Study and Design of a Voltage Line Conditioner with Serial Compensation and Fed by Load Side

Size: px
Start display at page:

Download "Study and Design of a Voltage Line Conditioner with Serial Compensation and Fed by Load Side"

Transcription

1 Federal University of Santa Catarina - UFSC Post-graduation in Electrical Engineering - PPGEEL Power Electronics Institute - INEP Master Thesis Presentation: Study and Design of a Voltage Line Conditioner with Serial Compensation and Fed by Load Side Eng. MSc Thiago Batista Soeiro July, 2007

2 Presentation Contents Introduction Voltage Line Conditioner: Power Stage Voltage Line Conditioner: Control Stage Experimental Results Conclusions

3 Motivations 1- The increase of voltage-sensitive equipments results in greater demand for high-quality voltage sources; 2- The existence of standards limiting the harmonic pollution in electric power system; 3- To aid the national industries in the development of high-quality voltage sources.

4 Main Objectives 1- To study concepts and topologies of voltage line conditioners; 2- To establish general voltage compensation methods to be applied in voltage line conditioners; 3- To evaluate the performance of the topology proposed under unbalanced and distorted system voltages; 4- To study and formulate control techniques to provide the conditioning of the load voltage 5- To develop and test a voltage line conditioner prototype to validate the analysis.

5 Important Concepts The Studied Topology was based on two concepts: ZL d i o The Principle of Serial Voltage Compensation,, applied in Stabilizers in 1950 by Patchett v i vri v ( v, i, d) o i o v r v ds Rectifier L o C o Indirect ac-ac Converter with Direct link presented by Bong- Hwan Kwon in 2002 S 1 S 2 v ri S 3 S 4 S 5 S 6 a S 7 S 8 b v dp v ri Inverter

6 Important Concepts The Voltage Line Conditioner Operation Principle: v i vds = vds = vdsf vdsh io = if ih Z S v i vi = vf vh vri

7 Voltage Line Conditioner Generalization of Serial Voltage Conditioners: The Serial Voltage Compensation: Δ v Transf.. Filter Δ v v i CA-CA ca ca Inversor Carga i v ca ca Carga Direct Compensation

8 Voltage Line Conditioner Δ v Filter by the load side Δ v i v CA-CA ca ca Inversor Carga i v CA-CA ca ca Inversor Carga Transf.. Filter

9 Voltage Line Conditioner Feeding the ac-ac Converter: v i Compensador CA-CA série Inversor Carga v i By the Load Side Compensador CA-CA série Inversor Carga By the Line Side

10 Voltage Line Conditioner Compensador CA-CA série Inversor v i v aux Carga Auxiliary Source

11 Voltage Line Conditioner ac-ac Converter Isolation: vds v i T 1 v f Converter ac ac Inverter L o C o By the Rectifier side vds By the inverter side v i v f Converter CA-CA ac ac Retificador Inverter Inversor T 1 L o C o

12 Voltage Line Conditioner Conditioner Topologies: vds vds v i v f Converter CA-CA ac ac Retificador Inverter Inversor T 1 L o C o v i v f Converter CA-CA ac ac Inversor Inverter Retificador L o C o T 1 vds vds v i T 1 v f Converter ac ac Inverter L o C o v i v f Converter CA-CA ac ac Inversor Inverter Retificador L o T 1 C o Fed by the line side

13 Voltage Line Conditioner Conditioner Topologies: vds vds v i T 1 L o Converter CA-CA ac ac Inversor Inverter Retificador v f C o v i C o T 1 L o Converter CA-CA ac ac Inversor Inverter Retificador v f vds vds v i C o L o T 1 Converter CA-CA ac ac Inversor Inverter Retificador v f v i C o L o Converter CA-CA ac ac Inversor Inverter Retificador v f T 1 Fed by the load side

14 Voltage Line Conditioner Conditioner Topologies: vds vds vi v f Converter CA-CA ac ac Inversor Inverter Retificador L o T 1 C o v i v f Converter CA-CA ac ac Retificador Inverter Inversor T 1 L o C o vds vds v i v f Converter CA-CA ac ac Inversor Inverter Retificador L o C o T 1 v i T 1 v f Converter CA-CA ac ac Retificador Inverter Inversor L o C o Fed by an auxiliary source

15 Voltage Line Conditioner: Power Stage vds L S L ds T 1 i o L o S 5 S 7 S 3 S 1 v i i Lo a b v r C o S 6 S 8 S 4 S 2 Inverter Rectifier

16 Modulation Strategy v () t 0 PWM Inverter (S 5 -S 8 ) S () t 1,4 S () t 2,3 v () t r 0 Tr 2 Tr t Bidirectional Rectifier (S 1 -S 4 )

17 0 π 2π 0 π 2π Main Waveforms v i Adding voltage Rectifier input voltage Subtracting voltage Rectifier input voltage 3 Level PWM Modulation v g1,4 v g 2,3 Rectifier v r v c v ab Inverter v ds 0 T d s 2 T s 2 v i t t

18 Main Analytical Expression () g t N = N N d() t 1 = d t Δ () Converter s Static Gain Transformation ratio Δ I = Leq ( ) () ( ) V d t d t N f L s eq Current ripple ( 2 ( )) o ( ) 1 ( ) () ( ) ( ) ( ) ΔILeq N d t I d t d t Δ VCo = 16 N f C 4 f C ΔI N d t N 1 S o S o Leq Voltage ripple

19 Voltage Line Conditioner: Control Stage RS LS LdP Rede de Energia vt () i S 5 S 6 S 7 S 8 S 3 S 4 S 1 S 2 C 0 Carga vt () 0 Comando S S 1 2 S3 S4 Sensor de Tensão v Srr v Srr S5 S 6 S7 S 8 Modulador C(s) v _ ref Modulador Compensador de Tensão

20 Mathematical Model Small signals model: G(s), Transfer Function of output voltage vs. duty cycle; F(s), Transfer Function of output voltage vs. input voltage. ( ) G s ( ) F s v o = = d v o = = v i ( ) = ( ) ( ) ( ) ( ) v s F s v s G s d s 0 i 2 s Leq N Vo L ( ) Z N D o ( ) V N D 2 s L 2 2 eq N s Leq Co N N D ZL N N D ( ) L ( ) 2 s L 2 2 eq N s Leq Co N N D Z ( ) 2 2

21 Conditioner Analytical Study Load Influence over circuit s s dynamic response:

22 Conditioner Analytical Study There are some strategies to damp the voltage oscillation or compensate the absence of load: To damp voltage oscillation with virtual resistance control strategy; tegy; To insert a control loop to compensate abrupt voltage drop; To insert input filter topologies;

23 Virtual Resistance Line conditioner Block Diagram: N R V 0 G Virtual PWM N D N Vc( s) ˆd vˆleq V o 1 iˆco 1 G ˆd PWM ˆv 0 N s L sc eq 0 vˆi R Virtual iˆleq D N î 0 Z L V o ( ND)

24 Converter Control RS LS LdP T Rede de Energia vt () i S 5 S 6 b D 5 D 6 S 7 S 8 a D 7 S 3 S 4 D 3 D8 D4 S 1 S 2 D 1 D2 C 0 Carga vt () 0 Sensor de Corrente Comando S S 1 2 S3 S4 Sensor de Tensão v Srr v Srr S5 S 6 S7 S 8 Modulador C Rv( s) Modulador C(s) v Compensador de Tensão _ ref Compensador de Rvirtual I() c s

25 Experimental Results Prototype [ ] V = 220± 20% V i V o = S o = F r = F S = N = 4 Leq Co = 220[ V] 10[ kva] 60[ Hz] 20[ khz] [ μ ] [ μ ] 340 H 20 F

26 Control Signals

27 ac-ac converter voltage signals Rectifier Inverter

28 Operation with Load Transient Without Virtual Resistance Control Loop With Virtual Resistance Control Loop 50% Load Transient

29 Operation with input Transient 20% transient in input voltage Vi(t):

30 Operation with input Transient -20% transient in input voltage Vi(t): ):.

31 Operation with input Transient THD correction:

32 Nonlinear load Operation The greatest requirements in terms of dynamic response. 100 μh 10Ω 10mF

33 Conclusions Experimental Results: The control strategy was efficient with instantaneous correction of the output voltage when faced with input voltage and load variations; Capability of supplying an output voltage with low harmonic distortion; When presented with the worst case scenario, a nonlinear load, the conditioner studied was able to correct the THD to fit the required standards of 5% (IEEE519/92);

34 Conclusions Contributions: A generalization of serial line conditioners was presented through 12 possible topologies; This work focused on the study of a serial line conditioner with an ac-ac indirect converter with direct link, fed by load side. The capacitive filter was positioned on the load side to make use of the line impedance as a multi-functional filter; A control strategy was introduced to efficiently stabilize the output voltage of the studied structure;.

35 Conclusions Future works: Study of three-phase voltage line conditioners: - Space vector Modulation; - Digital Control and Nonlinear Control Techniques; - Study of Rectifier control techniques; - Study of combined series and shunt active power filters for simultaneous compensation of voltage and current; - Hybrid and Matrix Converters;

36 The End

Analysis of Utility Interactive Photovoltaic Generation System using a Single Power Static Inverter

Analysis of Utility Interactive Photovoltaic Generation System using a Single Power Static Inverter Asian J. Energy Environ., Vol. 5, Issue 2, (2004), pp. 115-137 Analysis of Utility Interactive Photovoltaic Generation System using a Single Power Static Inverter D. C. Martins*, R. Demonti, A. S. Andrade

More information

Unified Power Quality Conditioner based on an Indirect Matrix Converter with a PV panel

Unified Power Quality Conditioner based on an Indirect Matrix Converter with a PV panel Unified Power Quality Conditioner based on an Indirect Matrix Converter with a PV panel Nathan Araujo, Student, IST Abstract The main goal of this master thesis is to propose a Unified Power Quality Conditioner

More information

SHUNT ACTIVE POWER FILTER

SHUNT ACTIVE POWER FILTER 75 CHAPTER 4 SHUNT ACTIVE POWER FILTER Abstract A synchronous logic based Phase angle control method pulse width modulation (PWM) algorithm is proposed for three phase Shunt Active Power Filter (SAPF)

More information

Application of Fuzzy Logic Controller in Shunt Active Power Filter

Application of Fuzzy Logic Controller in Shunt Active Power Filter IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 11 April 2016 ISSN (online): 2349-6010 Application of Fuzzy Logic Controller in Shunt Active Power Filter Ketan

More information

BIDIRECTIONAL CURRENT-FED FLYBACK-PUSH-PULL DC-DC CONVERTER

BIDIRECTIONAL CURRENT-FED FLYBACK-PUSH-PULL DC-DC CONVERTER BIDIRECTIONAL CURRENT-FED FLYBACK-PUSH-PULL DC-DC CONVERTER Eduardo Valmir de Souza and Ivo Barbi Power Electronics Institute - INEP Federal University of Santa Catarina - UFSC www.inep.ufsc.br eduardovs@inep.ufsc.br,

More information

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 14 CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 2.1 INTRODUCTION Power electronics devices have many advantages over the traditional power devices in many aspects such as converting

More information

Multilevel Boost DC-DC Converter Derived From Basic Double-Boost Converter

Multilevel Boost DC-DC Converter Derived From Basic Double-Boost Converter Multilevel Boost DC-DC Converter Derived From Basic Double-Boost Converter evy F. Costa, Samir A. Mussa, Ivo Barbi FEDERA UNIVERSITY OF SANTA CATARINA Power Electronic Institute - INEP Florianópolis, Brazil

More information

Control Of Shunt Active Filter Based On Instantaneous Power Theory

Control Of Shunt Active Filter Based On Instantaneous Power Theory B.Pragathi Department of Electrical and Electronics Shri Vishnu Engineering College for Women Bhimavaram, India Control Of Shunt Active Filter Based On Instantaneous Power Theory G.Bharathi Department

More information

5. Active Conditioning for a Distributed Power System

5. Active Conditioning for a Distributed Power System 5. Active Conditioning for a Distributed Power System 5.1 The Concept of the DC Bus Conditioning 5.1.1 Introduction In the process of the system integration, the greatest concern is the dc bus stability

More information

Advances in Averaged Switch Modeling

Advances in Averaged Switch Modeling Advances in Averaged Switch Modeling Robert W. Erickson Power Electronics Group University of Colorado Boulder, Colorado USA 80309-0425 rwe@boulder.colorado.edu http://ece-www.colorado.edu/~pwrelect 1

More information

Design of a Hybrid Active Filter for Harmonics Suppression in Industrial Facilities

Design of a Hybrid Active Filter for Harmonics Suppression in Industrial Facilities Design of a Hybrid Active Filter for Harmonics Suppression in Industrial Facilities Tzung-Lin Lee Yen-Ching Wang Jian-Cheng Li Department of Electrical Engineering National Sun Yat-sen University 7, Lienhai

More information

Shunt Active Power Filter for Compensation of System Harmonics

Shunt Active Power Filter for Compensation of System Harmonics Volume 5, Issue 1 (February, 018) E-ISSN : 48-7 P-ISSN : 454-1 Shunt Active Power Filter for of System Harmonics Badal Devanand Umare 1, A. S. Sindekar 1 PG Scholar, HOD, Department of Electrical Engineering,

More information

Key-Words: - NARX Neural Network; Nonlinear Loads; Shunt Active Power Filter; Instantaneous Reactive Power Algorithm

Key-Words: - NARX Neural Network; Nonlinear Loads; Shunt Active Power Filter; Instantaneous Reactive Power Algorithm Parameter control scheme for active power filter based on NARX neural network A. Y. HATATA, M. ELADAWY, K. SHEBL Department of Electric Engineering Mansoura University Mansoura, EGYPT a_hatata@yahoo.com

More information

Sinusoidal Current Control based Shunt Active Power Filter for Current Harmonics Reduction

Sinusoidal Current Control based Shunt Active Power Filter for Current Harmonics Reduction Sinusoidal Current Control based Shunt Active Power Filter for Current Harmonics Reduction Anju Yadav 1, K. Narayanan 2, Binsy Joseph 3 1, 2, 3 Fr. Conceicao Rodrigues College of Engineering, Mumbai, India

More information

ELEC4240/ELEC9240 POWER ELECTRONICS

ELEC4240/ELEC9240 POWER ELECTRONICS THE UNIVERSITY OF NEW SOUTH WALES FINAL EXAMINATION JUNE/JULY, 2003 ELEC4240/ELEC9240 POWER ELECTRONICS 1. Time allowed: 3 (three) hours 2. This paper has six questions. Answer any four. 3. All questions

More information

M.Tech in Industrial Electronics, SJCE, Mysore, 2 Associate Professor, Dept. of ECE, SJCE, Mysore

M.Tech in Industrial Electronics, SJCE, Mysore, 2 Associate Professor, Dept. of ECE, SJCE, Mysore Implementation of Five Level Buck Converter for High Voltage Application Manu.N.R 1, V.Nattarasu 2 1 M.Tech in Industrial Electronics, SJCE, Mysore, 2 Associate Professor, Dept. of ECE, SJCE, Mysore Abstract-

More information

Single Phase Induction Motor Drive using Modified SEPIC Converter and Three Phase Inverter

Single Phase Induction Motor Drive using Modified SEPIC Converter and Three Phase Inverter Single Phase Induction Motor Drive using Modified SEPIC Converter and Three Phase Inverter Ajeesh P R PG Student, M. Tech Power Electronics, Mar Athanasius College of Engineering, Kerala, India, Dr. Babu

More information

A HIGH RELIABILITY SINGLE-PHASE BOOST RECTIFIER SYSTEM FOR DIFFERENT LOAD VARIATIONS. Prasanna Srikanth Polisetty

A HIGH RELIABILITY SINGLE-PHASE BOOST RECTIFIER SYSTEM FOR DIFFERENT LOAD VARIATIONS. Prasanna Srikanth Polisetty GRT A HIGH RELIABILITY SINGLE-PHASE BOOST RECTIFIER SYSTEM FOR DIFFERENT LOAD VARIATIONS Prasanna Srikanth Polisetty Department of Electrical and Electronics Engineering, Newton s College of Engineering

More information

A Three-Phase AC-AC Buck-Boost Converter using Impedance Network

A Three-Phase AC-AC Buck-Boost Converter using Impedance Network A Three-Phase AC-AC Buck-Boost Converter using Impedance Network Punit Kumar PG Student Electrical and Instrumentation Engineering Department Thapar University, Patiala Santosh Sonar Assistant Professor

More information

Buck Boost AC Chopper

Buck Boost AC Chopper IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 11 April 2015 ISSN (online): 2349-6010 Buck Boost AC Chopper Dilip Sonagara Department of Power Electronics Gujarat

More information

THE CONVENTIONAL voltage source inverter (VSI)

THE CONVENTIONAL voltage source inverter (VSI) 134 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 14, NO. 1, JANUARY 1999 A Boost DC AC Converter: Analysis, Design, and Experimentation Ramón O. Cáceres, Member, IEEE, and Ivo Barbi, Senior Member, IEEE

More information

A Robust Fuzzy Speed Control Applied to a Three-Phase Inverter Feeding a Three-Phase Induction Motor.

A Robust Fuzzy Speed Control Applied to a Three-Phase Inverter Feeding a Three-Phase Induction Motor. A Robust Fuzzy Speed Control Applied to a Three-Phase Inverter Feeding a Three-Phase Induction Motor. A.T. Leão (MSc) E.P. Teixeira (Dr) J.R. Camacho (PhD) H.R de Azevedo (Dr) Universidade Federal de Uberlândia

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Construction of transfer function v 2 (s) v (s) = Z 2Z Z Z 2 Z = Z out Z R C Z = L Q = R /R 0 f

More information

Push-pull resonant DC-DC isolated converter

Push-pull resonant DC-DC isolated converter BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, Vol. 61, No. 4, 2013 DOI: 10.2478/bpasts-2013-0082 Dedicated to Professor M.P. Kaźmierkowski on the occasion of his 70th birthday Push-pull

More information

2.4 Modeling and Analysis of Three Phase Four Leg Inverter

2.4 Modeling and Analysis of Three Phase Four Leg Inverter 2.4 Modeling and Analysis of Three Phase Four Leg Inverter The main feature of a three phase inverter, with an additional neutral leg, is its ability to deal with load unbalance in a standalone power supply

More information

CHAPTER 6 THREE-LEVEL INVERTER WITH LC FILTER

CHAPTER 6 THREE-LEVEL INVERTER WITH LC FILTER 97 CHAPTER 6 THREE-LEVEL INVERTER WITH LC FILTER 6.1 INTRODUCTION Multi level inverters are proven to be an ideal technique for improving the voltage and current profile to closely match with the sinusoidal

More information

Design of UPS Inverter Control System Based on DSP

Design of UPS Inverter Control System Based on DSP International onference on Applied Science and Engineering Innovation (ASEI 05) Design of US Inverter ontrol System Based on DS Qian Yang, a, Mingming Guo, b and Jianhua Dou, c School of omputer and Information,

More information

Novelty Technique for Power factor Improvement by a Single phase Rectifier

Novelty Technique for Power factor Improvement by a Single phase Rectifier 162 Novelty Technique for Power factor Improvement by a Single phase Rectifier Baby.M 1, Poorinima.S 2, Bharani Prakash.T 3, Sudarsan.S 4 Abstract A new technique is implemented to improve the input power

More information

A HIGH EFFICIENT IMPROVED SOFT SWITCHED INTERLEAVED BOOST CONVERTER

A HIGH EFFICIENT IMPROVED SOFT SWITCHED INTERLEAVED BOOST CONVERTER A HIGH EFFICIENT IMPROVED SOFT SWITCHED INTERLEAVED BOOST CONVERTER A.Karthikeyan, 1 S.Athira, 2 PSNACET, Dindigul, India. janakarthi@rediffmail.com, athiraspecial@gmail.com ABSTRACT In this paper an improved

More information

BLDC Motor Speed Control and PFC Using Isolated Zeta Converter

BLDC Motor Speed Control and PFC Using Isolated Zeta Converter BLDC Motor Speed Control and PFC Using Isolated Zeta Converter Vimal M 1, Sunil Kumar P R 2 PG Student, Dept. of EEE. Government Engineering College Idukki, India 1 Asst. Professor, Dept. of EEE Government

More information

A Novel Automatic Power Factor Regulator

A Novel Automatic Power Factor Regulator 1 A Novel Automatic Power Factor Regulator Jinn-Chang Wu Abstract A novel automatic power factor regulator (APFR) comprising a conventional APFR and a power converter based protector is proposed in this

More information

Bidirectional Ac/Dc Converter with Reduced Switching Losses using Feed Forward Control

Bidirectional Ac/Dc Converter with Reduced Switching Losses using Feed Forward Control Bidirectional Ac/Dc Converter with Reduced Switching Losses using Feed Forward Control Lakkireddy Sirisha Student (power electronics), Department of EEE, The Oxford College of Engineering, Abstract: The

More information

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter 3.1 Introduction DC/DC Converter efficiently converts unregulated DC voltage to a regulated DC voltage with better efficiency and high power density.

More information

Understanding Input Harmonics and Techniques to Mitigate Them

Understanding Input Harmonics and Techniques to Mitigate Them Understanding Input Harmonics and Techniques to Mitigate Them Mahesh M. Swamy Yaskawa Electric America YASKAWA Page. 1 Organization Introduction Why FDs Generate Harmonics? Harmonic Limit Calculations

More information

Chapter 2 MODELING AND CONTROL OF PEBB BASED SYSTEMS

Chapter 2 MODELING AND CONTROL OF PEBB BASED SYSTEMS Chapter 2 MODELING AND CONTROL OF PEBB BASED SYSTEMS 2.1 Introduction The PEBBs are fundamental building cells, integrating state-of-the-art techniques for large scale power electronics systems. Conventional

More information

SLIDING MODE CONTROLLER FOR THE BOOST INVERTER

SLIDING MODE CONTROLLER FOR THE BOOST INVERTER SLIDING MODE CONTROLLER FOR THE BOOST INVERTER Cuernavaca, I&XICO October 14-17 Ram6n Chceres Universidad de 10s Andes Facultad de Ingenieria Dpto. de Electronica MCrida - Edo. MCrida - Venezuela. E-mail:

More information

A SPWM CONTROLLED THREE-PHASE UPS FOR NONLINEAR LOADS

A SPWM CONTROLLED THREE-PHASE UPS FOR NONLINEAR LOADS http:// A SPWM CONTROLLED THREE-PHASE UPS FOR NONLINEAR LOADS Abdul Wahab 1, Md. Feroz Ali 2, Dr. Abdul Ahad 3 1 Student, 2 Associate Professor, 3 Professor, Dept.of EEE, Nimra College of Engineering &

More information

1.5MHz, 800mA, High-Efficiency PWM Synchronous Step-Down Converter

1.5MHz, 800mA, High-Efficiency PWM Synchronous Step-Down Converter 1.5MHz, 800mA, High-Efficiency PWM Synchronous Step-Down Converter Description The is a high efficiency, low-noise, DC-DC step-down pulse width modulated (PWM) converter that goes automatically into PFM

More information

Fabiana Pottker de Soma and Ivo Barbi

Fabiana Pottker de Soma and Ivo Barbi Power Factor Correction of Linear and Non-linear Loads Employing a Single Phase Active Power Filter Based on a Full-Bridge Current Source Inverter Controlled Through the Sensor of the AC Mains Current

More information

Multiple PR Current Regulator based Dead-time Effects Compensation for Grid-forming Single-Phase Inverter

Multiple PR Current Regulator based Dead-time Effects Compensation for Grid-forming Single-Phase Inverter Multiple PR Current Regulator based Dead-time Effects Compensation for Grid-forming Single-Phase Inverter 1 st Siyuan Chen FREEDM Systems Center North Carolina State University Raleigh, NC, USA schen36@ncsu.edu

More information

Power Factor Correction of Non-Linear Loads Employing a Single Phase Active Power Filter: Control Strategy, Design Methodology and Experimentation

Power Factor Correction of Non-Linear Loads Employing a Single Phase Active Power Filter: Control Strategy, Design Methodology and Experimentation ~ Power Factor Correction of Non-Linear Loads Employing a Single Phase Active Power Filter: Control Strategy, Design Methodology and Experimentation Fabiana Pottker and vo Barbi Federal University of Santa

More information

Svpwm Technique to Eliminate Harmonics and Power Factor Improvement Using Hybrid Power Filter and By Using Dsp Tms 320lf2407

Svpwm Technique to Eliminate Harmonics and Power Factor Improvement Using Hybrid Power Filter and By Using Dsp Tms 320lf2407 International Journal of Engineering Research and Development ISSN: 2278-067X, Volume 1, Issue 4 (June 2012), PP.17-25 www.ijerd.com Svpwm Technique to Eliminate Harmonics and Power Factor Improvement

More information

IN THE conversing CATV and telecommunication market,

IN THE conversing CATV and telecommunication market, 912 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 5, SEPTEMBER 1998 Performance of a Single-Stage UPS System for Single-Phase Trapezoidal-Shaped AC-Voltage Supplies Praveen K. Jain, Senior Member,

More information

Power Factor Pre-regulator Using Constant Tolerance Band Control Scheme

Power Factor Pre-regulator Using Constant Tolerance Band Control Scheme Power Factor Pre-regulator Using Constant Tolerance Band Control Scheme Akanksha Mishra, Anamika Upadhyay Akanksha Mishra is a lecturer ABIT, Cuttack, India (Email: misakanksha@gmail.com) Anamika Upadhyay

More information

CHAPTER 3. SINGLE-STAGE PFC TOPOLOGY GENERALIZATION AND VARIATIONS

CHAPTER 3. SINGLE-STAGE PFC TOPOLOGY GENERALIZATION AND VARIATIONS CHAPTER 3. SINGLE-STAGE PFC TOPOLOG GENERALIATION AND VARIATIONS 3.1. INTRODUCTION The original DCM S 2 PFC topology offers a simple integration of the DCM boost rectifier and the PWM DC/DC converter.

More information

INSTANTANEOUS POWER THEORY AND APPLICATIONS TO POWER CONDITIONING

INSTANTANEOUS POWER THEORY AND APPLICATIONS TO POWER CONDITIONING INSTANTANEOUS POWER THEORY AND APPLICATIONS TO POWER CONDITIONING Hirofumi Akagi Professor of Electrica! Engineering TIT Tokyo Institute of Technology, Japan Edson Hirokazu Watanabe Professor of Electrica!

More information

MODELLING & SIMULATION OF ACTIVE SHUNT FILTER FOR COMPENSATION OF SYSTEM HARMONICS

MODELLING & SIMULATION OF ACTIVE SHUNT FILTER FOR COMPENSATION OF SYSTEM HARMONICS JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY Journal of Electrical Engineering & Technology (JEET) (JEET) ISSN 2347-422X (Print), ISSN JEET I A E M E ISSN 2347-422X (Print) ISSN 2347-4238 (Online) Volume

More information

Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION

Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION Z-SOURCE INVERTER BASED DVR FOR VOLTAGE SAG/SWELL MITIGATION 1 Arsha.S.Chandran, 2 Priya Lenin 1 PG Scholar, 2 Assistant Professor 1 Electrical & Electronics Engineering 1 Mohandas College of Engineering

More information

CHAPTER 2 AN ANALYSIS OF LC COUPLED SOFT SWITCHING TECHNIQUE FOR IBC OPERATED IN LOWER DUTY CYCLE

CHAPTER 2 AN ANALYSIS OF LC COUPLED SOFT SWITCHING TECHNIQUE FOR IBC OPERATED IN LOWER DUTY CYCLE 40 CHAPTER 2 AN ANALYSIS OF LC COUPLED SOFT SWITCHING TECHNIQUE FOR IBC OPERATED IN LOWER DUTY CYCLE 2.1 INTRODUCTION Interleaving technique in the boost converter effectively reduces the ripple current

More information

THE most common three-phase power supplies use topologies

THE most common three-phase power supplies use topologies IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 45, NO. 6, DECEMBER 1998 895 DSP Implementation of Output Voltage Reconstruction in CSI-Based Converters José R. Espinoza, Member, IEEE, and Géza Joós,

More information

HYBRID ACTIVE FILTER WITH VARIABLE CONDUCTANCE FOR HARMONIC RESONANCE SUPPRESSION USING ANN

HYBRID ACTIVE FILTER WITH VARIABLE CONDUCTANCE FOR HARMONIC RESONANCE SUPPRESSION USING ANN HYBRID ACTIVE FILTER WITH VARIABLE CONDUCTANCE FOR HARMONIC RESONANCE SUPPRESSION USING ANN 1 M.Shyamala, 2 P.Dileep Kumar 1 Pursuing M.Tech, PE Branch, Dept of EEE. 2 Assoc.Prof,EEE,Dept,Brilliant Institute

More information

Size Selection Of Energy Storing Elements For A Cascade Multilevel Inverter STATCOM

Size Selection Of Energy Storing Elements For A Cascade Multilevel Inverter STATCOM Size Selection Of Energy Storing Elements For A Cascade Multilevel Inverter STATCOM Dr. Jagdish Kumar, PEC University of Technology, Chandigarh Abstract the proper selection of values of energy storing

More information

Chapter 2 Shunt Active Power Filter

Chapter 2 Shunt Active Power Filter Chapter 2 Shunt Active Power Filter In the recent years of development the requirement of harmonic and reactive power has developed, causing power quality problems. Many power electronic converters are

More information

Power Quality improvement of a three phase four wire system using UPQC

Power Quality improvement of a three phase four wire system using UPQC International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 2 Issue: 4 July-215 www.irjet.net p-issn: 2395-72 Power Quality improvement of a three phase four wire system

More information

Three Phase Active Power Filter Based on Current Controlled Voltage Source Inverter

Three Phase Active Power Filter Based on Current Controlled Voltage Source Inverter Volume 4, Number 4, 24 439 Three Phase Active Power Filter Based on Current Controlled Voltage Source Inverter E. E. EL-KHOLY*, A. EL-SABBE*, A. EL-HEFNAWY* and Hamdy M. MHAROUS** *Electrical Engineering

More information

5DESIGN PARAMETERS OF SHUNT ACTIVE FILTER FOR HARMONICS CURRENT MITIGATION

5DESIGN PARAMETERS OF SHUNT ACTIVE FILTER FOR HARMONICS CURRENT MITIGATION 5DESIGN PARAMETERS OF SHUNT ACTIE FILTER FOR HARMONICS CURRENT MITIGATION Page 59 A.H. Budhrani 1*, K.J. Bhayani 2, A.R. Pathak 3 1*, 2, 3 Department of Electrical Engineering,..P. Engineering College

More information

Load Compensation at a Reduced DC Link Voltage by Using DSTATCOM with Non-Stiff Source

Load Compensation at a Reduced DC Link Voltage by Using DSTATCOM with Non-Stiff Source International Journal of Emerging Engineering Research and Technology Volume 2, Issue 3, June 2014, PP 220-229 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Load Compensation at a Reduced DC Link Voltage

More information

A Current-Source Active Power Filter with a New DC Filter Structure

A Current-Source Active Power Filter with a New DC Filter Structure A Current-Source Active Power Filter with a New DC Filter Structure Mika Salo Department of Electrical Engineering, Institute of Power Electronics Tampere University of Technology P.O.Box 692, FIN-3311

More information

University of Kurdistan. Adaptive virtual impedance scheme for selective compensation of voltage unbalance and harmonics in microgrids

University of Kurdistan. Adaptive virtual impedance scheme for selective compensation of voltage unbalance and harmonics in microgrids University of Kurdistan Dept. of Electrical and Computer Engineering Smart/Micro Grid Research Center smgrc.uok.ac.ir Adaptive virtual impedance scheme for selective compensation of voltage unbalance and

More information

CHAPTER 5 CONTROL SYSTEM DESIGN FOR UPFC

CHAPTER 5 CONTROL SYSTEM DESIGN FOR UPFC 90 CHAPTER 5 CONTROL SYSTEM DESIGN FOR UPFC 5.1 INTRODUCTION This chapter deals with the performance comparison between a closed loop and open loop UPFC system on the aspects of power quality. The UPFC

More information

Control of Power Converters for Distributed Generation

Control of Power Converters for Distributed Generation Mechatronics Industrial Advisory Board 2004 Control of Power Converters for Distributed Generation Ph.D. Student: Min Dai Advisor: Prof. Ali Keyhani Department of Electrical and Computer Engineering The

More information

RESONANT CIRCUIT MODEL AND DESIGN FOR A HIGH FREQUENCY HIGH VOLTAGE SWITCHED-MODE POWER SUPPLY

RESONANT CIRCUIT MODEL AND DESIGN FOR A HIGH FREQUENCY HIGH VOLTAGE SWITCHED-MODE POWER SUPPLY RESONANT CIRCUIT MODEL AND DESIGN FOR A HIGH FREQUENCY HIGH VOLTAGE SWITCHED-MODE POWER SUPPLY Gleyson L. Piazza, Ricardo L. Alves 2, Carlos H. Illa Font 3 and Ivo Barbi 3 Federal Institute of Santa Catarina,

More information

Comparison of Control Algorithms for Shunt Active Filter for Harmonic Mitigation

Comparison of Control Algorithms for Shunt Active Filter for Harmonic Mitigation Comparison of Control Algorith for Shunt Active Filter for Harmonic Mitigation A.Giri Prasad¹,K.Dheeraj²,A.Naveen Kumar³, Electrical and Electronics Engineering Department ST.Peter s Engineering college,

More information

l1-i VEL SINGLE-PHASE ZCS-PWM HIGH POWER FACTOR BOOST RECTIFIER IVO Barbi Carlos A. Canesin

l1-i VEL SINGLE-PHASE ZCS-PWM HIGH POWER FACTOR BOOST RECTIFIER IVO Barbi Carlos A. Canesin VEL SINGLE-PHASE ZCS-PWM HIGH POWER FACTOR BOOST RECTIFIER Carlos A. Canesin Paulista State University UNESP - FEIS - DEE - P.O. box 31 Fax: (+55) 18-7622125 e-mail: canesin@feis.unesp.br 15385-000 - Ilha

More information

Scientific Journal Impact Factor: (ISRA), Impact Factor: 1.852

Scientific Journal Impact Factor: (ISRA), Impact Factor: 1.852 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Average Current-Mode Control with Leading Phase Admittance Cancellation Principle for Single Phase AC-DC Boost converter Mukeshkumar

More information

ANALYSIS OF SYNCHRONOUS-REFERENCE-FRAME-BASED CONTROL METHOD FOR UPQC UNDER UNBALANCED AND DISTORTED LOAD CONDITIONS Salava Nagaraju* 1

ANALYSIS OF SYNCHRONOUS-REFERENCE-FRAME-BASED CONTROL METHOD FOR UPQC UNDER UNBALANCED AND DISTORTED LOAD CONDITIONS Salava Nagaraju* 1 International Journal of Engineering & Science Research ANALYSIS OF SYNCHRONOUS-REFERENCE-FRAME-BASED CONTROL METHOD FOR UPQC UNDER UNBALANCED AND DISTORTED LOAD CONDITIONS Salava Nagaraju* 1 1 M.Tech

More information

EXPERIMENT 4: RC, RL and RD CIRCUITs

EXPERIMENT 4: RC, RL and RD CIRCUITs EXPERIMENT 4: RC, RL and RD CIRCUITs Equipment List Resistor, one each of o 330 o 1k o 1.5k o 10k o 100k o 1000k 0.F Ceramic Capacitor 4700H Inductor LED and 1N4004 Diode. Introduction We have studied

More information

CHAPTER 4 PV-UPQC BASED HARMONICS REDUCTION IN POWER DISTRIBUTION SYSTEMS

CHAPTER 4 PV-UPQC BASED HARMONICS REDUCTION IN POWER DISTRIBUTION SYSTEMS 66 CHAPTER 4 PV-UPQC BASED HARMONICS REDUCTION IN POWER DISTRIBUTION SYSTEMS INTRODUCTION The use of electronic controllers in the electric power supply system has become very common. These electronic

More information

Hybrid Filter System for Optimum Performance of Harmonics Mitigation Process

Hybrid Filter System for Optimum Performance of Harmonics Mitigation Process Jurnal Elektro ELTEK Vol. 1, No. 2, 2010 IN: 2086-8944 Hybrid ilter ystem for Optimum Performance of Harmonics Mitigation Process Awan Uji Krismanto and Yusuf Ismail Nakhoda Department of Electrical Engineering,

More information

Voltage and current disturbances elimination with reactive power compensation using unified power quality conditionner

Voltage and current disturbances elimination with reactive power compensation using unified power quality conditionner From the SelectedWorks of Boukhemis Chetate June, 6 Voltage and current disturbances elimination with reactive power compensation using unified power quality conditionner Tarak Benslimane Kamel Aliouane

More information

Mitigation of Power Quality Problems Using DVR in Distribution Network for Welding Load

Mitigation of Power Quality Problems Using DVR in Distribution Network for Welding Load IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 4 Ver. I (July Aug. 2015), PP 106-112 www.iosrjournals.org Mitigation of Power Quality

More information

VOLTAGE MODE CONTROL OF SOFT SWITCHED BOOST CONVERTER BY TYPE II & TYPE III COMPENSATOR

VOLTAGE MODE CONTROL OF SOFT SWITCHED BOOST CONVERTER BY TYPE II & TYPE III COMPENSATOR 1002 VOLTAGE MODE CONTROL OF SOFT SWITCHED BOOST CONVERTER BY TYPE II & TYPE III COMPENSATOR NIKITA SINGH 1 ELECTRONICS DESIGN AND TECHNOLOGY, M.TECH NATIONAL INSTITUTE OF ELECTRONICS AND INFORMATION TECHNOLOGY

More information

RECENTLY, energy sources such as wind power systems,

RECENTLY, energy sources such as wind power systems, 550 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 25, NO. 3, MARCH 2010 Ripple Current Reduction of a Fuel Cell for a Single-Phase Isolated Converter Using a DC Active Filter With a Center Tap Jun-ichi

More information

Study and Implementation of space vector modulation (SVM) for direct matrix converter

Study and Implementation of space vector modulation (SVM) for direct matrix converter The 2 nd International Conference on Power Electronics and their Applications (ICPEA 215), Djelfa on 29-3 March 215, Algeria Study and Implementation of space vector modulation (SVM) for direct matrix

More information

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 01, 2016 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 01, 2016 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 01, 2016 ISSN (online): 2321-0613 Study of Bidirectional AC/DC Converter with Feedforward Scheme using Neural Network Control

More information

ECEN 613. Rectifier & Inverter Circuits

ECEN 613. Rectifier & Inverter Circuits Module8a Rectifier & Inverter Circuits Professor: Textbook: Dr. P. Enjeti with Michael T. Daniel Rm. 04, WEB Email: enjeti@tamu.edu michael.t.daniel@tamu.edu Power Electronics Converters, pplications &

More information

Current mode with RMS voltage and offset control loops for a single-phase aircraft inverter suitable for parallel and 3-phase operation modes

Current mode with RMS voltage and offset control loops for a single-phase aircraft inverter suitable for parallel and 3-phase operation modes Current mode with RMS voltage and offset control loops for a single-phase aircraft inverter suitable for parallel and 3-phase operation modes P. Varela, D. Meneses, O. Garcia, J. A. Oliver, P. Alou and

More information

A μc Controlled Power Factor Corrected AC-to-DC Boost Converter with DCM Operation. Abstract

A μc Controlled Power Factor Corrected AC-to-DC Boost Converter with DCM Operation. Abstract μc Controlled Power Factor Corrected C-to-DC Boost Converter with DCM Operation M.M.. Rahman, Bradley Boersma, and Bryan Schierbeek School of Engineering Padnos College of Engineering and Computing Grand

More information

Improving Passive Filter Compensation Performance With Active Techniques

Improving Passive Filter Compensation Performance With Active Techniques IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 50, NO. 1, FEBRUARY 2003 161 Improving Passive Filter Compensation Performance With Active Techniques Darwin Rivas, Luis Morán, Senior Member, IEEE, Juan

More information

645 P a g e. the quantity of compensate current needed accordingly. Fig. 1. Active powers filter with load current detection.

645 P a g e. the quantity of compensate current needed accordingly. Fig. 1. Active powers filter with load current detection. Shunt Active Power Filter Implementation Using Source Voltage and Source Current Detection Mani Ratnam Tarapatla 1, M Sridhar 2, ANVJ Raj Gopal 3 PG Scholar Department of Electrical Engineering GIET College

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Introduction Power semiconductor devices constitute the heart of the modern power electronics, and are being extensively used in power electronic converters in the form of a

More information

DEVELOPMENT OF A STATE FEEDBACK CONTROLLER FOR THE SYNCHRONOUS BUCK CONVERTER

DEVELOPMENT OF A STATE FEEDBACK CONTROLLER FOR THE SYNCHRONOUS BUCK CONVERTER EVEOPMENT OF A STATE FEEBACK CONTROER FOR THE SYNCHRONOUS BUCK CONVERTER A. OIVA H.CHIACCHIARINI and G. BORTOOTTO Instituto de Inv. en Ing. Eléctrica Alfredo esages to. Ing. Electrica y Computadoras Universidad

More information

CHAPTER 3 VOLTAGE SOURCE INVERTER (VSI)

CHAPTER 3 VOLTAGE SOURCE INVERTER (VSI) 37 CHAPTER 3 VOLTAGE SOURCE INVERTER (VSI) 3.1 INTRODUCTION This chapter presents speed and torque characteristics of induction motor fed by a new controller. The proposed controller is based on fuzzy

More information

Indirect Current Control of LCL Based Shunt Active Power Filter

Indirect Current Control of LCL Based Shunt Active Power Filter International Journal of Electrical Engineering. ISSN 0974-2158 Volume 6, Number 3 (2013), pp. 221-230 International Research Publication House http://www.irphouse.com Indirect Current Control of LCL Based

More information

Mitigation of Current Harmonics with Combined p-q and Id-IqControl Strategies for Fuzzy Controller Based 3Phase 4Wire Shunt Active Filter

Mitigation of Current Harmonics with Combined p-q and Id-IqControl Strategies for Fuzzy Controller Based 3Phase 4Wire Shunt Active Filter Mitigation of Current Harmonics with Combined p-q and Id-IqControl Strategies for Fuzzy Controller Based 3Phase 4Wire Shunt Active Filter V.Balasubramanian 1, T.Rajesh 2, T.Rama Rajeswari 3 P.G. Student,

More information

Hybrid PWM switching scheme for a three level neutral point clamped inverter

Hybrid PWM switching scheme for a three level neutral point clamped inverter Hybrid PWM switching scheme for a three level neutral point clamped inverter Sarath A N, Pradeep C NSS College of Engineering, Akathethara, Palakkad. sarathisme@gmail.com, cherukadp@gmail.com Abstract-

More information

Harmonic Filters for Power Conversion Equipment (Drives, rectifiers, etc) Effects of Harmonics IEEE Solutions

Harmonic Filters for Power Conversion Equipment (Drives, rectifiers, etc) Effects of Harmonics IEEE Solutions Harmonic Filters for Power Conversion Equipment (Drives, rectifiers, etc) Effects of Harmonics IEEE - 519 Solutions Harmonics Tutorial 1 Power Conversion Equipment can save energy and control motors, heaters,

More information

THREE-PHASE converters are used to handle large powers

THREE-PHASE converters are used to handle large powers IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 14, NO. 6, NOVEMBER 1999 1149 Resonant-Boost-Input Three-Phase Power Factor Corrector Da Feng Weng, Member, IEEE and S. Yuvarajan, Senior Member, IEEE Abstract

More information

Current Rebuilding Concept Applied to Boost CCM for PF Correction

Current Rebuilding Concept Applied to Boost CCM for PF Correction Current Rebuilding Concept Applied to Boost CCM for PF Correction Sindhu.K.S 1, B. Devi Vighneshwari 2 1, 2 Department of Electrical & Electronics Engineering, The Oxford College of Engineering, Bangalore-560068,

More information

A Novel Control Method to Minimize Distortion in AC Inverters. Dennis Gyma

A Novel Control Method to Minimize Distortion in AC Inverters. Dennis Gyma A Novel Control Method to Minimize Distortion in AC Inverters Dennis Gyma Hewlett-Packard Company 150 Green Pond Road Rockaway, NJ 07866 ABSTRACT In PWM AC inverters, the duty-cycle modulator transfer

More information

High Power Factor Bridgeless SEPIC Rectifier for Drive Applications

High Power Factor Bridgeless SEPIC Rectifier for Drive Applications High Power Factor Bridgeless SEPIC Rectifier for Drive Applications Basheer K 1, Divyalal R K 2 P.G. Student, Dept. of Electrical and Electronics Engineering, Govt. College of Engineering, Kannur, Kerala,

More information

Implementation of a low cost series compensator for voltage sags

Implementation of a low cost series compensator for voltage sags J.L. Silva Neto DEE-UFRJ luizneto@dee.ufrj.br R.M. Fernandes COPPE-UFRJ rodrigo@coe.ufrj.br D.R. Costa COPPE-UFRJ diogo@coe.ufrj.br L.G.B. Rolim DEE,COPPE-UFRJ rolim@dee.ufrj.br M. Aredes DEE,COPPE-UFRJ

More information

International Journal of Emerging Researches in Engineering Science and Technology, Volume 1, Issue 2, December 14

International Journal of Emerging Researches in Engineering Science and Technology, Volume 1, Issue 2, December 14 CONTROL STRATEGIES FOR A HYBRID MULTILEEL INERTER BY GENERALIZED THREE- DIMENSIONAL SPACE ECTOR MODULATION J.Sevugan Rajesh 1, S.R.Revathi 2 1. Asst.Professor / EEE, Kalaivani college of Techonology, Coimbatore,

More information

p. 1 p. 6 p. 22 p. 46 p. 58

p. 1 p. 6 p. 22 p. 46 p. 58 Comparing power factor and displacement power factor corrections based on IEEE Std. 18-2002 Harmonic problems produced from the use of adjustable speed drives in industrial plants : case study Theory for

More information

A New 3-phase Buck-Boost Unity Power Factor Rectifier with Two Independently Controlled DC Outputs

A New 3-phase Buck-Boost Unity Power Factor Rectifier with Two Independently Controlled DC Outputs A New 3-phase Buck-Boost Unity Power Factor Rectifier with Two Independently Controlled DC Outputs Y. Nishida* 1, J. Miniboeck* 2, S. D. Round* 2 and J. W. Kolar* 2 * 1 Nihon University Energy Electronics

More information

A Novel Power Factor Correction Rectifier for Enhancing Power Quality

A Novel Power Factor Correction Rectifier for Enhancing Power Quality International Journal of Power Electronics and Drive System (IJPEDS) Vol. 6, No. 4, December 2015, pp. 772~780 ISSN: 2088-8694 772 A Novel Power Factor Correction Rectifier for Enhancing Power Quality

More information

A Phase-Controlled 12-Pulse Rectifier with Unity Displacement Factor without Phase Shifting Transformer

A Phase-Controlled 12-Pulse Rectifier with Unity Displacement Factor without Phase Shifting Transformer A Phase-Controlled 12-Pulse Rectifier with Unity Displacement Factor without Phase Shifting Transformer Yeddo B. Blauth Federal University of Rio Grande do Sul Electrical Engineering Department - DELET

More information

Switching Loss Characteristics of Sequences Involving Active State Division in Space Vector Based PWM

Switching Loss Characteristics of Sequences Involving Active State Division in Space Vector Based PWM Switching Loss Characteristics of Sequences Involving Active State Division in Space Vector Based PWM Di Zhao *, G. Narayanan ** and Raja Ayyanar * * Department of Electrical Engineering Arizona State

More information

Performance Analysis of The Simple Low Cost Buck-Boost Ac-Ac Converter

Performance Analysis of The Simple Low Cost Buck-Boost Ac-Ac Converter Performance Analysis of The Simple Low Cost Buck-Boost Ac-Ac Converter S. Sonar 1, T. Maity 2 Department of Electrical Engineering Indian School of Mines, Dhanbad 826004, India. 1 santosh_recd@yahoo.com;

More information

New Unidirectional Hybrid Delta-Switch Rectifier

New Unidirectional Hybrid Delta-Switch Rectifier 2011 IEEE Proceedings of the 37th Annual Conference of the IEEE Industrial Electronics Society (IECON 2011), Melbourne, Australia, November 7-10, 2011. New Unidirectional Hybrid Delta-Switch Rectifier

More information