MTI 7605 ASK Modulation and Demodulation

Size: px
Start display at page:

Download "MTI 7605 ASK Modulation and Demodulation"

Transcription

1 Page 1 of 1 MTI 7605 ASK Modulation and Demodulation Contents Aims of the Exercise Learning about the functioning principle of amplitude shift keying (ASK) and its demodulation Measurement and evaluation of the frequency spectrum of ASK Overview of Exercises Amplitude Shift Keying, ASK Presentation of the signal course at the output of the ASK modulator Demodulation of the ASK signal Frequency spectrum of the ASK signal

2 Page 1 of 2 MTI 7605 ASK Modulation and Demodulation Introduction Amplitude Shift Keying (ASK) Modulation With amplitude shift keying, ASK, the amplitude of a high frequency, sinusoidal carrier signal is varied by the lower frequency, squarewave modulation signal, according to the block diagram shown below. During this modulation, the frequency of the carrier signal remains constant. Fig. 1:Block schematic diagram, ASK modulator In the so-called two-stage ASK(2-ASK) used here, a "High" level on the modulating signal switches the carrier signal through to the output of the ASK modulator; no switching occurs when a "Low" level is applied.

3 Page 1 of 2 MTI 7605 ASK Modulation and Demodulation Exercise Assembly With all voltages removed, the ASK modulator/demodulator is inserted into the Experimenter. The supply voltages, 0V, +15V and -15V are connected via the bus system of the Uni-Tr@in basic unit. Guidelines will be found in the relevant operating instructions. It is recommended to have these worksheets readily to hand. They provide extra details for the circuit diagrams. Sub-assemblies and Components Required Qty. Description Order No. 1 UniTr@in-I Interface with virtual instruments SO4203-2A 1 Experimenter SO4203-2B 1 ASK modulator / demodulator SO4201-9H 1 Measuring line set 2mm UniTr@in I SO5146-1L

4 Page 2 of 2 Operator Elements and Sockets A B C Modulator input, TTLin Equipment earth, GND Trimmer, for adjusting the sinusoidal shape of the carrier D Signal input, ASKin E Signal output, ASK F Test signal, Carrier G Potentiometer, Carrie H Test signal, Det. in I Signal output, TTLout Fig. 2: Front panel of the ASK modulator/demodulator

5 Page 1 of 5 MTI 7605 ASK Modulation and Demodulation ASK Modulation Exercise 1 Displaying the signal at the output of the ASK modulator Connect the "Carrier" socket to channel A on the oscilloscope. Select a timebase of 100µs/div. Set the input selector to 1V/div and trigger on A. In the lower part of the operating bar of the oscilloscope, the button will be seen for the cursor function. Set this for channel A. Also, two amplitude markers are available for measuring voltages and two time markers for measuring time or frequency. Set time marker 1 to the first zero pass of the sinewave carrier. Set time marker 2 so that at the top right, a frequency of 2.1kHz is shown (approx divisions). Now, with the "Carrier" potentiometer, set the carrier frequency to 2100 Hz. Apply a modulation signal from the function generator with the following data: f M = 150 Hz (frequency range 10) Signal shape TTL Level: 1:1, 50% (5V level) Connect the output of the function generator to the TTLin input of the ASK modulator. On channel A of the oscilloscope, measure the ASK signal at output ASK out and on channel B, the modulation signal at the TTL input. Trigger on B. Classify the results of the measurement according to the known types of modulation. Result: X = 1 ms/div X/T (B) Chan. A= 1 Chan. B= 2 V/DIV DC V/DIV DC

6 Page 2 of 5 Fig. 1: Channel A, ASKout; Channel B, Modulation signal TTLin Exercise 2 Demodulation of the ASK signal Connect the output of the ASK modulator, ASK out to the input ASK in of the ASK demodulator. On channel B of the oscilloscope, measure the input voltage to the ASK modulator at the test point TTL in and on channel A, the demodulated signal at output TTL out.trigger on B. Compare the modulation voltage with the output voltage of the demodulator. Result: X = 1 ms/div X/T (B) Chan. A= 2 Chan. B= 2 V/DIV DC V/DIV DC

7 Page 3 of 5 Fig. 2: Channel A, TTLin, Channel B, output signal TTLout Exercise 3 Frequency spectrum of the ASK signal On the ASK modulator (SO H), connect the input TTL in to +5V (High signal) and using the "Carrier" potentiometer, set the carrier frequency to f T = 2100 Hz. Connect the analog test input A of the UniTr@in-Interface to the ASK out output. Select the spectrum analyser and load the default settings for the "ASK". Now, start a continuous measurement. Result:

8 Page 4 of 5 Fig. 3: Frequency spectrum, ASK modulator, f = 2100 Hz On the function generator, set the modulation signal as follows: f M = 150 Hz (frequency range 10) Signal shape: TTL Level: 1:1, 50% (5V level) Measure the frequency spectrum of the signal with the same settings on the spectrum analyser as previously. Then, vary the frequency of the modulation signal at the function generator between 50 Hz (= 100 Baud) and 300 Hz (= 600 Baud). Describe what is observed! Result:

9 Page 5 of 5 Fig. 4: Frequency spectrum, ASK modulator, f M =150 Hz, f T = 2100 Hz

MTI 7601 PAM Modulation and Demodulation

MTI 7601 PAM Modulation and Demodulation Page 1 of 1 MTI 7601 PAM Modulation and Demodulation Contents Aims of the Exercise Learning about the functioning principle of the pulse-amplitude modulation (sampling, time division multiplex operation)

More information

MTI 7603 Pseudo-Ternary Codes

MTI 7603 Pseudo-Ternary Codes Page 1 of 1 MTI 7603 Pseudo-Ternary Codes Contents Aims of the Exercise Learning about the attributes of different line codes (AMI, HDB3, modified AMI code) Learning about layer 1 of the ISDN at the base

More information

MTI 7602 PCM Modulation and Demodulation

MTI 7602 PCM Modulation and Demodulation Page 1 of 1 MTI 7602 PCM Modulation and Demodulation Contents Aims of the Exercise Learning about the functioning principle of the pulse-code modulation (quantisation, coding, time division multiplex operation)

More information

Section 10: Radio Frequency Communication

Section 10: Radio Frequency Communication Section 10: Radio Frequency Communication Section Contents This section contains the following: Introducing Radio Frequency on page 10-2 RF Amplifier with Thermal Noise Source on page 10-4. Worksheets

More information

EE 210: CIRCUITS AND DEVICES

EE 210: CIRCUITS AND DEVICES EE 210: CIRCUITS AND DEVICES LAB #3: VOLTAGE AND CURRENT MEASUREMENTS This lab features a tutorial on the instrumentation that you will be using throughout the semester. More specifically, you will see

More information

3.2 Measuring Frequency Response Of Low-Pass Filter :

3.2 Measuring Frequency Response Of Low-Pass Filter : 2.5 Filter Band-Width : In ideal Band-Pass Filters, the band-width is the frequency range in Hz where the magnitude response is at is maximum (or the attenuation is at its minimum) and constant and equal

More information

EXPERIMENT 1: Amplitude Shift Keying (ASK)

EXPERIMENT 1: Amplitude Shift Keying (ASK) EXPERIMENT 1: Amplitude Shift Keying (ASK) 1) OBJECTIVE Generation and demodulation of an amplitude shift keyed (ASK) signal 2) PRELIMINARY DISCUSSION In ASK, the amplitude of a carrier signal is modified

More information

Electronic Circuits I Laboratory 03 Rectifiers

Electronic Circuits I Laboratory 03 Rectifiers Electronic Circuits I Laboratory 03 Rectifiers # Student ID Student Name Grade (10) 1 Instructor signature 2 3 4 5 Delivery Date -1 / 18 - Objectives In this experiment, you will get to know a group of

More information

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope.

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. 3.5 Laboratory Procedure / Summary Sheet Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. Set the function generator to produce a 5 V pp 1kHz sinusoidal output.

More information

DIGITAL COMMUNICATIONS (INTRODUCTION TO MULTISIM SOFTWARE)

DIGITAL COMMUNICATIONS (INTRODUCTION TO MULTISIM SOFTWARE) PROJECT 1B DIGITAL COMMUNICATIONS (INTRODUCTION TO MULTISIM SOFTWARE) (i) FSK SYSTEM (MODULATOR / DEMODULATOR) Abstract: In this project, students are required to design a complete circuit of FSK SYSTEM.

More information

3 - Using the Telecoms-Trainer 101 to model equations

3 - Using the Telecoms-Trainer 101 to model equations Name: Class: 3 - Using the Telecoms-Trainer 101 to model equations Experiment 3 Using the Telecoms-Trainer 101 to model equations Preliminary discussion This may surprise you, but mathematics is an important

More information

Experiment No. 3 Pre-Lab Phase Locked Loops and Frequency Modulation

Experiment No. 3 Pre-Lab Phase Locked Loops and Frequency Modulation Experiment No. 3 Pre-Lab Phase Locked Loops and Frequency Modulation The Pre-Labs are informational and although they follow the procedures in the experiment, they are to be completed outside of the laboratory.

More information

EXPERIMENT 4 - Part I: DSB Amplitude Modulation

EXPERIMENT 4 - Part I: DSB Amplitude Modulation OBJECTIVE To generate DSB amplitude modulated signal. EXPERIMENT 4 - Part I: DSB Amplitude Modulation PRELIMINARY DISCUSSION In an amplitude modulation (AM) communications system, the message signal is

More information

EXPERIMENT 3 - Part I: DSB-SC Amplitude Modulation

EXPERIMENT 3 - Part I: DSB-SC Amplitude Modulation OBJECTIVE To generate DSB-SC amplitude modulated signal. EXPERIMENT 3 - Part I: DSB-SC Amplitude Modulation PRELIMINARY DISCUSSION In the modulation process, the message signal (the baseband voice, video,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY /6.071 Introduction to Electronics, Signals and Measurement Spring 2006

MASSACHUSETTS INSTITUTE OF TECHNOLOGY /6.071 Introduction to Electronics, Signals and Measurement Spring 2006 MASSACHUSETTS INSTITUTE OF TECHNOLOGY.071/6.071 Introduction to Electronics, Signals and Measurement Spring 006 Lab. Introduction to signals. Goals for this Lab: Further explore the lab hardware. The oscilloscope

More information

TIMS-301 USER MANUAL. Telecommunications Instructional Modelling System

TIMS-301 USER MANUAL. Telecommunications Instructional Modelling System TIMS-301 R MANUAL Telecommunications Instructional Modelling System TIMS-301 R MANUAL Issue Number 1.4 February 2002 Published by: EMONA INSTRUMENTS PTY LTD a.c.n. 001 728 276 86 Parramatta Road Camperdown

More information

2-Tone Audio Oscillator for SSB Tests

2-Tone Audio Oscillator for SSB Tests 2-Tone Audio Oscillator for SSB Tests Background This 2 Tone generator has been designed to provide 2 non-harmonically related signals as an audio source for testing SSB transmitters and associated equipment.

More information

Lab 13 AC Circuit Measurements

Lab 13 AC Circuit Measurements Lab 13 AC Circuit Measurements Objectives concepts 1. what is impedance, really? 2. function generator and oscilloscope 3. RMS vs magnitude vs Peak-to-Peak voltage 4. phase between sinusoids skills 1.

More information

TIMS: Introduction to the Instrument

TIMS: Introduction to the Instrument TIMS: Introduction to the Instrument Modules: Audio Oscillator, Speech, Adder, Wideband True RMS Meter, Digital Utilities 1 Displaying a Signal on the PicoScope 1. Turn on TIMS. 2. Computer: Start > All

More information

Junior Digital circuit experiment board. Use for the experimentation of digital circuits both TTL IC and CMOS DC supply :

Junior Digital circuit experiment board. Use for the experimentation of digital circuits both TTL IC and CMOS DC supply : NX-100plus Junior Digital circuit experiment board Feature Use for the experimentation of digital circuits both TTL IC and CMOS DC supply : +5V and +V (+12V approx. depend on DC adaptor) 800mA buit-in

More information

Exercise 2-1. PAM Signals EXERCISE OBJECTIVE DISCUSSION OUTLINE. Signal sampling DISCUSSION

Exercise 2-1. PAM Signals EXERCISE OBJECTIVE DISCUSSION OUTLINE. Signal sampling DISCUSSION Exercise 2-1 PAM Signals EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the generation of both natural and flat-top sampled PAM signals. You will verify how the frequency

More information

LAB II. INTRODUCTION TO LAB EQUIPMENT

LAB II. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE LAB II. INTRODUCTION TO LAB EQUIPMENT In this lab you will learn how to properly operate the oscilloscope Keysight DSOX1102A, the Keithley Source Measure Unit (SMU) 2430, the function generator

More information

Emona DATEx. Volume 1 Experiments in Modern Analog & Digital Telecommunications. Barry Duncan

Emona DATEx. Volume 1 Experiments in Modern Analog & Digital Telecommunications. Barry Duncan Emona DATEx Lab Manual Volume 1 Experiments in Modern Analog & Digital Telecommunications Barry Duncan . Emona DATEx Lab Manual Volume 1 Experiments in Modern Analog & Digital Telecommunications Barry

More information

Exercise 2: FM Detection With a PLL

Exercise 2: FM Detection With a PLL Phase-Locked Loop Analog Communications Exercise 2: FM Detection With a PLL EXERCISE OBJECTIVE When you have completed this exercise, you will be able to explain how the phase detector s input frequencies

More information

Experiment One: Generating Frequency Modulation (FM) Using Voltage Controlled Oscillator (VCO)

Experiment One: Generating Frequency Modulation (FM) Using Voltage Controlled Oscillator (VCO) Experiment One: Generating Frequency Modulation (FM) Using Voltage Controlled Oscillator (VCO) Modified from original TIMS Manual experiment by Mr. Faisel Tubbal. Objectives 1) Learn about VCO and how

More information

LAB I. INTRODUCTION TO LAB EQUIPMENT

LAB I. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE LAB I. INTRODUCTION TO LAB EQUIPMENT In this lab you will learn how to properly operate the oscilloscope Agilent MSO6032A, the Keithley Source Measure Unit (SMU) 2430, the function generator

More information

Name: First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits

Name: First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits Table of Contents: Pre-Lab Assignment 2 Background 2 National Instruments MyDAQ 2 Resistors 3 Capacitors

More information

EE 3302 LAB 1 EQIUPMENT ORIENTATION

EE 3302 LAB 1 EQIUPMENT ORIENTATION EE 3302 LAB 1 EQIUPMENT ORIENTATION Pre Lab: Calculate the theoretical gain of the 4 th order Butterworth filter (using the formula provided. Record your answers in Table 1 before you come to class. Introduction:

More information

Laboratory 4. Bandwidth, Filters, and Diodes

Laboratory 4. Bandwidth, Filters, and Diodes Laboratory 4 Bandwidth, Filters, and Diodes Required Components: k resistor 0. F capacitor N94 small-signal diode LED 4. Objectives In the previous laboratory exercise you examined the effects of input

More information

Item Name & Package Code Specifications Quantity Last Date & Time of Submission of Quotation

Item Name & Package Code Specifications Quantity Last Date & Time of Submission of Quotation Quotation should be addressed to the Registrar, HBTU, Kanpur, Uttar Pradesh-208002. The envelope should be super scribed with Quotation for TEQIP-III, Package Name (As Applicable). Quotation are invited

More information

Experiment 19 Binary Phase Shift Keying

Experiment 19 Binary Phase Shift Keying Experiment 19 Binary Phase Shift Keying Preliminary discussion Experiments 17 and 18 show that the AM and FM modulation schemes can be used to transmit digital signals and this allows for the channel to

More information

The Sampling Theorem:

The Sampling Theorem: The Sampling Theorem: Aim: Experimental verification of the sampling theorem; sampling and message reconstruction (interpolation). Experimental Procedure: Taking Samples: In the first part of the experiment

More information

The Discussion of this exercise covers the following points: Filtering Aperture distortion

The Discussion of this exercise covers the following points: Filtering Aperture distortion Exercise 3-1 PAM Signals Demodulation EXERCISE OBJECTIVE When you have completed this exercise you will be able to demonstrate the recovery of the original message signal from a PAM signal using the PAM

More information

Laboratory equipments. Parameters of digital signals.

Laboratory equipments. Parameters of digital signals. Laboratory 1 Laboratory equipments. Parameters of digital signals. 1.1 Objectives This laboratory presents detailed description of the equipments used during the lab and measurement techniques specifically

More information

UCE-DSO210 DIGITAL OSCILLOSCOPE USER MANUAL. FATIH GENÇ UCORE ELECTRONICS REV1

UCE-DSO210 DIGITAL OSCILLOSCOPE USER MANUAL. FATIH GENÇ UCORE ELECTRONICS REV1 UCE-DSO210 DIGITAL OSCILLOSCOPE USER MANUAL FATIH GENÇ UCORE ELECTRONICS www.ucore-electronics.com 2017 - REV1 Contents 1. Introduction... 2 2. Turn on or turn off... 3 3. Oscilloscope Mode... 3 3.1. Display

More information

Page 1/10 Digilent Analog Discovery (DAD) Tutorial 6-Aug-15. Figure 2: DAD pin configuration

Page 1/10 Digilent Analog Discovery (DAD) Tutorial 6-Aug-15. Figure 2: DAD pin configuration Page 1/10 Digilent Analog Discovery (DAD) Tutorial 6-Aug-15 INTRODUCTION The Diligent Analog Discovery (DAD) allows you to design and test both analog and digital circuits. It can produce, measure and

More information

Figure 1: a BPSK signal (below) and the message (above)

Figure 1: a BPSK signal (below) and the message (above) EXPERIMENT 3: Quadrature Phase Shift Keying (QPSK) 1) OBJECTIVE Generation and demodulation of a quadrature phase shift keyed (QPSK) signal. 2) PRELIMINARY DISCUSSION QPSK is a form of phase modulation

More information

OSCILLOSCOPES. Oscilloscopes CS-5300 SERIES RS-232C OPTION OPTION CS-5370P/5370/5350 FEATURES OUTLINE. Photo: CS-5370P

OSCILLOSCOPES. Oscilloscopes CS-5300 SERIES RS-232C OPTION OPTION CS-5370P/5370/5350 FEATURES OUTLINE. Photo: CS-5370P Oscilloscopes 100MHz 2-Channel Programmable Oscilloscope ( With Digital Readout / Cursor) CS-5370P CS-5370 100MHz 3-Channel Oscilloscope ( With Digital Readout / Cursor) 50MHz 3-Channel Oscilloscope (

More information

EXPERIMENT 5 Bioelectric Measurements

EXPERIMENT 5 Bioelectric Measurements Objectives EXPERIMENT 5 Bioelectric Measurements 1) Generate periodic signals with a Signal Generator and display on an Oscilloscope. 2) Investigate a Differential Amplifier to see small signals in a noisy

More information

LAB INSTRUMENTATION. RC CIRCUITS.

LAB INSTRUMENTATION. RC CIRCUITS. LAB INSTRUMENTATION. RC CIRCUITS. I. OBJECTIVE a) Becoming accustomed to using the lab instrumentation (voltage supply, digital multimeter, signal generator, oscilloscope) necessary to the experimental

More information

LAB #7: Digital Signal Processing

LAB #7: Digital Signal Processing LAB #7: Digital Signal Processing Equipment: Pentium PC with NI PCI-MIO-16E-4 data-acquisition board NI BNC 2120 Accessory Box VirtualBench Instrument Library version 2.6 Function Generator (Tektronix

More information

Volumes 1 and 2 Experiments in Modern Analog & Digital Telecommunications Barry Duncan

Volumes 1 and 2 Experiments in Modern Analog & Digital Telecommunications Barry Duncan Emona 101 Trainer SAMPLE Lab Manual Volumes 1 and 2 Experiments in Modern Analog & Digital Telecommunications Barry Duncan Emona 101 Trainer SAMPLE Lab Manual Volumes 1 and 2 Experiments in Modern Analog

More information

EXPERIMENT 2: Frequency Shift Keying (FSK)

EXPERIMENT 2: Frequency Shift Keying (FSK) EXPERIMENT 2: Frequency Shift Keying (FSK) 1) OBJECTIVE Generation and demodulation of a frequency shift keyed (FSK) signal 2) PRELIMINARY DISCUSSION In FSK, the frequency of a carrier signal is modified

More information

Electronics I. laboratory measurement guide

Electronics I. laboratory measurement guide Electronics I. laboratory measurement guide Andras Meszaros, Mark Horvath 2015.02.01. 5. Measurement Basic circuits with operational amplifiers 2015.02.01. In this measurement you will need both controllable

More information

Introduction to basic laboratory instruments

Introduction to basic laboratory instruments BEE 233 Laboratory-1 Introduction to basic laboratory instruments 1. Objectives To learn safety procedures in the laboratory. To learn how to use basic laboratory instruments: power supply, function generator,

More information

Experiment 6: Amplitude Modulation, Modulators, and Demodulators Fall 2009

Experiment 6: Amplitude Modulation, Modulators, and Demodulators Fall 2009 Experiment 6: Amplitude Modulation, Modulators, and Demodulators Fall 009 Double Sideband Amplitude Modulation (AM) V S (1+m) v S (t) V S V S (1-m) Figure 1 Sinusoidal signal with a dc component In double

More information

LAB I. INTRODUCTION TO LAB EQUIPMENT

LAB I. INTRODUCTION TO LAB EQUIPMENT LAB I. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE In this lab you will learn how to properly operate the basic bench equipment used for characterizing active devices: 1. Oscilloscope (Keysight DSOX 1102A),

More information

DIGITAL STORAGE OSCILLOSCOPES

DIGITAL STORAGE OSCILLOSCOPES 99 Washington Street Melrose, MA 02176 Fax 781-665-0780 TestEquipmentDepot.com DIGITAL STORAGE OSCILLOSCOPES Digital Storage Oscilloscope 100MS/s Acquisition (40MS/s 2 Acquisition) 100MHz 2 channel. OUTLINE

More information

Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm

Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm EGR 220: Engineering Circuit Theory Lab 1: Introduction to Laboratory Equipment Pre-lab Read through the entire lab handout

More information

UCE-DSO212 DIGITAL OSCILLOSCOPE USER MANUAL. UCORE ELECTRONICS

UCE-DSO212 DIGITAL OSCILLOSCOPE USER MANUAL. UCORE ELECTRONICS UCE-DSO212 DIGITAL OSCILLOSCOPE USER MANUAL UCORE ELECTRONICS www.ucore-electronics.com 2017 Contents 1. Introduction... 2 2. Turn on or turn off... 3 3. Oscilloscope Mode... 4 3.1. Display Description...

More information

Call Progress Tone and Ringing Signal Generation

Call Progress Tone and Ringing Signal Generation Exercise 1-3 Call Progress Tone and Ringing Signal Generation EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with call progress tone and ringing signal generation. DISCUSSION

More information

EE 210 Lab Exercise #3 Introduction to PSPICE

EE 210 Lab Exercise #3 Introduction to PSPICE EE 210 Lab Exercise #3 Introduction to PSPICE Appending 4 in your Textbook contains a short tutorial on PSPICE. Additional information, tutorials and a demo version of PSPICE can be found at the manufacturer

More information

Universitas Sumatera Utara

Universitas Sumatera Utara Amplitude Shift Keying & Frequency Shift Keying Aim: To generate and demodulate an amplitude shift keyed (ASK) signal and a binary FSK signal. Intro to Generation of ASK Amplitude shift keying - ASK -

More information

Why Modern Servicing Requires Complete Waveform & Circuit Analyzing!

Why Modern Servicing Requires Complete Waveform & Circuit Analyzing! Why Modern Servicing Requires Complete Waveform & Circuit Analyzing! DC Bias Voltages DC Currents Resistance AC Signals Of Various Waveshapes & Amplitudes Continuity Of Circuit Paths & Components If you

More information

Optical Modulation and Frequency of Operation

Optical Modulation and Frequency of Operation Optical Modulation and Frequency of Operation Developers AB Overby Objectives Preparation Background The objectives of this experiment are to describe and illustrate the differences between frequency of

More information

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a digital oscilloscope.

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a digital oscilloscope. The Oscilloscope Vision is the art of seeing things invisible. J. Swift (1667-1745) OBJECTIVE To learn to operate a digital oscilloscope. THEORY The oscilloscope, or scope for short, is a device for drawing

More information

Exercise 2: Demodulation (Quadrature Detector)

Exercise 2: Demodulation (Quadrature Detector) Analog Communications Angle Modulation and Demodulation Exercise 2: Demodulation (Quadrature Detector) EXERCISE OBJECTIVE When you have completed this exercise, you will be able to explain demodulation

More information

Sampling and Reconstruction

Sampling and Reconstruction Experiment 10 Sampling and Reconstruction In this experiment we shall learn how an analog signal can be sampled in the time domain and then how the same samples can be used to reconstruct the original

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab University of Jordan School of Engineering Electrical Engineering Department EE 204 Electrical Engineering Lab EXPERIMENT 1 MEASUREMENT DEVICES Prepared by: Prof. Mohammed Hawa EXPERIMENT 1 MEASUREMENT

More information

Real Analog - Circuits 1 Chapter 11: Lab Projects

Real Analog - Circuits 1 Chapter 11: Lab Projects Real Analog - Circuits 1 Chapter 11: Lab Projects 11.2.1: Signals with Multiple Frequency Components Overview: In this lab project, we will calculate the magnitude response of an electrical circuit and

More information

Lab 1 - Analogue and Digital Signals

Lab 1 - Analogue and Digital Signals Lab 1 - Analogue and Digital Signals Objective 1. To reintroduce the equipment used in the lab. 2. To get practical experience assembling and analyzing circuits. 3. To examine physical analogue and digital

More information

Faculty of Engineering, Thammasat University

Faculty of Engineering, Thammasat University Faculty of Engineering, Thammasat University Experiment 6: Oscilloscope (For room 506) Objectives: 1. To familiarize you with the Oscilloscope and Function Generator User Manual: Oscilloscope 1 5 9 4 7

More information

TIMS ADVANCED MODULES and TIMS SPECIAL APPLICATIONS MODULES USER MANUAL. Telecommunications Instructional Modelling System

TIMS ADVANCED MODULES and TIMS SPECIAL APPLICATIONS MODULES USER MANUAL. Telecommunications Instructional Modelling System TIMS ADVANCED MODULES and TIMS SPECIAL APPLICATIONS MODULES USER MANUAL Telecommunications Instructional Modelling System TIMS ADVANCED MODULES and TIMS SPECIAL APPLICATION MODULES USER MANUAL Authors:

More information

EVAL-ADM8843. Evaluation Board for Charge Pump Driver for LCD White LED Backlights. Preliminary Technical Data

EVAL-ADM8843. Evaluation Board for Charge Pump Driver for LCD White LED Backlights. Preliminary Technical Data Evaluation Board for Charge Pump Driver for LCD White LED Backlights EVAL-ADM8843 FEATURES ADM8843 drives 4 white LEDs from a 2.6V to 5.5V (li-ion) input supply 1x/1.5x/2x Fractional Charge Pump to maximize

More information

DS 6000 Specifications

DS 6000 Specifications DS 6000 Specifications All the specifications are guaranteed except the parameters marked with Typical and the oscilloscope needs to operate for more than 30 minutes under the specified operation temperature.

More information

Multichannel Analyser, Extended Version

Multichannel Analyser, Extended Version Multichannel Analyser, Extended Version 13727-99 PHYWE Systeme GmbH & Co. KG Robert-Bosch-Breite 10 D-37079 Göttingen Phone +49 (0) 551 604-0 Fax +49 (0) 551 604-107 E-mail info@phywe.de Internet www.phywe.de

More information

An Introductory Guide to Circuit Simulation using NI Multisim 12

An Introductory Guide to Circuit Simulation using NI Multisim 12 School of Engineering and Technology An Introductory Guide to Circuit Simulation using NI Multisim 12 This booklet belongs to: This document provides a brief overview and introductory tutorial for circuit

More information

Exercise 8. Troubleshooting a Radar Target Tracker EXERCISE OBJECTIVE

Exercise 8. Troubleshooting a Radar Target Tracker EXERCISE OBJECTIVE Exercise 8 Troubleshooting a Radar Target Tracker EXERCISE OBJECTIVE When you have completed this exercise, you will be able to apply an efficient troubleshooting procedure in order to locate instructor-inserted

More information

Figure E2-1 The complete circuit showing the oscilloscope and Bode plotter.

Figure E2-1 The complete circuit showing the oscilloscope and Bode plotter. Example 2 An RC network using the oscilloscope and Bode plotter In this example we use the oscilloscope and the Bode plotter in an RC circuit that has an AC source. The circuit which we will construct

More information

OSCILLOSCOPES. Oscilloscopes CS-5400 SERIES CS-5400/5450 FEATURES OUTLINE CS-5400

OSCILLOSCOPES. Oscilloscopes CS-5400 SERIES CS-5400/5450 FEATURES OUTLINE CS-5400 99 Washington Street Melrose, MA 02176 Fax 781-665-0780 TestEquipmentDepot.com Oscilloscopes 100MHz 3-Channel Oscilloscope (With Digital Readout / Cursor) CS-5400 100MHz 3-Channel Oscilloscope CS-5405

More information

Introduction to Oscilloscopes Instructor s Guide

Introduction to Oscilloscopes Instructor s Guide Introduction to Oscilloscopes A collection of lab exercises to introduce you to the basic controls of a digital oscilloscope in order to make common electronic measurements. Revision 1.0 Page 1 of 25 Copyright

More information

ELEC3104: Digital Signal Processing Session 1, 2013

ELEC3104: Digital Signal Processing Session 1, 2013 ELEC3104: Digital Signal Processing Session 1, 2013 The University of New South Wales School of Electrical Engineering and Telecommunications LABORATORY 1: INTRODUCTION TO TIMS AND MATLAB INTRODUCTION

More information

AC LAB ECE-D ecestudy.wordpress.com

AC LAB ECE-D ecestudy.wordpress.com PART B EXPERIMENT NO: 1 AIM: PULSE AMPLITUDE MODULATION (PAM) & DEMODULATION DATE: To study Pulse Amplitude modulation and demodulation process with relevant waveforms. APPARATUS: 1. Pulse amplitude modulation

More information

The Single-Phase PWM Inverter with Dual-Polarity DC Bus

The Single-Phase PWM Inverter with Dual-Polarity DC Bus Exercise 2 The Single-Phase PWM Inverter with Dual-Polarity DC Bus EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the singlephase PWM inverter with dual-polarity dc

More information

Department of Electronic and Information Engineering. Communication Laboratory

Department of Electronic and Information Engineering. Communication Laboratory Department of Electronic and Information Engineering Communication Laboratory Frequency Shift Keying (FSK) & Differential Phase Shift Keying (DPSK) & Differential Quadrature Phase Shift Keying (DQPSK)

More information

Advanced Lab LAB 6: Signal Acquisition & Spectrum Analysis Using VirtualBench DSA Equipment: Objectives:

Advanced Lab LAB 6: Signal Acquisition & Spectrum Analysis Using VirtualBench DSA Equipment: Objectives: Advanced Lab LAB 6: Signal Acquisition & Spectrum Analysis Using VirtualBench DSA Equipment: Pentium PC with National Instruments PCI-MIO-16E-4 data-acquisition board (12-bit resolution; software-controlled

More information

Laboratory Exercise 6 THE OSCILLOSCOPE

Laboratory Exercise 6 THE OSCILLOSCOPE Introduction Laboratory Exercise 6 THE OSCILLOSCOPE The aim of this exercise is to introduce you to the oscilloscope (often just called a scope), the most versatile and ubiquitous laboratory measuring

More information

EECE208 INTRO To ELECTRICAL ENG LAB. LAB 2. Instrumentation

EECE208 INTRO To ELECTRICAL ENG LAB. LAB 2. Instrumentation EECE208 INTRO To ELECTRICAL ENG LAB Dr. Charles Kim LAB 2. Instrumentation Objectives A brief description of the equipment (Oscilloscope, Function Generator, Power Supply, and Digital Multimeter) and its

More information

CHAPTER 6. Motor Driver

CHAPTER 6. Motor Driver CHAPTER 6 Motor Driver In this lab, we will construct the circuitry that your robot uses to drive its motors. However, before testing the motor circuit we will begin by making sure that you are able to

More information

Experiment # 1 Introduction to Lab Equipment

Experiment # 1 Introduction to Lab Equipment Experiment # 1 Introduction to Lab Equipment 1. Synopsis: In this introductory lab, we will review the basic concepts of digital logic design and learn how to use the equipment available in the laboratory.

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Name: MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.091 Hands-On Introduction to EE Lab Skills Laboratory No. 1 Oscilloscopes, Multimeter, Function Generator IAP 2008 1 Objective In this laboratory, you will

More information

Name EET 1131 Lab #2 Oscilloscope and Multisim

Name EET 1131 Lab #2 Oscilloscope and Multisim Name EET 1131 Lab #2 Oscilloscope and Multisim Section 1. Oscilloscope Introduction Equipment and Components Safety glasses Logic probe ETS-7000 Digital-Analog Training System Fluke 45 Digital Multimeter

More information

SonoLab Echo-I User Manual

SonoLab Echo-I User Manual SonoLab Echo-I User Manual Overview: SonoLab Echo-I is a single board digital ultrasound pulse-echo solution. The system has a built in 50 volt high voltage generation circuit, a bipolar pulser, a transmit/receive

More information

Communication Technology Experiment Kits

Communication Technology Experiment Kits Communication Technology Experiment Kits MODULATION / DEMODULATION ES401-ES402 Modulation Test Set provides the opportunity to work with Demodulation Kit. Supply circuit and outputs are equipped with short

More information

DSA-815 Demo Guide. Solution: The DSA 800 series of spectrum analyzers are packed with features.

DSA-815 Demo Guide. Solution: The DSA 800 series of spectrum analyzers are packed with features. FAQ Instrument Solution FAQ Solution Title DSA-815 Demo Guide Date:08.29.2012 Solution: The DSA 800 series of spectrum analyzers are packed with features. Spectrum analyzers are similar to oscilloscopes..

More information

Electronics I. laboratory measurement guide Andras Meszaros, Mark Horvath

Electronics I. laboratory measurement guide Andras Meszaros, Mark Horvath Electronics I. laboratory measurement guide Andras Meszaros, Mark Horvath 3. Measurement: Diodes and rectifiers 2017.02.27. In this session we are going to measure forward and reverse characteristics of

More information

EECE208 INTRO To ELECTRICAL ENG LAB. LAB 2. Instrumentation

EECE208 INTRO To ELECTRICAL ENG LAB. LAB 2. Instrumentation EECE208 INTRO To ELECTRICAL ENG LAB Dr. Charles Kim LAB 2. Instrumentation Objectives A brief description of the equipment (Oscilloscope, Function Generator, Power Supply, and Digital Multimeter) and its

More information

EE-4022 Experiment 2 Amplitude Modulation (AM)

EE-4022 Experiment 2 Amplitude Modulation (AM) EE-4022 MILWAUKEE SCHOOL OF ENGINEERING 2015 Page 2-1 Student objectives: EE-4022 Experiment 2 Amplitude Modulation (AM) In this experiment the student will use laboratory modules to implement operations

More information

How to Simply Generate a PSK Modulation

How to Simply Generate a PSK Modulation How to Simply Generate a PSK Modulation Phase-Shift Keying (PSK) is a technique used to transmit data by modifying the phase of a sinusoid carrier wave. The Tabor family of Arbitrary Waveform Generators

More information

Chapter 10 Adaptive Delta Demodulator

Chapter 10 Adaptive Delta Demodulator Chapter 10 Adaptive Delta Demodulator 10-1 Curriculum Objective 1. To understand the operation theory of adaptive delta demodulation. 2. To understand the signal waveforms of ADM demodulation. 3. Design

More information

GENERAL OPERATING INFORMATION

GENERAL OPERATING INFORMATION Fife Corporation P.O. Box 26508, Oklahoma City, OK 73126, USA Phone: 405.755.1600 / Fax: 405.755.8425 www.fife.com / E-mail: fife@fife.com OPERATING MANUAL GENERAL OPERATING INFORMATION General The SDE-30

More information

The Tuned Circuit. Aim of the experiment. Circuit. Equipment and components. Display of a decaying oscillation. Dependence of L, C and R.

The Tuned Circuit. Aim of the experiment. Circuit. Equipment and components. Display of a decaying oscillation. Dependence of L, C and R. The Tuned Circuit Aim of the experiment Display of a decaying oscillation. Dependence of L, C and R. Circuit Equipment and components 1 Rastered socket panel 1 Resistor R 1 = 10 Ω, 1 Resistor R 2 = 1 kω

More information

TG550 AIM & THURLBY THANDAR INSTRUMENTS. 5MHz function generator with sweep

TG550 AIM & THURLBY THANDAR INSTRUMENTS. 5MHz function generator with sweep AIM & THURLBY THANDAR INSTRUMENTS TG550 5MHz function generator with sweep simultaneous display of frequency & amplitude crystal controlled digital frequency locking seven digit external frequency counter

More information

EE-4022 Experiment 3 Frequency Modulation (FM)

EE-4022 Experiment 3 Frequency Modulation (FM) EE-4022 MILWAUKEE SCHOOL OF ENGINEERING 2015 Page 3-1 Student Objectives: EE-4022 Experiment 3 Frequency Modulation (FM) In this experiment the student will use laboratory modules including a Voltage-Controlled

More information

Exercise 1: Amplitude Modulation

Exercise 1: Amplitude Modulation AM Transmission Analog Communications Exercise 1: Amplitude Modulation EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe the generation of amplitudemodulated signals

More information

Laboratory 3 (drawn from lab text by Alciatore)

Laboratory 3 (drawn from lab text by Alciatore) Laboratory 3 (drawn from lab text by Alciatore) The Oscilloscope Required Components: 1 10 resistor 2 100 resistors 2 lk resistors 1 2k resistor 2 4.7M resistors 1 0.F capacitor 1 0.1 F capacitor 1 1.0uF

More information

PHASORS AND PHASE SHIFT CIRCUITS

PHASORS AND PHASE SHIFT CIRCUITS PHASORS AND PHASE SHIFT CIRCUITS YOUR NAME GTA S SIGNATURE LAB MEETING TIME PHASOR CIRCUIT 4. Assemble the series RC circuit with the following circuit element values: C = 0.027 μf R = 10 kω v s (t) =

More information

Feedback Loop Canceller Circuit

Feedback Loop Canceller Circuit Feedback Loop Canceller Circuit Bachelor Thesis Ahmad Bader Ibrahim Obeidat Supervised by Prof. Dr.-Ing. Klaus Solbach 17.11.2014 Outline: 1 Motivation 2 Circuit description 3 Tasks and objectives 4 Active

More information

Analog signal generator that meets virtually every requirement

Analog signal generator that meets virtually every requirement GENERAL PURPOSE 44434/5 FIG 1 The R&S SMA1A offers excellent performance and compact design at a favorable price. Signal Generator R&S SMA1A Analog signal generator that meets virtually every requirement

More information

Experiment 9 AC Circuits

Experiment 9 AC Circuits Experiment 9 AC Circuits "Look for knowledge not in books but in things themselves." W. Gilbert (1540-1603) OBJECTIVES To study some circuit elements and a simple AC circuit. THEORY All useful circuits

More information