A Robust Fuzzy Speed Control Applied to a Three-Phase Inverter Feeding a Three-Phase Induction Motor.

Size: px
Start display at page:

Download "A Robust Fuzzy Speed Control Applied to a Three-Phase Inverter Feeding a Three-Phase Induction Motor."

Transcription

1 A Robust Fuzzy Speed Control Applied to a Three-Phase Inverter Feeding a Three-Phase Induction Motor. A.T. Leão (MSc) E.P. Teixeira (Dr) J.R. Camacho (PhD) H.R de Azevedo (Dr) Universidade Federal de Uberlândia School of Electrical Engineering P.O.Box: Campus Santa Mônica CEP: Uberlândia MG Brazil e.mail: rcamacho@ufu.br ABSTRACT In agreement with extensive development in power electronics, the induction motor became widely used in industrial, commercial and residential applications, being responsible for a huge consumption of energy. Basic inverter switching, normally results in non-sinusoidal output voltages and currents, which may affect the performance of a non-linear load. The generation by the inverter of an "a.c." waveform with low harmonic content is extremely important, harmonic filters are not an option, when controlling speed, due to the large range in the frequency spectrum at the inverter output. With the inverter feeding an "a.c." motor, the frequency variation at the inverter output terminals must be followed by a change in the applied voltage, in order to keep unchanged the magnetic properties at the machine's air-gap. A double control is necessary. The first through an external robust fuzzy speed control loop and the second through an internal "PID" current control loop. This work presents a driving scheme in which the machine's three windings are fed through a static converter. Such tool is responsible for the machine's speed and current control. The aim is to improve the speed response and to eliminate operational undesirable torque oscillations. and rotor. Therefore it is possible to obtain the motor performance neglecting the saturation effects and considering the inverter coupling effect. A comparative study is made between an open loop inverter - induction motor driving system and the proposed double loop (speed and current) control, being respectively robust fuzzy logic speed control and conventional "PID" current control. MATHEMATICAL MODEL FOR THE THREE-PHASE INDUCTION MOTOR Among the electrical machines, the induction motor is one of the most applied machines and, detailed studies in order to improve the performance of its speed control is a very ustifiable matter. Following this path many researches[4] have been propelled by new discoveries in the electronics and in the semi-conductor components field. In order to simulate an induction motor driven by an inverter, it is mandatory for its mathematical model to represent the machine in steady-state and transient states, for any kind of source sinusoidal or not, balanced or unbalanced. That is the reason why the induction motor is represented here in phase coordinates. Keywords: Induction motor, inverter, fuzzy control. 1 INTRODUCTION Electronic driving systems made possible the speed and/or torque variation for induction motors through the use of static "ac-ac" converters, responsible for the conversion of fixed to variable voltage and frequency. The inverter, last stage of a electronic converter, presents a speed control with good efficiency. The speed control is possible through electronic switches allowing such variation through the very known pulse wih modulation (PWM), where the pulses are the result of a comparison of two input signals. The present work is a theoretical evaluation of the behavior of a three-phase induction motor fed by a PWM inverter with feedback control loops of speed and current.. Therefore, was implemented a computational program which is able to simulate the symmetrical three-phase induction motor speed control through the use of a fuzzy logical controller assembled in Matlab /Simulink TM. A model for the three-phase induction motor with squirrel cage rotor having as a reference the "ABC" stator phase axis, is also presented. The model uses the concept of phase windings distribution and windings space harmonics. Then, it is obtained the model for the magnetic field density distribution in the stator (a) (b) Figure 1 (a) Winding generic coil and (b) its mmf (FMM b(α)) distribution..1 Time Domain Harmonic Analysis The influence of the windings over the voltage and/or current waveforms and over the induction machine torque is the first step to obtain the mathematical modeling for the induction motor

2 taking in consideration the space harmonics for the stator magnetomotrice forces mmf distribution[3]. Considering a coil belonging to the mentioned winding, with N turns, polar step given by βπ and centered in a position α b. Figure 1 shows this coil in its schematic shape and the ideal mmf spatial distribution for an instantaneous value for the current i in the coil. The analytical expression who defines the mmf distribution can be seen in Figure 1(b) it is called FMM b (α). Applying Fourier series to FMM b (α), and considering the induction motor winding, one of its phases will be nominated as. This phase is composed of q coils distributed with a central reference position α, where is circulating the phase current i. Every coil has N turns and a coil step equals to β π. Each of the q coils originates a mmf order h harmonic component. Superimposing the harmonic components for the q coils it obtained the following harmonic equation: 1 FMM h ( α ) =. N. q. k ph. kdh. i..cos[ h. ( α α )] (1) π. Electrical Equations For an induction machine generic phase i, the voltage equation can be written as: dλi Vi = Ri. ii + (4) where: R i is the phase i winding resistance, i i is the phase current, λ i is the mutual total flux, including the leakage flux. Using the total mutual flux of Equation (4) the following expression can be developed for the induction motor stator phase a : d( L) d ( ) ( i ) Va = Ra. ia + K. ω r.. i + K. L. el dθ (5) where: θ el is the rotor electrical angular position related to a stator reference, is equivalent to a, b, and c for the stator and A, B and C for the rotor phases, R a is the winding resistance at phase a stator phase, L is the motor inductance X matrices as a θ el function, K = m 3π.. f, X is the motor m magnetization reactance, f is the motor frequency. el.3 Induction Motor Swing Equation Figure - Phase "" winding coil distribution. Where k ph and k dh are respectively nominated as step and distribution factors. Clarifying the fact that the magnetic circuit reluctance of iron parts are neglected, applying Ampere s law at the air-gap, the magnetic field density distribution B h can be obtained, given by: µ 0 1 B α =.. N. q. k. k. i..cos h. α α () h ( ) [ ( )] ph π δ h where µ 0 is the air magnetic permeability and δ is the air-gap length. Considering now any another phase i of the motor, which has all the already previously defined parameters indicated by the i index. With the help of Equation () the magnetic flux produced by phase and embracing phase i for a given harmonic h, can be described as: dh [ h ( α α )] kwih. k ' wh λih = Ki.. i.cos. i (3) h p. L. R. µ 0. q... ' i q Ni N where: K i = 4., k wih = k pih.k dih is the π. δ phase i winding factor, k wh = k ph.k dh is the phase winding factor, and p = number of pole pairs. Starting from a system formed by generically represented windings by phases i and and, having the structural conditions to the electromechanical energy conversion, the following expression can be written for the electromagnetic torque[3]: p diih Tel =. ii. i. (6) dθ h i el where I ih are the motor harmonic order inductances between two generic phases, defined as previously. Defining T c as the motor load torque the swing equation in this case can be written as: dw J r = Tel T (7) c where: J is the moment of inertia, and w r is the rotor mechanical angular speed. Equation (6) is the complement for the induction motor mathematical model by conecting electrical and mechanical characteristics. 3 THREE-PHASE INDUCTION MOTOR SIMULATION FED THROUGH A PWM INVERTER WITHOUT CONTROL This item shows the model of a three-phase induction motor fed by a balanced sinusoidal waveform. The validation of the developed model has been done in a previous publication through the comparison of simulation results and laboratory tests.[6] Such mathematical model is linear and the differential equations representing the motor are using current as state variables. Simulation can represent the model fed directly from the mains (sinusoidal waveform) or from an electronic driver. This model takes in account time and space harmonics in the electromechanical conversion process. It is considered a load that offers a torque that changes proportionally to the rotor speed squared. Figure 3 - Mutual flux for phase "i" winding.

3 Where at the block "Motor Constants" are the input data and the induction motor parameters. Those parameters are obtained at no-load and short-circuit tests, presented in the following table. Figure 4 Three-phase induction motor fed by an inverter, the main block diagram. It is possible then, to verify the variation of parameters that pictures the induction motor behavior such as: - stator and rotor currents; - developed torque; - load torque; - angular speed from starting to steady-state condition. 3.1 Induction motor main block diagram. Table 1. Parameters for the induction motor. Machine Parameters Obtained Values Stator resistance Ω Rotor resistance Ω Stator leakage inductance 9.3e-3 H Rotor leakage inductance 9.3e-3 H Magnetization inductance H Pole number 4 Inertia moment Kg.m Power.0 HP (1.5 KW) Nominal speed 170 rpm Power factor 0.78 Nominal current 6.9/3.99 A Nominal voltage 0/380 V The Fharm block is responsible for the calculation of harmonic parameters necessary to the complete model development, while the Fmit block is in charge of the state variables calculation for the model using a matrix formulation, and the last stage the Ftmotor block which calculates the electromagnetic torque. A detailed vision of the block diagram "Switch 1-4" is given at Figure 7. Figure 4 shows the induction motor main block diagram, extracted from the matrix formulation and representing the machine when submitted to voltages created by a pulse wih modulation source, without feedback control. Figure 5 shows in detail the induction motor block diagram from Figure 4. The induction motor is modeled using the ABC reference frame and can calculate up to the 55 th harmonic. Figure 7 Block diagram for Switch 1-4. Block diagrams for "switch 3-6 and switch 5- at Figure 6 are identical to this one shown in Figure 7. Figure 5 Three-phase symmetrical induction motor block diagram. The "PWM Inverter" block diagram at Figure 4 can be seen in detail at Figure 6. Simulation results for the motor fed by a PWM inverter at no load condition, with constant voltage and frequency, can be seen in the following figures. Figure 6 "PWM Inverter" block diagram. Figure 8 Phase to phase voltage.

4 Figure 9 - Phase stator current. Figure 1 - Main block for the current and speed controller. Figure 13 - Fuzzy speed controller block. Figure 10 Machine's angular speed in rpm. The behavior of angular speed and the electromagnetic torque for the machine at no-load can be seen respectively at Figures 10 and 11. The output variable is the increment to be applied in the action variable at the controller, in this case this variable is the output frequency for the controller. Figure 13 shows the three variables at the fuzzy speed controller block. The current controller block at Figure 1 is shown in detail in Figure 14. Figure 14 - Current controller internal structure. Figure 11- Machine's electromagnetic torque in N.m. A detailed block in Figure 15 shows the reference block A. 4 THREE-PHASE INDUCTION MOTOR SIMULATION WITH SPEED AND CURRENT CONTROLERS In this section are presented results of digital simulation through a fuzzy logic speed controller and a fixed frequency PWM controller for the phase currents. Figure 1 shows a block diagram of all the system including machine, speed controller and current controller. Figure 13 shows the configuration of a block called "Fuzzy Speed Controller" at Figure 1. The fuzzy logic controller input variables are defined by the error, the difference between reference speed and mechanical speed (W ref W mec ) and through error variation which is how much the error changes in time. Figure 15 - Reference block A. The reference blocks B and C are identical to the one presented in Figure 15, except that the "Fcn" block, which deals with each output signal sinusoidal waveform, should be set to operate with a phase angle difference of 10 degrees.

5 5 SIMULATION RESULTS A number of simulations has been done in order to follow the behavior of the speed and current controllers, some of the results obtained are shown in the figures below: fed by pulse-wih modulation (PWM) inverter. In order to get speed control it was used a fuzzy logic controller. Phase currents were adusted and controlled, current high frequency oscillations were observed due inverter switching. Figure 16 Stator current - Isa, Isb e Isc Figure 16 above shows the stator current for phases A, B and C, under no-load operation. The mechanical speed pick-up with the motor operating at 60 rad/s can be seen below in Figure 17. Figure 19 Mechanical speed (rotor) at 170 rad./s. Through the obtained results, can be observed that both controllers (fuzzy logic and current controller) are able to generate together a good result. This can be easily verified through the speed and current figures along this text with machine being operated with and without controller. As a contribution for further future work concerning this matter, should be indicated the electromagnetic torque behavior with the induction motor operating at nominal load. This should be done in order to properly tune both controls. 7 REFERENCES Figure 17 Mechanical speed (rotor) at 60 rad./s. Mechanical speed pick-up with the motor operating at 10 rad/s can be seen in the following figure. Figure 18 Mechanical speed (rotor) at 10 rad./s. [1] B.P. ALVARENGA, Induction Machine Torque Calculation Model Including Winding and Magnetic Saturation Effects, MSc Thesis (In Portuguese), Electrical Engineering, Universidade Federal de Uberlândia, August [] A.E. FITZGERALD, C. KINGSLEY, S.D. UMANS, Electric Machinery. 5 th edition. New York: McGraw-Hill, [3] G.B. KLIMAN, A.B. PLUNKETT, Development of a Modulation Strategy for a PWM Inverter Drive. IEEE Transactions on Industry Applications, v.ia-15, n.1, p.7-79, January/February [4] I. BARBI, Basic Theory on Induction Motors, (In Portuguese), Editor: Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, [5] A.T. LEÃO, Computational Model of the Driving of a Three- Phase Induction Motor in A, B, C Coordinates Through a Sinusoidal Modulation PWM Inverter, MSc Dissertation (in Portuguese), School of Electrical Engineering, Universidade Federal de Uberlândia, December [6] L. M. NETO, J.R. CAMACHO, C.H. SALERNO E B.P. ALVARENGA, Analysis of a Three-Phase Induction Machine Including Time and Space Harmonic Effects: The A, B, C Reference Frame, PES/IEEE Transactions on Energy Conversion, Vol. 14, Number 1, pp , March 1999, Piscataway, NJ, USA. Mechanical speed pick-up with the motor operating at 170 rad/s can be seen in Figure CONCLUSION As a contribution to this work it was developed a computer program which could verify the behavior of a symmetrical threephase induction motor under controlled speed and current, and

CHAPTER 3 EQUIVALENT CIRCUIT AND TWO AXIS MODEL OF DOUBLE WINDING INDUCTION MOTOR

CHAPTER 3 EQUIVALENT CIRCUIT AND TWO AXIS MODEL OF DOUBLE WINDING INDUCTION MOTOR 35 CHAPTER 3 EQUIVALENT CIRCUIT AND TWO AXIS MODEL OF DOUBLE WINDING INDUCTION MOTOR 3.1 INTRODUCTION DWIM consists of two windings on the same stator core and a squirrel cage rotor. One set of winding

More information

SPEED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING VOLTAGE SOURCE INVERTER

SPEED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING VOLTAGE SOURCE INVERTER SPEED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING VOLTAGE SOURCE INVERTER Kushal Rajak 1, Rajendra Murmu 2 1,2 Department of Electrical Engineering, B I T Sindri, (India) ABSTRACT This paper presents

More information

Volume 1, Number 1, 2015 Pages Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online):

Volume 1, Number 1, 2015 Pages Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online): JJEE Volume, Number, 2 Pages 3-24 Jordan Journal of Electrical Engineering ISSN (Print): 249-96, ISSN (Online): 249-969 Analysis of Brushless DC Motor with Trapezoidal Back EMF using MATLAB Taha A. Hussein

More information

3. What is hysteresis loss? Also mention a method to minimize the loss. (N-11, N-12)

3. What is hysteresis loss? Also mention a method to minimize the loss. (N-11, N-12) DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE 6401 ELECTRICAL MACHINES I UNIT I : MAGNETIC CIRCUITS AND MAGNETIC MATERIALS Part A (2 Marks) 1. List

More information

EE 410/510: Electromechanical Systems Chapter 5

EE 410/510: Electromechanical Systems Chapter 5 EE 410/510: Electromechanical Systems Chapter 5 Chapter 5. Induction Machines Fundamental Analysis ayssand dcontrol o of Induction Motors Two phase induction motors Lagrange Eqns. (optional) Torque speed

More information

Modeling & Simulation of PMSM Drives with Fuzzy Logic Controller

Modeling & Simulation of PMSM Drives with Fuzzy Logic Controller Vol. 3, Issue. 4, Jul - Aug. 2013 pp-2492-2497 ISSN: 2249-6645 Modeling & Simulation of PMSM Drives with Fuzzy Logic Controller Praveen Kumar 1, Anurag Singh Tomer 2 1 (ME Scholar, Department of Electrical

More information

Comparative Analysis of Space Vector Pulse-Width Modulation and Third Harmonic Injected Modulation on Industrial Drives.

Comparative Analysis of Space Vector Pulse-Width Modulation and Third Harmonic Injected Modulation on Industrial Drives. Comparative Analysis of Space Vector Pulse-Width Modulation and Third Harmonic Injected Modulation on Industrial Drives. C.O. Omeje * ; D.B. Nnadi; and C.I. Odeh Department of Electrical Engineering, University

More information

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE 3.1 GENERAL The PMBLDC motors used in low power applications (up to 5kW) are fed from a single-phase AC source through a diode bridge rectifier

More information

Analysis of Indirect Temperature-Rise Tests of Induction Machines Using Time Stepping Finite Element Method

Analysis of Indirect Temperature-Rise Tests of Induction Machines Using Time Stepping Finite Element Method IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 16, NO. 1, MARCH 2001 55 Analysis of Indirect Temperature-Rise Tests of Induction Machines Using Time Stepping Finite Element Method S. L. Ho and W. N. Fu Abstract

More information

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009 University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009 Problem Set 3 Due: Monday September 28 Recommended Reading: Fitzgerald

More information

IN MANY industrial applications, ac machines are preferable

IN MANY industrial applications, ac machines are preferable IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 46, NO. 1, FEBRUARY 1999 111 Automatic IM Parameter Measurement Under Sensorless Field-Oriented Control Yih-Neng Lin and Chern-Lin Chen, Member, IEEE Abstract

More information

Control of Induction Motor Fed with Inverter Using Direct Torque Control - Space Vector Modulation Technique

Control of Induction Motor Fed with Inverter Using Direct Torque Control - Space Vector Modulation Technique Control of Induction Motor Fed with Inverter Using Direct Torque Control - Space Vector Modulation Technique Vikas Goswami 1, Sulochana Wadhwani 2 1 Department Of Electrical Engineering, MITS Gwalior 2

More information

Eyenubo, O. J. & Otuagoma, S. O.

Eyenubo, O. J. & Otuagoma, S. O. PERFORMANCE ANALYSIS OF A SELF-EXCITED SINGLE-PHASE INDUCTION GENERATOR By 1 Eyenubo O. J. and 2 Otuagoma S. O 1 Department of Electrical/Electronic Engineering, Delta State University, Oleh Campus, Nigeria

More information

Simulation and Dynamic Response of Closed Loop Speed Control of PMSM Drive Using Fuzzy Controller

Simulation and Dynamic Response of Closed Loop Speed Control of PMSM Drive Using Fuzzy Controller Simulation and Dynamic Response of Closed Loop Speed Control of PMSM Drive Using Fuzzy Controller Anguru Sraveen Babu M.Tech Student Scholar Dept of Electrical & Electronics Engineering, Baba Institute

More information

Generalized Theory Of Electrical Machines

Generalized Theory Of Electrical Machines Essentials of Rotating Electrical Machines Generalized Theory Of Electrical Machines All electrical machines are variations on a common set of fundamental principles, which apply alike to dc and ac types,

More information

Simulation and Dynamic Response of Closed Loop Speed Control of PMSM Drive Using Fuzzy Controller

Simulation and Dynamic Response of Closed Loop Speed Control of PMSM Drive Using Fuzzy Controller Simulation and Dynamic Response of Closed Loop Speed Control of PMSM Drive Using Fuzzy Controller Anguru Sraveen Babu M.Tech Student Scholar Department of Electrical & Electronics Engineering, Baba Institute

More information

Design and implementation of Open & Close Loop Speed control of Three Phase Induction Motor Using PI Controller

Design and implementation of Open & Close Loop Speed control of Three Phase Induction Motor Using PI Controller Design and implementation of Open & Close Loop Speed control of Three Phase Induction Motor Using PI Controller Ibtisam Naveed 1, Adnan Sabir 2 1 (Electrical Engineering, NFC institute of Engineering and

More information

Control of Electric Machine Drive Systems

Control of Electric Machine Drive Systems Control of Electric Machine Drive Systems Seung-Ki Sul IEEE 1 PRESS к SERIES I 0N POWER ENGINEERING Mohamed E. El-Hawary, Series Editor IEEE PRESS WILEY A JOHN WILEY & SONS, INC., PUBLICATION Contents

More information

MATLAB/SIMULINK MODEL OF FIELD ORIENTED CONTROL OF PMSM DRIVE USING SPACE VECTORS

MATLAB/SIMULINK MODEL OF FIELD ORIENTED CONTROL OF PMSM DRIVE USING SPACE VECTORS MATLAB/SIMULINK MODEL OF FIELD ORIENTED CONTROL OF PMSM DRIVE USING SPACE VECTORS Remitha K Madhu 1 and Anna Mathew 2 1 Department of EE Engineering, Rajagiri Institute of Science and Technology, Kochi,

More information

Cost Effective Control of Permanent Magnet Brushless Dc Motor Drive

Cost Effective Control of Permanent Magnet Brushless Dc Motor Drive Cost Effective Control of Permanent Magnet Brushless Dc Motor Drive N.Muraly #1 #1 Lecturer, Department of Electrical and Electronics Engineering, Karaikal Polytechnic College, Karaikal, India. Abstract-

More information

Conventional Paper-II-2013

Conventional Paper-II-2013 1. All parts carry equal marks Conventional Paper-II-013 (a) (d) A 0V DC shunt motor takes 0A at full load running at 500 rpm. The armature resistance is 0.4Ω and shunt field resistance of 176Ω. The machine

More information

ELE847 Advanced Electromechanical Systems Course Notes 2008 Edition

ELE847 Advanced Electromechanical Systems Course Notes 2008 Edition Department of Electrical and Computer Engineering ELE847 Advanced Electromechanical Systems Course Notes 2008 Edition ELE847 Advanced Electromechanical Systems Table of Contents 1. Course Outline.... 1

More information

SINGLE PHASE BRIDGELESS PFC FOR PI CONTROLLED THREE PHASE INDUCTION MOTOR DRIVE

SINGLE PHASE BRIDGELESS PFC FOR PI CONTROLLED THREE PHASE INDUCTION MOTOR DRIVE SINGLE PHASE BRIDGELESS PFC FOR PI CONTROLLED THREE PHASE INDUCTION MOTOR DRIVE Sweatha Sajeev 1 and Anna Mathew 2 1 Department of Electrical and Electronics Engineering, Rajagiri School of Engineering

More information

CURRENT FOLLOWER APPROACH BASED PI AND FUZZY LOGIC CONTROLLERS FOR BLDC MOTOR DRIVE SYSTEM FED FROM CUK CONVERTER

CURRENT FOLLOWER APPROACH BASED PI AND FUZZY LOGIC CONTROLLERS FOR BLDC MOTOR DRIVE SYSTEM FED FROM CUK CONVERTER CURRENT FOLLOWER APPROACH BASED PI AND FUZZY LOGIC CONTROLLERS FOR BLDC MOTOR DRIVE SYSTEM FED FROM CUK CONVERTER N. Mohanraj and R. Sankaran Shanmugha Arts, Science, Technology and Research Academy University,

More information

Efficiency Optimized Brushless DC Motor Drive. based on Input Current Harmonic Elimination

Efficiency Optimized Brushless DC Motor Drive. based on Input Current Harmonic Elimination Efficiency Optimized Brushless DC Motor Drive based on Input Current Harmonic Elimination International Journal of Power Electronics and Drive System (IJPEDS) Vol. 6, No. 4, December 2015, pp. 869~875

More information

A Novel Harmonics-Free Fuzzy Logic based Controller Design for Switched Reluctance Motor Drive

A Novel Harmonics-Free Fuzzy Logic based Controller Design for Switched Reluctance Motor Drive International Journal of Electrical Engineering. ISSN 0974-2158 Volume 5, Number 3 (2012), pp. 351-358 International Research Publication House http://www.irphouse.com A Novel Harmonics-Free Fuzzy Logic

More information

ANALYSIS OF V/f CONTROL OF INDUCTION MOTOR USING CONVENTIONAL CONTROLLERS AND FUZZY LOGIC CONTROLLER

ANALYSIS OF V/f CONTROL OF INDUCTION MOTOR USING CONVENTIONAL CONTROLLERS AND FUZZY LOGIC CONTROLLER ANALYSIS OF V/f CONTROL OF INDUCTION MOTOR USING CONVENTIONAL CONTROLLERS AND FUZZY LOGIC CONTROLLER Archana G C 1 and Reema N 2 1 PG Student [Electrical Machines], Department of EEE, Sree Buddha College

More information

3.1.Introduction. Synchronous Machines

3.1.Introduction. Synchronous Machines 3.1.Introduction Synchronous Machines A synchronous machine is an ac rotating machine whose speed under steady state condition is proportional to the frequency of the current in its armature. The magnetic

More information

A Comparative Study of Sinusoidal PWM and Space Vector PWM of a Vector Controlled BLDC Motor

A Comparative Study of Sinusoidal PWM and Space Vector PWM of a Vector Controlled BLDC Motor A Comparative Study of Sinusoidal PWM and Space Vector PWM of a Vector Controlled BLDC Motor Lydia Anu Jose 1, K. B.Karthikeyan 2 PG Student, Dept. of EEE, Rajagiri School of Engineering and Technology,

More information

Modeling and Analysis of Common-Mode Voltages Generated in Medium Voltage PWM-CSI Drives

Modeling and Analysis of Common-Mode Voltages Generated in Medium Voltage PWM-CSI Drives IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 18, NO. 3, MAY 2003 873 Modeling and Analysis of Common-Mode Voltages Generated in Medium Voltage PWM-CSI Drives José Rodríguez, Senior Member, IEEE, Luis Morán,

More information

New Direct Torque Control of DFIG under Balanced and Unbalanced Grid Voltage

New Direct Torque Control of DFIG under Balanced and Unbalanced Grid Voltage 1 New Direct Torque Control of DFIG under Balanced and Unbalanced Grid Voltage B. B. Pimple, V. Y. Vekhande and B. G. Fernandes Department of Electrical Engineering, Indian Institute of Technology Bombay,

More information

THE UNIVERSITY OF BRITISH COLUMBIA. Department of Electrical and Computer Engineering. EECE 365: Applied Electronics and Electromechanics

THE UNIVERSITY OF BRITISH COLUMBIA. Department of Electrical and Computer Engineering. EECE 365: Applied Electronics and Electromechanics THE UNIVERSITY OF BRITISH COLUMBIA Department of Electrical and Computer Engineering EECE 365: Applied Electronics and Electromechanics Final Exam / Sample-Practice Exam Spring 2008 April 23 Topics Covered:

More information

Simulation Analysis of SPWM Variable Frequency Speed Based on Simulink

Simulation Analysis of SPWM Variable Frequency Speed Based on Simulink Sensors & Transducers 2014 by IFSA Publishing, S. L. http://www.sensorsportal.com Simulation Analysis of SPWM Variable Frequency Speed Based on Simulink Min-Yan DI Hebei Normal University, Shijiazhuang

More information

Key Factors for the Design of Synchronous Reluctance Machines with Concentrated Windings

Key Factors for the Design of Synchronous Reluctance Machines with Concentrated Windings IEEE PEDS 27, Honolulu, USA 2 5 December 27 Key Factors for the Design of Synchronous Reluctance Machines with Concentrated Windings Tobias Lange, Claude P. Weiss, Rik W. De Doncker Institute for Power

More information

Modelling and Simulation of a DC Motor Drive

Modelling and Simulation of a DC Motor Drive Modelling and Simulation of a DC Motor Drive 1 Introduction A simulation model of the DC motor drive will be built using the Matlab/Simulink environment. This assignment aims to familiarise you with basic

More information

A Novel Four Switch Three Phase Inverter Controlled by Different Modulation Techniques A Comparison

A Novel Four Switch Three Phase Inverter Controlled by Different Modulation Techniques A Comparison Volume 2, Issue 1, January-March, 2014, pp. 14-23, IASTER 2014 www.iaster.com, Online: 2347-5439, Print: 2348-0025 ABSTRACT A Novel Four Switch Three Phase Inverter Controlled by Different Modulation Techniques

More information

Permanent Magnet Brushless DC Motor Control Using Hybrid PI and Fuzzy Logic Controller

Permanent Magnet Brushless DC Motor Control Using Hybrid PI and Fuzzy Logic Controller ISSN 39 338 April 8 Permanent Magnet Brushless DC Motor Control Using Hybrid PI and Fuzzy Logic Controller G. Venu S. Tara Kalyani Assistant Professor Professor Dept. of Electrical & Electronics Engg.

More information

Applying POWERSYS and SIMULINK to Modeling Switched Reluctance Motor

Applying POWERSYS and SIMULINK to Modeling Switched Reluctance Motor Tamkang Journal of Science and Engineering, Vol. 12, No. 4, pp. 429 438 (2009) 429 Applying POWERSYS and SIMULINK to Modeling Switched Reluctance Motor K. I. Hwu Institute of Electrical Engineering, National

More information

UNIT-III STATOR SIDE CONTROLLED INDUCTION MOTOR DRIVE

UNIT-III STATOR SIDE CONTROLLED INDUCTION MOTOR DRIVE UNIT-III STATOR SIDE CONTROLLED INDUCTION MOTOR DRIVE 3.1 STATOR VOLTAGE CONTROL The induction motor 'speed can be controlled by varying the stator voltage. This method of speed control is known as stator

More information

Bahram Amin. Induction Motors. Analysis and Torque Control. With 41 Figures and 50 diagrams (simulation plots) Springer

Bahram Amin. Induction Motors. Analysis and Torque Control. With 41 Figures and 50 diagrams (simulation plots) Springer Bahram Amin Induction Motors Analysis and Torque Control With 41 Figures and 50 diagrams (simulation plots) Springer 1 Main Parameters of Induction Motors 1.1 Introduction 1 1.2 Structural Elements of

More information

MATHEMATICAL MODELING OF POWER TRANSFORMERS

MATHEMATICAL MODELING OF POWER TRANSFORMERS MATHEMATICAL MODELING OF POWER TRANSFORMERS Mostafa S. NOAH Adel A. SHALTOUT Shaker Consultancy Group, Cairo University, Egypt Cairo, +545, mostafanoah88@gmail.com Abstract Single-phase and three-phase

More information

Winding Function Analysis Technique as an Efficient Method for Electromagnetic Inductance Calculation

Winding Function Analysis Technique as an Efficient Method for Electromagnetic Inductance Calculation Winding Function Analysis Technique as an Efficient Method for Electromagnetic Inductance Calculation Abstract Electromagnetic inductance calculation is very important in electrical engineering field.

More information

Induction motor control by vector control method.

Induction motor control by vector control method. International Refereed Journal of Engineering and Science (IRJES) e- ISSN :2319-183X p-issn : 2319-1821 On Recent Advances in Electrical Engineering Induction motor control by vector control method. Miss.

More information

A Dynamic Modeling Permanent Magnet Synchronous Motor Drive System

A Dynamic Modeling Permanent Magnet Synchronous Motor Drive System A Dynamic Modeling Permanent Magnet Synchronous Motor Drive System MISS. KINJAL G. PATEL P.G. Student, Department of Electrical Engineering SSSRGI, Vadasma, Mehsana MR. CHIRAG V. PATEL Assistant Professor,

More information

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL 9 CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL 2.1 INTRODUCTION AC drives are mainly classified into direct and indirect converter drives. In direct converters (cycloconverters), the AC power is fed

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05220204 Set No. 1 II B.Tech II Semester Supplimentary Examinations, Aug/Sep 2007 ELECTRICAL MACHINES-II (Electrical & Electronic Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions

More information

CHAPTER 2 D-Q AXES FLUX MEASUREMENT IN SYNCHRONOUS MACHINES

CHAPTER 2 D-Q AXES FLUX MEASUREMENT IN SYNCHRONOUS MACHINES 22 CHAPTER 2 D-Q AXES FLUX MEASUREMENT IN SYNCHRONOUS MACHINES 2.1 INTRODUCTION For the accurate analysis of synchronous machines using the two axis frame models, the d-axis and q-axis magnetic characteristics

More information

Fault detection in a three-phase system grid connected using SOGI structure to calculate vector components

Fault detection in a three-phase system grid connected using SOGI structure to calculate vector components International Conference on Renewable Energies and Power Quality (ICREPQ 15) La Coruña (Spain), 25 th to 27 th March, 2015 Renewable Energy and Power Quality Journal (RE&PQJ) ISSN 2172-038 X, No.13, April

More information

Module 7. Electrical Machine Drives. Version 2 EE IIT, Kharagpur 1

Module 7. Electrical Machine Drives. Version 2 EE IIT, Kharagpur 1 Module 7 Electrical Machine Drives Version 2 EE IIT, Kharagpur 1 Lesson 34 Electrical Actuators: Induction Motor Drives Version 2 EE IIT, Kharagpur 2 Instructional Objectives After learning the lesson

More information

International Journal of Advance Engineering and Research Development. PI Controller for Switched Reluctance Motor

International Journal of Advance Engineering and Research Development. PI Controller for Switched Reluctance Motor Scientific Journal of Impact Factor (SJIF): 4.14 International Journal of Advance Engineering and Research Development Volume 3, Issue 5, May -216 PI Controller for Switched Reluctance Motor Dr Mrunal

More information

OPTIMAL TORQUE RIPPLE CONTROL OF ASYNCHRONOUS DRIVE USING INTELLIGENT CONTROLLERS

OPTIMAL TORQUE RIPPLE CONTROL OF ASYNCHRONOUS DRIVE USING INTELLIGENT CONTROLLERS OPTIMAL TORQUE RIPPLE CONTROL OF ASYNCHRONOUS DRIE USING INTELLIGENT CONTROLLERS J.N.Chandra Sekhar 1 and Dr.G. Marutheswar 2 1 Department of EEE, Assistant Professor, S University College of Engineering,

More information

VECTOR CONTROL SCHEME FOR INDUCTION MOTOR WITH DIFFERENT CONTROLLERS FOR NEGLECTING THE END EFFECTS IN HEV APPLICATIONS

VECTOR CONTROL SCHEME FOR INDUCTION MOTOR WITH DIFFERENT CONTROLLERS FOR NEGLECTING THE END EFFECTS IN HEV APPLICATIONS VECTOR CONTROL SCHEME FOR INDUCTION MOTOR WITH DIFFERENT CONTROLLERS FOR NEGLECTING THE END EFFECTS IN HEV APPLICATIONS M.LAKSHMISWARUPA 1, G.TULASIRAMDAS 2 & P.V.RAJGOPAL 3 1 Malla Reddy Engineering College,

More information

Speed control of double stator synchronous machine supplied by two independent voltage source inverters

Speed control of double stator synchronous machine supplied by two independent voltage source inverters Speed control of double stator synchronous machine supplied by two independent voltage source inverters NAZIH MOUBAYED Department of Electricity and Electronics Lebanese University El Arez Street, El-Kobbeh,

More information

Voltage and Current Harmonic Variations in Three-phase Induction Motors with Different Stator Coil Pitches

Voltage and Current Harmonic Variations in Three-phase Induction Motors with Different Stator Coil Pitches INTERNATIONAL JOURNAL OF ENERGY, Issue, Vol., 7 Voltage and Current Harmonic Variations in Three-phase Induction Motors with Different Stator Coil Pitches YASAR BIRBIR, H.SELCUK NOGAY Marmara University,

More information

Controlling of Permanent Magnet Brushless DC Motor using Instrumentation Technique

Controlling of Permanent Magnet Brushless DC Motor using Instrumentation Technique Scientific Journal of Impact Factor(SJIF): 3.134 International Journal of Advance Engineering and Research Development Volume 2,Issue 1, January -2015 e-issn(o): 2348-4470 p-issn(p): 2348-6406 Controlling

More information

Modeling and Simulation of Induction Motor Drive with Space Vector Control

Modeling and Simulation of Induction Motor Drive with Space Vector Control Australian Journal of Basic and Applied Sciences, 5(9): 2210-2216, 2011 ISSN 1991-8178 Modeling and Simulation of Induction Motor Drive with Space Vector Control M. SajediHir, Y. Hoseynpoor, P. MosadeghArdabili,

More information

Estimation of Vibrations in Switched Reluctance Motor Drives

Estimation of Vibrations in Switched Reluctance Motor Drives American Journal of Applied Sciences 2 (4): 79-795, 2005 ISS 546-9239 Science Publications, 2005 Estimation of Vibrations in Switched Reluctance Motor Drives S. Balamurugan and R. Arumugam Power System

More information

Selected Problems of Induction Motor Drives with Voltage Inverter and Inverter Output Filters

Selected Problems of Induction Motor Drives with Voltage Inverter and Inverter Output Filters 9 Selected Problems of Induction Motor Drives with Voltage Inverter and Inverter Output Filters Drives and Filters Overview. Fast switching of power devices in an inverter causes high dv/dt at the rising

More information

SPEED CONTROL OF BRUSHLESS DC MOTOR USING FUZZY BASED CONTROLLERS

SPEED CONTROL OF BRUSHLESS DC MOTOR USING FUZZY BASED CONTROLLERS SPEED CONTROL OF BRUSHLESS DC MOTOR USING FUZZY BASED CONTROLLERS Kapil Ghuge 1, Prof. Manish Prajapati 2 Prof. Ashok Kumar Jhala 3 1 M.Tech Scholar, 2 Assistant Professor, 3 Head of Department, R.K.D.F.

More information

Comparison of Different Modulation Strategies Applied to PMSM Drives Under Inverter Fault Conditions

Comparison of Different Modulation Strategies Applied to PMSM Drives Under Inverter Fault Conditions Comparison of Different Modulation Strategies Applied to PMSM Drives Under Inverter Fault Conditions Jorge O. Estima and A.J. Marques Cardoso University of Coimbra, FCTUC/IT, Department of Electrical and

More information

Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control of DC Motor

Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control of DC Motor International ournal for Modern Trends in Science and Technology Volume: 02, Issue No: 11, November 2016 http://www.ijmtst.com ISSN: 2455-3778 Comparative Analysis of PID, SMC, SMC with PID Controller

More information

A Switched Boost Inverter Fed Three Phase Induction Motor Drive

A Switched Boost Inverter Fed Three Phase Induction Motor Drive A Switched Boost Inverter Fed Three Phase Induction Motor Drive 1 Riya Elizabeth Jose, 2 Maheswaran K. 1 P.G. student, 2 Assistant Professor 1 Department of Electrical and Electronics engineering, 1 Nehru

More information

4. Simulation Results

4. Simulation Results 4. Simulation Results An application of the computer aided control design of a starter/generator PMSM drive system discussed in Chapter 3, Figure 13, is presented in this chapter. A load torque profile

More information

Self-Excitation and Voltage Control of an Induction Generator in an Independent Wind Energy Conversion System

Self-Excitation and Voltage Control of an Induction Generator in an Independent Wind Energy Conversion System Vol., Issue., Mar-Apr 01 pp-454-461 ISSN: 49-6645 Self-Excitation and Voltage Control of an Induction Generator in an Independent Wind Energy Conversion System 1 K. Premalatha, S.Sudha 1, Department of

More information

Indirect Rotor Field Oriented Control (IRFOC) for Three Phase Induction Motor Drive Using MOSFET

Indirect Rotor Field Oriented Control (IRFOC) for Three Phase Induction Motor Drive Using MOSFET Indirect Rotor Field Oriented Control (IRFOC) for Three Phase Induction Motor Drive Using MOSFET Abstract: Govind R Shivbhakt PG Student, Department of Electrical Engineering, Government College of Engineering,

More information

CHAPTER 2 STATE SPACE MODEL OF BLDC MOTOR

CHAPTER 2 STATE SPACE MODEL OF BLDC MOTOR 29 CHAPTER 2 STATE SPACE MODEL OF BLDC MOTOR 2.1 INTRODUCTION Modelling and simulation have been an essential part of control system. The importance of modelling and simulation is increasing with the combination

More information

Volume I Issue VI 2012 September-2012 ISSN

Volume I Issue VI 2012 September-2012 ISSN A 24-pulse STATCOM Simulation model to improve voltage sag due to starting of 1 HP Induction-Motor Mr. Ajay Kumar Bansal 1 Mr. Govind Lal Suthar 2 Mr. Rohan Sharma 3 1 Associate Professor, Department of

More information

MAGNETIC LEVITATION SUSPENSION CONTROL SYSTEM FOR REACTION WHEEL

MAGNETIC LEVITATION SUSPENSION CONTROL SYSTEM FOR REACTION WHEEL IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN 2321-8843 Vol. 1, Issue 4, Sep 2013, 1-6 Impact Journals MAGNETIC LEVITATION SUSPENSION CONTROL SYSTEM FOR REACTION

More information

Review article regarding possibilities for speed adjustment at reluctance synchronous motors

Review article regarding possibilities for speed adjustment at reluctance synchronous motors Journal of Electrical and Electronic Engineering 03; (4): 85-89 Published online October 0, 03 (http://www.sciencepublishinggroup.com/j/jeee) doi: 0.648/j.jeee.03004.4 Review article regarding possibilities

More information

Synchronous Current Control of Three phase Induction motor by CEMF compensation

Synchronous Current Control of Three phase Induction motor by CEMF compensation Synchronous Current Control of Three phase Induction motor by CEMF compensation 1 Kiran NAGULAPATI, 2 Dhanamjaya Appa Rao, 3 Anil Kumar VANAPALLI 1,2,3 Assistant Professor, ANITS, Sangivalasa, Visakhapatnam,

More information

Three-Phase Induction Motors. By Sintayehu Challa ECEg332:-Electrical Machine I

Three-Phase Induction Motors. By Sintayehu Challa ECEg332:-Electrical Machine I Three-Phase Induction Motors 1 2 3 Classification of AC Machines 1. According to the type of current Single Phase and Three phase 2. According to Speed Constant Speed, Variable Speed and Adjustable Speed

More information

SPEED CONTROL OF BRUSHLES DC MOTOR

SPEED CONTROL OF BRUSHLES DC MOTOR SPEED CONTROL OF BRUSHLES DC MOTOR Kajal D. Parsana 1, Prof. H.M. Karkar 2, Prof. I.N. Trivedi 3 1 Department of Electrical Engineering, Atmiya Institute of Technology & Science, Rajkot, India. kajal.parsana@gmail.com

More information

Improved direct torque control of induction motor with dither injection

Improved direct torque control of induction motor with dither injection Sādhanā Vol. 33, Part 5, October 2008, pp. 551 564. Printed in India Improved direct torque control of induction motor with dither injection R K BEHERA andspdas Department of Electrical Engineering, Indian

More information

Field Oriented Control of PMSM Using SVPWM Technique

Field Oriented Control of PMSM Using SVPWM Technique Field Oriented Control of PMSM Using SVPWM Technique E.PRASAD 1 B.SURESH 2, K.RAGHUVEER 3 Abstract: The principle of space vector pulse width modulation (SVPWM) was introduced and implementing for PMSM.

More information

ELECTRIC MACHINES MODELING, CONDITION MONITORING, SEUNGDEOG CHOI HOMAYOUN MESHGIN-KELK AND FAULT DIAGNOSIS HAMID A. TOLIYAT SUBHASIS NANDI

ELECTRIC MACHINES MODELING, CONDITION MONITORING, SEUNGDEOG CHOI HOMAYOUN MESHGIN-KELK AND FAULT DIAGNOSIS HAMID A. TOLIYAT SUBHASIS NANDI ELECTRIC MACHINES MODELING, CONDITION MONITORING, AND FAULT DIAGNOSIS HAMID A. TOLIYAT SUBHASIS NANDI SEUNGDEOG CHOI HOMAYOUN MESHGIN-KELK CRC Press is an imprint of the Taylor & Francis Croup, an informa

More information

A NEW DESIGN METHOD OF OUTPUT FILTER FOR SPACE VECTOR PWM FED INDUCTION MOTOR

A NEW DESIGN METHOD OF OUTPUT FILTER FOR SPACE VECTOR PWM FED INDUCTION MOTOR A NEW DESIGN METHOD OF OUTPUT FILTER FOR SPACE VECTOR PWM FED INDUCTION MOTOR Dr. Majid K. Al-Khatat *, Ola Hussian, Fadhil A. Hassan Electrical and Electronic Engineering Department, University of Technology

More information

Unbalance Detection in Flexible Rotor Using Bridge Configured Winding Based Induction Motor

Unbalance Detection in Flexible Rotor Using Bridge Configured Winding Based Induction Motor Unbalance Detection in Flexible Rotor Using Bridge Configured Winding Based Induction Motor Natesan Sivaramakrishnan, Kumar Gaurav, Kalita Karuna, Rahman Mafidur Department of Mechanical Engineering, Indian

More information

Closed Loop Control of Three-Phase Induction Motor using Xilinx

Closed Loop Control of Three-Phase Induction Motor using Xilinx Closed Loop Control of Three-Phase Induction Motor using Xilinx Manoj Hirani, M.Tech, Electrical Drives branch of Electrical Engineering, Dr. Sushma Gupta, Department of Electrical Engineering, Dr. D.

More information

Effects of the Short-Circuit Faults in the Stator Winding of Induction Motors and Fault Detection through the Magnetic Field Harmonics

Effects of the Short-Circuit Faults in the Stator Winding of Induction Motors and Fault Detection through the Magnetic Field Harmonics The 8 th International Symposium on ADVANCED TOPICS IN ELECTRICAL ENGINEERING The Faculty of Electrical Engineering, U.P.B., Bucharest, May 23-24, 2013 Effects of the Short-Circuit Faults in the Stator

More information

TRACK VOLTAGE APPROACH USING CONVENTIONAL PI AND FUZZY LOGIC CONTROLLER FOR PERFORMANCE COMPARISON OF BLDC MOTOR DRIVE SYSTEM FED BY CUK CONVERTER

TRACK VOLTAGE APPROACH USING CONVENTIONAL PI AND FUZZY LOGIC CONTROLLER FOR PERFORMANCE COMPARISON OF BLDC MOTOR DRIVE SYSTEM FED BY CUK CONVERTER International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 12, December 2018, pp. 778 786, Article ID: IJMET_09_12_078 Available online at http://www.ia aeme.com/ijmet/issues.asp?jtype=ijmet&vtype=

More information

THE CONVENTIONAL voltage source inverter (VSI)

THE CONVENTIONAL voltage source inverter (VSI) 134 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 14, NO. 1, JANUARY 1999 A Boost DC AC Converter: Analysis, Design, and Experimentation Ramón O. Cáceres, Member, IEEE, and Ivo Barbi, Senior Member, IEEE

More information

Analysis of Losses in High Speed Slotless PM Synchronous Motor Integrated the Added Leakage Inductance

Analysis of Losses in High Speed Slotless PM Synchronous Motor Integrated the Added Leakage Inductance International Conference on Power Electronics and Energy Engineering (PEEE 2015) Analysis of Losses in High Speed Slotless PM Synchronous Motor Integrated the Added Leakage Inductance B.Q. Kou, H.C. Cao

More information

Detection of Broken Bars in Induction Motors Using a Neural Network

Detection of Broken Bars in Induction Motors Using a Neural Network Detection of Broken Bars in Induction Motors Using a Neural Network 245 JPE 6-3-7 Detection of Broken Bars in Induction Motors Using a Neural Network M. Moradian *, M. Ebrahimi **, M. Danesh ** and M.

More information

International Journal of Digital Application & Contemporary research Website: (Volume 2, Issue 8, March 2014)

International Journal of Digital Application & Contemporary research Website:   (Volume 2, Issue 8, March 2014) Field Oriented Control of PMSM Using Improved Space Vector Modulation Technique Yeshwant Joshi Kapil Parikh Dr. Vinod Kumar Yadav yshwntjoshi@gmail.com kapilparikh@ymail.com vinodcte@yahoo.co.in Abstract:

More information

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE 58 CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE 4.1 INTRODUCTION Conventional voltage source inverter requires high switching frequency PWM technique to obtain a quality output

More information

Swinburne Research Bank

Swinburne Research Bank Swinburne Research Bank http://researchbank.swinburne.edu.au Tashakori, A., & Ektesabi, M. (2013). A simple fault tolerant control system for Hall Effect sensors failure of BLDC motor. Originally published

More information

Combined analytical and FEM method for prediction of synchronous generator no-load voltage waveform

Combined analytical and FEM method for prediction of synchronous generator no-load voltage waveform Combined analytical and FEM method for prediction of synchronous generator no-load voltage waveform 1. INTRODUCTION It is very important for the designer of salient pole synchronous generators to be able

More information

Estimation of Core Losses in an Induction Motor under PWM Voltage Excitations Using Core Loss Curves Tested by Epstein Specimens

Estimation of Core Losses in an Induction Motor under PWM Voltage Excitations Using Core Loss Curves Tested by Epstein Specimens International Forum on Systems and Mechatronics, 7 Estimation of Core Losses in an Induction Motor under PWM Voltage Excitations Using Core Loss Curves Tested by Epstein Specimens Wen-Chang Tsai Department

More information

IMPLEMENTATION OF NEURAL NETWORK IN ENERGY SAVING OF INDUCTION MOTOR DRIVES WITH INDIRECT VECTOR CONTROL

IMPLEMENTATION OF NEURAL NETWORK IN ENERGY SAVING OF INDUCTION MOTOR DRIVES WITH INDIRECT VECTOR CONTROL IMPLEMENTATION OF NEURAL NETWORK IN ENERGY SAVING OF INDUCTION MOTOR DRIVES WITH INDIRECT VECTOR CONTROL * A. K. Sharma, ** R. A. Gupta, and *** Laxmi Srivastava * Department of Electrical Engineering,

More information

BECAUSE OF their low cost and high reliability, many

BECAUSE OF their low cost and high reliability, many 824 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 45, NO. 5, OCTOBER 1998 Sensorless Field Orientation Control of Induction Machines Based on a Mutual MRAS Scheme Li Zhen, Member, IEEE, and Longya

More information

THE KURII CIRCUIT: A HIGH POWER FACTOR AND LOW COST THREE-PHASE RECTIFIER

THE KURII CIRCUIT: A HIGH POWER FACTOR AND LOW COST THREE-PHASE RECTIFIER THE KURII CIRCUIT: A HIGH POWER FACTOR AND LOW COST THREE-PHASE RECTIFIER Ewaldo L. M. Mehl Ivo Barbi Universidade Federal do Paraná Universidade Federal de Santa Catarina Departamento de Engenharia Elétrica

More information

Motor-CAD Brushless PM motor Combined electromagnetic and thermal model (February 2015)

Motor-CAD Brushless PM motor Combined electromagnetic and thermal model (February 2015) Motor-CAD Brushless PM motor Combined electromagnetic and thermal model (February 2015) Description The Motor-CAD allows the machine performance, losses and temperatures to be calculated for a BPM machine.

More information

Effect of Harmonics on the Performance Characteristics of Three Phase Squirrel Cage Induction Motor

Effect of Harmonics on the Performance Characteristics of Three Phase Squirrel Cage Induction Motor Effect of Harmonics on the Performance Characteristics of Three Phase Squirrel Cage Induction Motor Priya Janak 1, Ranvir Kaur 2 1 Research Scholar, BBSBEC, Fatehgarh Sahib, Punjab 2 Assistant Professor,

More information

Speed Control of DC Motor Using Fuzzy Logic Application

Speed Control of DC Motor Using Fuzzy Logic Application 2016 Published in 4th International Symposium on Innovative Technologies in Engineering and Science 3-5 November 2016 (ISITES2016 Alanya/Antalya - Turkey) Speed Control of DC Motor Using Fuzzy Logic Application

More information

Module 1. Introduction. Version 2 EE IIT, Kharagpur

Module 1. Introduction. Version 2 EE IIT, Kharagpur Module 1 Introduction Lesson 1 Introducing the Course on Basic Electrical Contents 1 Introducing the course (Lesson-1) 4 Introduction... 4 Module-1 Introduction... 4 Module-2 D.C. circuits.. 4 Module-3

More information

ROTOR FLUX VECTOR CONTROL TRACKING FOR SENSORLESS INDUCTION MOTOR

ROTOR FLUX VECTOR CONTROL TRACKING FOR SENSORLESS INDUCTION MOTOR International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 668 ROTOR FLUX VECTOR CONTROL TRACKING FOR SENSORLESS INDUCTION MOTOR Fathima Farook 1, Reeba Sara Koshy 2 Abstract

More information

Renewable Energy Based Interleaved Boost Converter

Renewable Energy Based Interleaved Boost Converter Renewable Energy Based Interleaved Boost Converter Pradeepakumara V 1, Nagabhushan patil 2 PG Scholar 1, Professor 2 Department of EEE Poojya Doddappa Appa College of Engineering, Kalaburagi, Karnataka,

More information

Modelling and Control of a Novel Single Phase Generator Based on a Three Phase Cage Rotor Induction Machine

Modelling and Control of a Novel Single Phase Generator Based on a Three Phase Cage Rotor Induction Machine School of Electrical Engineering and Computing Modelling and Control of a Novel Single Phase Generator Based on a Three Phase Cage Rotor Induction Machine Diana Aroshanie Hikkaduwa Liyanage This thesis

More information

Voltage Regulated Five Level Inverter Fed Wind Energy Conversion System using PMSG

Voltage Regulated Five Level Inverter Fed Wind Energy Conversion System using PMSG Voltage Regulated Five Level Inverter Fed Wind Energy Conversion System using PMSG Anjali R. D PG Scholar, EEE Dept Mar Baselios College of Engineering & Technology Trivandrum, Kerala, India Sheenu. P

More information

Modelling of Three Phase Transformer in MATLAB/Simulink

Modelling of Three Phase Transformer in MATLAB/Simulink Modelling of Three Phase Transformer in MATLAB/Simulink Harshitha G B 1, Santhosh D S 2, K Uday Bhargav 3 Lecturer, Department of Electrical and Electronics Engineering, UBDT College of Engineering, Davangere,

More information