based on LTCC Technology Xiaodong Yang, Mengjiang Xing *, Xuyue Guo, Wei Wang,

More information

Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity

Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity Marvin Onabajo Assistant Professor Analog and Mixed-Signal Integrated Circuits (AMSIC) Research Laboratory Dept.

More information

MEMS BASED QUARTZ OSCILLATORS and FILTERS for on-chip INTEGRATION

MEMS BASED QUARTZ OSCILLATORS and FILTERS for on-chip INTEGRATION MEMS BASED QUARTZ OSCILLATORS and FILTERS for on-chip INTEGRATION R. L. Kubena, F. P. Stratton, D. T. Chang, R. J. Joyce, and T. Y. Hsu Sensors and Materials Laboratory, HRL Laboratories, LLC Malibu, CA

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 20.2 A Digitally Calibrated 5.15-5.825GHz Transceiver for 802.11a Wireless LANs in 0.18µm CMOS I. Bouras 1, S. Bouras 1, T. Georgantas

More information

Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy

Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy RFIC2014, Tampa Bay June 1-3, 2014 Insights Into Circuits for Frequency Synthesis at mm-waves Andrea Mazzanti Università di Pavia, Italy High data rate wireless networks MAN / LAN PAN ~7GHz of unlicensed

More information

Product Opportunities and Challenges. Commercial RF-MEMS: wi Spry. Arthur S. Morris, III CTO, VP Eng.

Product Opportunities and Challenges. Commercial RF-MEMS: wi Spry. Arthur S. Morris, III CTO, VP Eng. Commercial RF-MEMS: Product Opportunities and Challenges Arthur S. Morris, III CTO, VP Eng. Introduction Who is wispry? Spun out from Coventor at end of 2002 Developing RF-MEMS for services customers since

More information

Inductor Modeling of Integrated Passive Device for RF Applications

Inductor Modeling of Integrated Passive Device for RF Applications Inductor Modeling of Integrated Passive Device for RF Applications Yuan-Chia Hsu Meng-Lieh Sheu Chip Implementation Center Department of Electrical Engineering 1F, No.1, Prosperity Road I, National Chi

More information

Cascaded Channel-Select Filter Array Architecture Using High-K Transducers for Spectrum Analysis

Cascaded Channel-Select Filter Array Architecture Using High-K Transducers for Spectrum Analysis Cascaded Channel-Select Filter Array Architecture Using High-K Transducers for Spectrum Analysis Eugene Hwang, Tanay A. Gosavi, Sunil A. Bhave School of Electrical and Computer Engineering Cornell University

More information

Fully Integrated Low Phase Noise LC VCO. Desired Characteristics of VCOs

Fully Integrated Low Phase Noise LC VCO. Desired Characteristics of VCOs Fully Integrated ow Phase Noise C VCO AGENDA Comparison with other types of VCOs. Analysis of two common C VCO topologies. Design procedure for the cross-coupled C VCO. Phase noise reduction techniques.

More information

A Real-Time kHz Clock Oscillator Using a mm 2 Micromechanical Resonator Frequency-Setting Element

A Real-Time kHz Clock Oscillator Using a mm 2 Micromechanical Resonator Frequency-Setting Element 0.0154-mm 2 Micromechanical Resonator Frequency-Setting Element, Proceedings, IEEE International Frequency Control Symposium, Baltimore, Maryland, May 2012, to be published A Real-Time 32.768-kHz Clock

More information

Wireless Energy for Battery-less Sensors

Wireless Energy for Battery-less Sensors Wireless Energy for Battery-less Sensors Hao Gao Mixed-Signal Microelectronics Outline System of Wireless Power Transfer (WPT) RF Wireless Power Transfer RF Wireless Power Transfer Ultra Low Power sions

More information

A Miniaturized Multi-Channel TR Module Design Based on Silicon Substrate

A Miniaturized Multi-Channel TR Module Design Based on Silicon Substrate Progress In Electromagnetics Research Letters, Vol. 74, 117 123, 2018 A Miniaturized Multi-Channel TR Module Design Based on Silicon Substrate Jun Zhou 1, 2, *, Jiapeng Yang 1, Donglei Zhao 1, and Dongsheng

More information

Micro-nanosystems for electrical metrology and precision instrumentation

Micro-nanosystems for electrical metrology and precision instrumentation Micro-nanosystems for electrical metrology and precision instrumentation A. Bounouh 1, F. Blard 1,2, H. Camon 2, D. Bélières 1, F. Ziadé 1 1 LNE 29 avenue Roger Hennequin, 78197 Trappes, France, alexandre.bounouh@lne.fr

More information

Low voltage high performance mixer FM IF system

Low voltage high performance mixer FM IF system DESCRIPTION The is a low voltage high performance monolithic FM IF system incorporating a mixer/oscillator, two limiting intermediate frequency amplifiers, quadrature detector, logarithmic received signal

More information

Aspemyr, Lars; Jacobsson, Harald; Bao, Mingquan; Sjöland, Henrik; Ferndal, Mattias; Carchon, G

Aspemyr, Lars; Jacobsson, Harald; Bao, Mingquan; Sjöland, Henrik; Ferndal, Mattias; Carchon, G A 15 GHz and a 2 GHz low noise amplifier in 9 nm RF CMOS Aspemyr, Lars; Jacobsson, Harald; Bao, Mingquan; Sjöland, Henrik; Ferndal, Mattias; Carchon, G Published in: Topical Meeting on Silicon Monolithic

More information

A 2.4-GHz 24-dBm SOI CMOS Power Amplifier with Fully Integrated Output Balun and Switched Capacitors for Load Line Adaptation

A 2.4-GHz 24-dBm SOI CMOS Power Amplifier with Fully Integrated Output Balun and Switched Capacitors for Load Line Adaptation A 2.4-GHz 24-dBm SOI CMOS Power Amplifier with Fully Integrated Output Balun and Switched Capacitors for Load Line Adaptation Francesco Carrara 1, Calogero D. Presti 2,1, Fausto Pappalardo 1, and Giuseppe

More information

4/30/2012. General Class Element 3 Course Presentation. Practical Circuits. Practical Circuits. Subelement G7. 2 Exam Questions, 2 Groups

4/30/2012. General Class Element 3 Course Presentation. Practical Circuits. Practical Circuits. Subelement G7. 2 Exam Questions, 2 Groups General Class Element 3 Course Presentation ti ELEMENT 3 SUB ELEMENTS General Licensing Class Subelement G7 2 Exam Questions, 2 Groups G1 Commission s Rules G2 Operating Procedures G3 Radio Wave Propagation

More information

Low Actuation Wideband RF MEMS Shunt Capacitive Switch

Low Actuation Wideband RF MEMS Shunt Capacitive Switch Available online at www.sciencedirect.com Procedia Engineering 29 (2012) 1292 1297 2012 International Workshop on Information and Electronics Engineering (IWIEE) Low Actuation Wideband RF MEMS Shunt Capacitive

More information