Lab 1 - Analogue and Digital Signals

Size: px
Start display at page:

Download "Lab 1 - Analogue and Digital Signals"

Transcription

1 Lab 1 - Analogue and Digital Signals Objective 1. To reintroduce the equipment used in the lab. 2. To get practical experience assembling and analyzing circuits. 3. To examine physical analogue and digital signals and devices. Introduction In most practical applications the information and signals we are interested in are in an analogue form. These analogue signals can vary continuously in time and can take on an infinite number of values. For digital electronics to process theses 'real world' signals, the analogue signals must be first converted into a digital form. Likewise, for the processed results to be useful to a human, the digital information often, but not always, needs to be converted back into an analogue form. We can build circuits to analyze these types of signals using a breadboard and some simple electronic devices. Recall, from the prerequisite course, the general concept of the breadboard. It is a device which allows us to connect circuit components without needing a circuit board or solder. No connection between points No connection between points Electrically connected If we want to connect two devices using the breadboard, for example the resistors R1 and R2: R1 R2 A B C We can use the internal connections within the breadboard to act as the nodes 'A', 'B', and 'C'. B. YOSHIDA, P.ENG 2013 V

2 e d c b a In this case we can use columns 1, 4, and 7 for the nodes A, B, and C, and insert the resistors into the breadboard as follows: 1 2 e d c R2 b a R1 In this scenario the connection between R1 and R2, at node B, is made by the internal connection which exists in the breadboard. It is important to keep in mind the internal connections in the breadboard and not connect the resistors as follows: 1 2 e d c R2 b a R1 If the parts are inserted into the breadboard as shown, both ends of R2 are connected to each other. In other words nodes B and C are effectively connected together, and R2 is shorted out of the circuit. B. YOSHIDA, P.ENG 2013 V

3 Part1.1 - Analogue Signals To 'see' an actual analogue signal, we can build the following circuit which uses a microphone to convert the sound waves into an electrical signal. Pin + Microphone (Bottom view) +5V 2.2k microphone To view the output signal we will need to configure the oscilloscope appropriately. This involves adjusting the resolution/scaling of the display nF Output (monitor with oscilloscope) Vertical Horizontal 1 Volts/Div Sec/Div CH1 20.0mV CH2 1V M2.50ms CH1 1.5V Using the Volts/Div control, set the vertical scale to 20.0mV/division. Using the Sec/Div control, set the horizontal scale to 2.50ms/division. At this point you should be able to speak into the microphone and see a signal on the oscilloscope screen. Rather than try to examine a constantly changing display we can configure the oscilloscope to capture a single event using the oscilloscope's single trigger mode. 1 CH1 2V CH2 1V M2.5ms CH1 1.5V Edge Slope Source Ch1 Mode Single Coupling Trigger Level Trigger Menu Press the Trigger Menu button on the right side of the oscilloscope. Using the onscreen controls: B. YOSHIDA, P.ENG 2013 V

4 Set the Source to Ch 1. Set the Mode to Single. Using the Level adjustment knob, adjust the arrow on the right side of the display to be higher than the 0 V level which is indicated by the left arrow on the screen. At this point the word Ready will appear at the top of the screen. You can now speak into the microphone and a single stationary waveform representing whatever you said will be captured on the oscilloscope. At this point the word Stop will appear at the top of the screen. To reset the oscilloscope press the Run/Stop button located at the top corner of the oscilloscope. Sketch the waveform you captured: Does this waveform correspond to what you would expect? Since the circuit is translating a sound pressure wave into an electrical signal, does the duration match the sound you provided to the microphone? Does the general shape of the amplitude match the sound you provided as the input? Part Sample and Hold In order to process a signal using digital electronics the signal has to be maintained (held constant) while it is converted. A sample and hold circuit can perform this holding function. Build the following circuit: B. YOSHIDA, P.ENG 2013 V

5 Push Button Switch 1Hz sinusoid Signal Generator (monitor with oscilloscope) 100µF + + Output (monitor with oscilloscope) Construction notes: When mounting the push button, have the switches on either side of the channel in the breadboard. Look at the labelling on the capacitor and make sure that it is the negative terminal which is connected to ground. Adjust the output of the signal generator to provide a 5v 1Hz sinusoid (5sin(2πt)V). Adjust the vertical scale on the oscilloscope to 5V/div, and the horizontal scale to 250ms/div. Try to press and release the switch (sample the input signal) so that the output is at the peak (5V). Try to sample the input so that the output is 0V. Determine if it the closing of the switch, or the opening of the switch which determines the output voltage (the value of the sample). Explain why. Sample the input signal at a slow rate (i.e. infrequently compared to frequency of input signal). Sketch the input and output waveforms. B. YOSHIDA, P.ENG 2013 V

6 Sample the input signal rapidly (i.e. at a frequency higher than the frequency of the input signal). Sketch the input and output waveforms. Part Analogue to Digital Conversion Devices We can use prebuilt, commercial-off-the-shelf devices to perform analogue to digital conversions. Build the following circuit using an ADC0804 A/D converter: 5V To built in LEDs on green circuit board. D8 D7 D6 D5 D4 D3 D2 D1 10µF 10k Construction notes: 150pF make momentary connection to ground to start b b a c a c Potentiometer (Bottom View) Determine the full range of motion for the potentiometer. Adjust the setting of the potentiometer and determine the what positions are required to turn on each of the LEDs. i.e. If the full range of motion is from 10º to 350, estimate the angle to turn on each successive 0.1 µf 5V 10k 0.1µF B. YOSHIDA, P.ENG 2013 V

7 LED. Alternatively if the range of motion is from 1 o'clock to 11 o'clock determine when each successive LED turns on. D0 D1 D2 D3 D4 D5 D6 D7 Is the scale linear? Part 2 - Points to Ponder 1. Analogue Signals 1.1. Why is the output of this circuit considered to be analogue? 1.2. What would the output of the circuit look like if we were able to whistle a pure tone into the microphone? 1.3. Why did we need to use the single trigger mode to analyze the signal What is the effect of the sampling rate on generating an accurate set of numbers which can represent the continuous signal? What is the result of not sampling fast enough? Is there an upper limit to the sampling rate? 1.5. What would happen if we used the output of the microphone as the input to the D/A converter? What would the output of the D/A converter be? 2. Sample and Hold 2.1. Is the output of the sample and hold an analogue or a digital value? 2.2. What would the output look like if the switch were held closed? 2.3. What would the be the effect of increasing the size of the capacitor be on the output of the circuit? 2.4. Why does the input waveform get distorted when the switch is closed? (You can think about this in terms of a mechanical system where signal source is replaced by an engine) 2.5. Based on your previous answer, what effect would changing the capacitor have? 3. A/D Converter B. YOSHIDA, P.ENG 2013 V

8 3.1. What is the actual analogue input which is being converted? 3.2. Is there a mathematical relationship between the input voltage and the LEDs? Is yes what is the relationship? Linear? Exponential? Something else? 3.3. What is it about the output of the A/D converter that makes it a digital value? 3.4. Why did we not need a sample and hold at the input of the A/D converter? 3.5. How many different (unique) outputs can the specific A/D converter used in the lab produce? 3.6. What, if any, limitations are there in using the specific A/D converter used in the lab? B. YOSHIDA, P.ENG 2013 V

Lab 1 - Analogue and Digital Signals

Lab 1 - Analogue and Digital Signals Lab - Analogue and Digital Signals Objective. To reintroduce the equipment used in the lab. 2. To get practical experience assembling and analyzing circuits. 3. To examine physical analogue and digital

More information

Oscilloscope Operation. Visualizing Signals and Making Measurements

Oscilloscope Operation. Visualizing Signals and Making Measurements Oscilloscope Operation Visualizing Signals and Making Measurements Set Up Oscilloscope Start with the oscilloscope off, with the input plugged into channel one. Press the power button to turn the scope

More information

PHY152 Experiment 4: Oscillations in the RC-Circuits (Measurements with an oscilloscope)

PHY152 Experiment 4: Oscillations in the RC-Circuits (Measurements with an oscilloscope) PHY152 Experiment 4: Oscillations in the RC-Circuits (Measurements with an oscilloscope) If you have not used an oscilloscope before, the web site http://www.upscale.utoronto.ca/generalinterest/harrison/oscilloscope/oscilloscope.html

More information

Faculty of Engineering, Thammasat University

Faculty of Engineering, Thammasat University Faculty of Engineering, Thammasat University Experiment 6: Oscilloscope (For room 506) Objectives: 1. To familiarize you with the Oscilloscope and Function Generator User Manual: Oscilloscope 1 5 9 4 7

More information

Exercise 4 - THE OSCILLOSCOPE

Exercise 4 - THE OSCILLOSCOPE Exercise 4 - THE OSCILLOSCOPE INTRODUCTION You have been exposed to analogue oscilloscopes in the first year lab. As you are probably aware, the complexity of the instruments, along with their importance

More information

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a digital oscilloscope.

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a digital oscilloscope. The Oscilloscope Vision is the art of seeing things invisible. J. Swift (1667-1745) OBJECTIVE To learn to operate a digital oscilloscope. THEORY The oscilloscope, or scope for short, is a device for drawing

More information

Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm

Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm EGR 220: Engineering Circuit Theory Lab 1: Introduction to Laboratory Equipment Pre-lab Read through the entire lab handout

More information

Standing Waves in Air

Standing Waves in Air Standing Waves in Air Objective Students will explore standing wave phenomena through sound waves in an air tube. Equipment List PASCO resonance tube with speaker and microphone, PASCO PI-9587B Digital

More information

Introduction to oscilloscope. and time dependent circuits

Introduction to oscilloscope. and time dependent circuits Physics 9 Intro to oscilloscope, v.1.0 p. 1 NAME: SECTION DAY/TIME: TA: LAB PARTNER: Introduction to oscilloscope and time dependent circuits Introduction In this lab, you ll learn the basics of how to

More information

Lab 13 AC Circuit Measurements

Lab 13 AC Circuit Measurements Lab 13 AC Circuit Measurements Objectives concepts 1. what is impedance, really? 2. function generator and oscilloscope 3. RMS vs magnitude vs Peak-to-Peak voltage 4. phase between sinusoids skills 1.

More information

EC310 Security Exercise 20

EC310 Security Exercise 20 EC310 Security Exercise 20 Introduction to Sinusoidal Signals This lab demonstrates a sinusoidal signal as described in class. In this lab you will identify the different waveform parameters for a pure

More information

Experiment # 1 Introduction to Lab Equipment

Experiment # 1 Introduction to Lab Equipment Experiment # 1 Introduction to Lab Equipment 1. Synopsis: In this introductory lab, we will review the basic concepts of digital logic design and learn how to use the equipment available in the laboratory.

More information

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17 LABORATORY 4 ASSIGNED: 3/21/17 OBJECTIVE: The purpose of this lab is to evaluate the transient and steady-state circuit response of first order and second order circuits. MINIMUM EQUIPMENT LIST: You will

More information

ECE65 Introduction to the Function Generator and the Oscilloscope Created by: Eldridge Alcantara (Spring 2007)

ECE65 Introduction to the Function Generator and the Oscilloscope Created by: Eldridge Alcantara (Spring 2007) ECE65 Introduction to the Function Generator and the Oscilloscope Created by: Eldridge Alcantara (Spring 2007) I. Getting Started with the Function Generator OUTPUT Red Clip Small Black Clip 1) Turn on

More information

AE Agricultural Customer Services Play-by-Play Tekscope Manual

AE Agricultural Customer Services Play-by-Play Tekscope Manual 1 2012 AE Agricultural Customer Services Play-by-Play Tekscope Manual TABLE OF CONTENTS I. Definitions II. Waveform Properties 1 III. Scientific Notation... 2 IV. Transient Levels of Concern a. ASAE Paper

More information

Laboratory 3 (drawn from lab text by Alciatore)

Laboratory 3 (drawn from lab text by Alciatore) Laboratory 3 (drawn from lab text by Alciatore) The Oscilloscope Required Components: 1 10 resistor 2 100 resistors 2 lk resistors 1 2k resistor 2 4.7M resistors 1 0.F capacitor 1 0.1 F capacitor 1 1.0uF

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab University of Jordan School of Engineering Electrical Engineering Department EE 204 Electrical Engineering Lab EXPERIMENT 1 MEASUREMENT DEVICES Prepared by: Prof. Mohammed Hawa EXPERIMENT 1 MEASUREMENT

More information

Name: First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits

Name: First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits Table of Contents: Pre-Lab Assignment 2 Background 2 National Instruments MyDAQ 2 Resistors 3 Capacitors

More information

Sampling and Reconstruction

Sampling and Reconstruction Experiment 10 Sampling and Reconstruction In this experiment we shall learn how an analog signal can be sampled in the time domain and then how the same samples can be used to reconstruct the original

More information

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS EXPERIMENT : 1 TITLE : Half-Wave Rectifier & Filter OUTCOME : Upon completion of this unit, the student should be able to: i. Construct

More information

total j = BA, [1] = j [2] total

total j = BA, [1] = j [2] total Name: S.N.: Experiment 2 INDUCTANCE AND LR CIRCUITS SECTION: PARTNER: DATE: Objectives Estimate the inductance of the solenoid used for this experiment from the formula for a very long, thin, tightly wound

More information

Notes on Experiment #1

Notes on Experiment #1 Notes on Experiment #1 Bring graph paper (cm cm is best) From this week on, be sure to print a copy of each experiment and bring it with you to lab. There will not be any experiment copies available in

More information

Lab #1 Lab Introduction

Lab #1 Lab Introduction Cir cuit s 212 Lab Lab #1 Lab Introduction Special Information for this Lab s Report Because this is a one-week lab, please hand in your lab report for this lab at the beginning of next week s lab. The

More information

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 4. Alternating Current Measurement

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 4. Alternating Current Measurement PHYSICS 171 UNIVERSITY PHYSICS LAB II Experiment 4 Alternating Current Measurement Equipment: Supplies: Oscilloscope, Function Generator. Filament Transformer. A sine wave A.C. signal has three basic properties:

More information

PHASORS AND PHASE SHIFT CIRCUITS

PHASORS AND PHASE SHIFT CIRCUITS PHASORS AND PHASE SHIFT CIRCUITS YOUR NAME GTA S SIGNATURE LAB MEETING TIME PHASOR CIRCUIT 4. Assemble the series RC circuit with the following circuit element values: C = 0.027 μf R = 10 kω v s (t) =

More information

Experiment #2: Introduction to Lab Equipment: Function Generator, Oscilloscope, and Multisim

Experiment #2: Introduction to Lab Equipment: Function Generator, Oscilloscope, and Multisim SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2110: CIRCUIT THEORY LABORATORY Experiment #2: Introduction to Lab Equipment: Function Generator, Oscilloscope,

More information

Lab 6 Instrument Familiarization

Lab 6 Instrument Familiarization Lab 6 Instrument Familiarization What You Need To Know: Voltages and currents in an electronic circuit as in a CD player, mobile phone or TV set vary in time. Throughout todays lab you will investigate

More information

Physics 2310 Lab #2 Speed of Sound & Resonance in Air

Physics 2310 Lab #2 Speed of Sound & Resonance in Air Physics 2310 Lab #2 Speed of Sound & Resonance in Air Objective: The objectives of this experiment are a) to measure the speed of sound in air, and b) investigate resonance within air. Apparatus: Pasco

More information

EENG-201 Experiment # 4: Function Generator, Oscilloscope

EENG-201 Experiment # 4: Function Generator, Oscilloscope EENG-201 Experiment # 4: Function Generator, Oscilloscope I. Objectives Upon completion of this experiment, the student should be able to 1. To become familiar with the use of a function generator. 2.

More information

University of California, San Diego Department of Electrical and Computer Engineering

University of California, San Diego Department of Electrical and Computer Engineering University of California, San Diego Department of Electrical and Computer Engineering Part One: Introduction of Lab TAs ECE65, Spring 2007 Lab 0, ECE 65 Lab Orientation 1) James Liao, geniojames@yahoo.com

More information

Electronics I. laboratory measurement guide Andras Meszaros, Mark Horvath

Electronics I. laboratory measurement guide Andras Meszaros, Mark Horvath Electronics I. laboratory measurement guide Andras Meszaros, Mark Horvath 3. Measurement: Diodes and rectifiers 2017.02.27. In this session we are going to measure forward and reverse characteristics of

More information

2 Oscilloscope Familiarization

2 Oscilloscope Familiarization Lab 2 Oscilloscope Familiarization What You Need To Know: Voltages and currents in an electronic circuit as in a CD player, mobile phone or TV set vary in time. Throughout the course you will investigate

More information

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope.

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. 3.5 Laboratory Procedure / Summary Sheet Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. Set the function generator to produce a 5 V pp 1kHz sinusoidal output.

More information

UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Electrical and Computer Engineering. ECE 2A & 2B Laboratory Equipment Information

UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Electrical and Computer Engineering. ECE 2A & 2B Laboratory Equipment Information UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Electrical and Computer Engineering ECE 2A & 2B Laboratory Equipment Information Table of Contents Digital Multi-Meter (DMM)... 1 Features... 1 Using

More information

The oscilloscope and RC filters

The oscilloscope and RC filters (ta initials) first name (print) last name (print) brock id (ab17cd) (lab date) Experiment 4 The oscilloscope and C filters The objective of this experiment is to familiarize the student with the workstation

More information

EECS 318 Electronics Lab Laboratory #2 Electronic Test Equipment

EECS 318 Electronics Lab Laboratory #2 Electronic Test Equipment EECS 318 Electronics Lab Laboratory #2 Electronic Test Equipment Objectives: The purpose of this laboratory is to acquaint you with the electronic sources and measuring equipment you will be using throughout

More information

Pre-Lab. Introduction

Pre-Lab. Introduction Pre-Lab Read through this entire lab. Perform all of your calculations (calculated values) prior to making the required circuit measurements. You may need to measure circuit component values to obtain

More information

Experiment 5 The Oscilloscope

Experiment 5 The Oscilloscope Experiment 5 The Oscilloscope Vision is the art of seeing things invisible. J. Swift (1667-1745) OBJECTIVE To learn to operate a cathode ray oscilloscope. THEORY The oscilloscope, or scope for short, is

More information

Lab Reference Manual. ECEN 326 Electronic Circuits. Texas A&M University Department of Electrical and Computer Engineering

Lab Reference Manual. ECEN 326 Electronic Circuits. Texas A&M University Department of Electrical and Computer Engineering Lab Reference Manual ECEN 326 Electronic Circuits Texas A&M University Department of Electrical and Computer Engineering Contents 1. Circuit Analysis in PSpice 3 1.1 Transient and DC Analysis 3 1.2 Measuring

More information

EXPERIMENT 2 DIGITAL STORAGE OSCILLOSCOPE

EXPERIMENT 2 DIGITAL STORAGE OSCILLOSCOPE EXPERIMENT 2 DIGITAL STORAGE OSCILLOSCOPE 2.1 Objective: In this experiment, you will learn the basic usage of digital storage oscilloscope (DSO) of GW Instek Technologies. More specifically you will learn,

More information

LAB 1: Familiarity with Laboratory Equipment (_/10)

LAB 1: Familiarity with Laboratory Equipment (_/10) LAB 1: Familiarity with Laboratory Equipment (_/10) PURPOSE o gain familiarity with basic laboratory equipment oscilloscope, oscillator, multimeter and electronic components. EQUIPMEN (i) Oscilloscope

More information

Electric Circuit Fall 2017 Lab10. LABORATORY 10 RLC Circuits. Guide. Figure 1: Voltage and current in an AC circuit.

Electric Circuit Fall 2017 Lab10. LABORATORY 10 RLC Circuits. Guide. Figure 1: Voltage and current in an AC circuit. LABORATORY 10 RLC Circuits Guide Introduction RLC circuit When an AC signal is input to a RLC circuit, voltage across each element varies as a function of time. The voltage will oscillate with a frequency

More information

EE 201 Function / Arbitrary Waveform Generator and Oscilloscope Tutorial

EE 201 Function / Arbitrary Waveform Generator and Oscilloscope Tutorial EE 201 Function / Arbitrary Waveform Generator and Oscilloscope Tutorial 1 This is a programmed learning instruction manual. It is written for the Agilent DSO3202A Digital Storage Oscilloscope. The prerequisite

More information

Experiment 8: An AC Circuit

Experiment 8: An AC Circuit Experiment 8: An AC Circuit PART ONE: AC Voltages. Set up this circuit. Use R = 500 Ω, L = 5.0 mh and C =.01 μf. A signal generator built into the interface provides the emf to run the circuit from Output

More information

DIGITAL COMMUNICATIONS (INTRODUCTION TO MULTISIM SOFTWARE)

DIGITAL COMMUNICATIONS (INTRODUCTION TO MULTISIM SOFTWARE) PROJECT 1B DIGITAL COMMUNICATIONS (INTRODUCTION TO MULTISIM SOFTWARE) (i) FSK SYSTEM (MODULATOR / DEMODULATOR) Abstract: In this project, students are required to design a complete circuit of FSK SYSTEM.

More information

PHYS 235: Homework Problems

PHYS 235: Homework Problems PHYS 235: Homework Problems 1. The illustration is a facsimile of an oscilloscope screen like the ones you use in lab. sinusoidal signal from your function generator is the input for Channel 1, and your

More information

Agilent 33522A Function Arbitrary Waveform Generator. Tektronix TDS 3012B Oscilloscope

Agilent 33522A Function Arbitrary Waveform Generator. Tektronix TDS 3012B Oscilloscope Agilent 33522A Function/Arbitrary Waveform Generator and Tektronix TDS 3012B Oscilloscope Agilent 33522A Function Arbitrary Waveform Generator The signal source for this lab is the Agilent 33522A Function

More information

The University of Jordan Mechatronics Engineering Department Electronics Lab.( ) Experiment 1: Lab Equipment Familiarization

The University of Jordan Mechatronics Engineering Department Electronics Lab.( ) Experiment 1: Lab Equipment Familiarization The University of Jordan Mechatronics Engineering Department Electronics Lab.(0908322) Experiment 1: Lab Equipment Familiarization Objectives To be familiar with the main blocks of the oscilloscope and

More information

Tektronix digital oscilloscope, BK Precision Function Generator, coaxial cables, breadboard, the crystal earpiece from your AM radio kit.

Tektronix digital oscilloscope, BK Precision Function Generator, coaxial cables, breadboard, the crystal earpiece from your AM radio kit. Experiment 0: Review I. References The 174 and 275 Lab Manuals Any standard text on error analysis (for example, Introduction to Error Analysis, J. Taylor, University Science Books, 1997) The manual for

More information

Lab 9 Fourier Synthesis and Analysis

Lab 9 Fourier Synthesis and Analysis Lab 9 Fourier Synthesis and Analysis In this lab you will use a number of electronic instruments to explore Fourier synthesis and analysis. As you know, any periodic waveform can be represented by a sum

More information

Introduction to basic laboratory instruments

Introduction to basic laboratory instruments BEE 233 Laboratory-1 Introduction to basic laboratory instruments 1. Objectives To learn safety procedures in the laboratory. To learn how to use basic laboratory instruments: power supply, function generator,

More information

Basic operational amplifier circuits In this lab exercise, we look at a variety of op-amp circuits. Note that this is a two-period lab.

Basic operational amplifier circuits In this lab exercise, we look at a variety of op-amp circuits. Note that this is a two-period lab. Basic operational amplifier circuits In this lab exercise, we look at a variety of op-amp circuits. Note that this is a two-period lab. Prior to Lab 1. If it has been awhile since you last used the lab

More information

Time-Varying Signals

Time-Varying Signals Time-Varying Signals Objective This lab gives a practical introduction to signals that varies with time using the components such as: 1. Arbitrary Function Generator 2. Oscilloscopes The grounding issues

More information

Lab 3: AC Low pass filters (version 1.3)

Lab 3: AC Low pass filters (version 1.3) Lab 3: AC Low pass filters (version 1.3) WARNING: Use electrical test equipment with care! Always double-check connections before applying power. Look for short circuits, which can quickly destroy expensive

More information

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2) EE 368 Electronics Lab Experiment 10 Operational Amplifier Applications (2) 1 Experiment 10 Operational Amplifier Applications (2) Objectives To gain experience with Operational Amplifier (Op-Amp). To

More information

Experiment 8 Frequency Response

Experiment 8 Frequency Response Experiment 8 Frequency Response W.T. Yeung, R.A. Cortina, and R.T. Howe UC Berkeley EE 105 Spring 2005 1.0 Objective This lab will introduce the student to frequency response of circuits. The student will

More information

STUDENT NUMBER Letter VCE VET ELECTRONICS. Written examination. Monday 31 October 2005

STUDENT NUMBER Letter VCE VET ELECTRONICS. Written examination. Monday 31 October 2005 Victorian CertiÞcate of Education 2005 SUPERVISOR TO ATTACH PROCESSING LABEL HERE Figures Words STUDENT NUMBER Letter VCE VET ELECTRONICS Written examination Monday 31 October 2005 Reading time: 9.00 am

More information

1.5k. (a) Resistive Circuit (b) Capacitive Circuit

1.5k. (a) Resistive Circuit (b) Capacitive Circuit Objective Information The purposes of this laboratory project are to become further acquainted with the use of an oscilloscope, and to observe the behavior of resistor and resistor capacitor circuits.

More information

OPERATIONAL AMPLIFIERS LAB

OPERATIONAL AMPLIFIERS LAB 1 of 6 BEFORE YOU BEGIN PREREQUISITE LABS OPERATIONAL AMPLIFIERS LAB Introduction to Matlab Introduction to Arbitrary/Function Generator Resistive Circuits EXPECTED KNOWLEDGE Students should be familiar

More information

Experiment EB2: IC Multivibrator Circuits

Experiment EB2: IC Multivibrator Circuits EEE1026 Electronics II: Experiment Instruction Learning Outcomes Experiment EB2: IC Multivibrator Circuits LO1: Explain the principles and operation of amplifiers and switching circuits LO2: Analyze high

More information

EE 210: CIRCUITS AND DEVICES

EE 210: CIRCUITS AND DEVICES EE 210: CIRCUITS AND DEVICES LAB #3: VOLTAGE AND CURRENT MEASUREMENTS This lab features a tutorial on the instrumentation that you will be using throughout the semester. More specifically, you will see

More information

Physics 310 Lab 2 Circuit Transients and Oscilloscopes

Physics 310 Lab 2 Circuit Transients and Oscilloscopes Physics 310 Lab 2 Circuit Transients and Oscilloscopes Equipment: function generator, oscilloscope, two BNC cables, BNC T connector, BNC banana adapter, breadboards, wire packs, some banana cables, three

More information

Physics 323. Experiment # 1 - Oscilloscope and Breadboard

Physics 323. Experiment # 1 - Oscilloscope and Breadboard Physics 323 Experiment # 1 - Oscilloscope and Breadboard Introduction In order to familiarise yourself with the laboratory equipment, a few simple experiments are to be performed. References: XYZ s of

More information

University of Utah Electrical & Computer Engineering Department ECE 2210/2200 Lab 4 Oscilloscope

University of Utah Electrical & Computer Engineering Department ECE 2210/2200 Lab 4 Oscilloscope University of Utah Electrical & Computer Engineering Department ECE 2210/2200 Lab 4 Oscilloscope Objectives 1 Introduce the Oscilloscope and learn some uses. 2 Observe Audio signals. 3 Introduce the Signal

More information

Laboratory 4. Bandwidth, Filters, and Diodes

Laboratory 4. Bandwidth, Filters, and Diodes Laboratory 4 Bandwidth, Filters, and Diodes Required Components: k resistor 0. F capacitor N94 small-signal diode LED 4. Objectives In the previous laboratory exercise you examined the effects of input

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY /6.071 Introduction to Electronics, Signals and Measurement Spring 2006

MASSACHUSETTS INSTITUTE OF TECHNOLOGY /6.071 Introduction to Electronics, Signals and Measurement Spring 2006 MASSACHUSETTS INSTITUTE OF TECHNOLOGY.071/6.071 Introduction to Electronics, Signals and Measurement Spring 006 Lab. Introduction to signals. Goals for this Lab: Further explore the lab hardware. The oscilloscope

More information

CHAPTER 6. Motor Driver

CHAPTER 6. Motor Driver CHAPTER 6 Motor Driver In this lab, we will construct the circuitry that your robot uses to drive its motors. However, before testing the motor circuit we will begin by making sure that you are able to

More information

10: AMPLIFIERS. Circuit Connections in the Laboratory. Op-Amp. I. Introduction

10: AMPLIFIERS. Circuit Connections in the Laboratory. Op-Amp. I. Introduction 10: AMPLIFIERS Circuit Connections in the Laboratory From now on you will construct electrical circuits and test them. The usual way of constructing circuits would be to solder each electrical connection

More information

Name EGR 2131 Lab #2 Logic Gates and Boolean Algebra Objectives Equipment and Components Part 1: Reading Pin Diagrams 7400 (TOP VIEW)

Name EGR 2131 Lab #2 Logic Gates and Boolean Algebra Objectives Equipment and Components Part 1: Reading Pin Diagrams 7400 (TOP VIEW) Name EGR 23 Lab #2 Logic Gates and Boolean Algebra Objectives ) Become familiar with common logic-gate chips and their pin numbers. 2) Using breadboarded chips, investigate the behavior of NOT (Inverter),

More information

Sirindhorn International Institute of Technology Thammasat University at Rangsit

Sirindhorn International Institute of Technology Thammasat University at Rangsit Sirindhorn International Institute of Technology Thammasat University at Rangsit School of Information, Computer and Communication Technology COURSE : ECS 210 Basic Electrical Engineering Lab INSTRUCTOR

More information

Oscilloscope Measurements

Oscilloscope Measurements PC1143 Physics III Oscilloscope Measurements 1 Purpose Investigate the fundamental principles and practical operation of the oscilloscope using signals from a signal generator. Measure sine and other waveform

More information

EE101 Notes 2. December 27, The measurement devices to be studied are oscilloscope, function generator, dc power supply and spectrum analyzer.

EE101 Notes 2. December 27, The measurement devices to be studied are oscilloscope, function generator, dc power supply and spectrum analyzer. EE101 Notes 2 December 27, 2018 Measurement Devices The measurement devices to be studied are oscilloscope, function generator, dc power supply and spectrum analyzer. DC power supply It is a device used

More information

User Manual and Test Procedure

User Manual and Test Procedure RSR/VT A&D ANDY Board User Manual and Test Procedure Version 2.2 June 5, 2006 Copyright 2005-2006 By R. B. Lineberry, W. C. Headley, and R. W. Hendricks The Bradley Department of Electrical and Computer

More information

CI-22. BASIC ELECTRONIC EXPERIMENTS with computer interface. Experiments PC1-PC8. Sample Controls Display. Instruction Manual

CI-22. BASIC ELECTRONIC EXPERIMENTS with computer interface. Experiments PC1-PC8. Sample Controls Display. Instruction Manual CI-22 BASIC ELECTRONIC EXPERIMENTS with computer interface Experiments PC1-PC8 Sample Controls Display See these Oscilloscope Signals See these Spectrum Analyzer Signals Instruction Manual Elenco Electronics,

More information

EECE208 INTRO To ELECTRICAL ENG LAB. LAB 2. Instrumentation

EECE208 INTRO To ELECTRICAL ENG LAB. LAB 2. Instrumentation EECE208 INTRO To ELECTRICAL ENG LAB Dr. Charles Kim LAB 2. Instrumentation Objectives A brief description of the equipment (Oscilloscope, Function Generator, Power Supply, and Digital Multimeter) and its

More information

Lab 0: Introduction to basic laboratory instruments. Revised by Dan Hoang & Tai-Chang Chen 03/30/2009

Lab 0: Introduction to basic laboratory instruments. Revised by Dan Hoang & Tai-Chang Chen 03/30/2009 Lab 0: Introduction to basic laboratory instruments Revised by Dan Hoang & Tai-Chang Chen 03/30/2009 1. Objectives 1. To learn safety procedures in the laboratory. 2. To learn how to use basic laboratory

More information

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Op Amps

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Op Amps University of Portland EE 271 Electrical Circuits Laboratory Experiment: Op Amps I. Objective The objective of this experiment is to learn how to use an op amp circuit to prevent loading and to amplify

More information

Combinational logic: Breadboard adders

Combinational logic: Breadboard adders ! ENEE 245: Digital Circuits & Systems Lab Lab 1 Combinational logic: Breadboard adders ENEE 245: Digital Circuits and Systems Laboratory Lab 1 Objectives The objectives of this laboratory are the following:

More information

EXPERIMENT NUMBER 2 BASIC OSCILLOSCOPE OPERATIONS

EXPERIMENT NUMBER 2 BASIC OSCILLOSCOPE OPERATIONS 1 EXPERIMENT NUMBER 2 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides

More information

t w = Continue to the next page, where you will draw a diagram of your design.

t w = Continue to the next page, where you will draw a diagram of your design. Name EET 1131 Lab #13 Multivibrators OBJECTIVES: 1. To design and test a monostable multivibrator (one-shot) using a 555 IC. 2. To analyze and test an astable multivibrator (oscillator) using a 555 IC.

More information

EXPERIMENT 4 LIMITER AND CLAMPER CIRCUITS

EXPERIMENT 4 LIMITER AND CLAMPER CIRCUITS EXPERIMENT 4 LIMITER AND CLAMPER CIRCUITS 1. OBJECTIVES 1.1 To demonstrate the operation of a diode limiter. 1.2 To demonstrate the operation of a diode clamper. 2. INTRODUCTION PART A: Limiter Circuit

More information

Name EET 1131 Lab #2 Oscilloscope and Multisim

Name EET 1131 Lab #2 Oscilloscope and Multisim Name EET 1131 Lab #2 Oscilloscope and Multisim Section 1. Oscilloscope Introduction Equipment and Components Safety glasses Logic probe ETS-7000 Digital-Analog Training System Fluke 45 Digital Multimeter

More information

Electric Circuit II Lab Manual Session #1

Electric Circuit II Lab Manual Session #1 Department of Electrical Engineering Electric Circuit II Lab Manual Session #1 Subject Lecturer Dr. Yasser Hegazy Name:-------------------------------------------------- Group:--------------------------------------------------

More information

Appendix A: Laboratory Equipment Manual

Appendix A: Laboratory Equipment Manual Appendix A: Laboratory Equipment Manual 1. Introduction: This appendix is a manual for equipment used in experiments 1-8. As a part of this series of laboratory exercises, students must acquire a minimum

More information

A semester of Experiments for ECE 225

A semester of Experiments for ECE 225 A semester of Experiments for ECE 225 Contents General Lab Instructions... 3 Notes on Experiment #1... 4 ECE 225 Experiment #1 Introduction to the function generator and the oscilloscope... 5 Notes on

More information

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1 .A Working with Lab Equipment Electronics Design Laboratory 1 1.A.0 1.A.1 3 1.A.4 Procedures Turn in your Pre Lab before doing anything else Setup the lab waveform generator to output desired test waveforms,

More information

Week 12 Experiment 21. Design a Traffic Arrow

Week 12 Experiment 21. Design a Traffic Arrow Week 12 Experiment 21 Design a Traffic Arrow Just so it is clear This is it. Last official experiment for the semester. It is your option as to whether or not you do a make-up experiment. This is the last

More information

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope EET 150 Introduction to EET Lab Activity 5 Oscilloscope Introduction Required Parts, Software and Equipment Parts Figure 1, Figure 2, Figure 3 Component /Value Quantity Resistor 10 kω, ¼ Watt, 5% Tolerance

More information

Lab: INTRODUCTION TO THE WAVEFORM GENERATOR AND THE OSCILLOSCOPE

Lab: INTRODUCTION TO THE WAVEFORM GENERATOR AND THE OSCILLOSCOPE Name EET101/Lab#5; EET121/Lab#5; EGR104/Lab#3 Sec / Night Date Lab Partner(s) Name(s) Lab: INTRODUCTION TO THE WAVEFORM GENERATOR AND THE OSCILLOSCOPE Objectives: Each student will: 1. Know the function

More information

Lab E5: Filters and Complex Impedance

Lab E5: Filters and Complex Impedance E5.1 Lab E5: Filters and Complex Impedance Note: It is strongly recommended that you complete lab E4: Capacitors and the RC Circuit before performing this experiment. Introduction Ohm s law, a well known

More information

EECE208 INTRO To ELECTRICAL ENG LAB. LAB 2. Instrumentation

EECE208 INTRO To ELECTRICAL ENG LAB. LAB 2. Instrumentation EECE208 INTRO To ELECTRICAL ENG LAB Dr. Charles Kim LAB 2. Instrumentation Objectives A brief description of the equipment (Oscilloscope, Function Generator, Power Supply, and Digital Multimeter) and its

More information

Diodes This week, we look at switching diodes, LEDs, and diode rectification. Be sure to bring a flash drive for recording oscilloscope traces.

Diodes This week, we look at switching diodes, LEDs, and diode rectification. Be sure to bring a flash drive for recording oscilloscope traces. Diodes This week, we look at switching diodes, LEDs, and diode rectification. Be sure to bring a flash drive for recording oscilloscope traces. 1. Basic diode characteristics Build the circuit shown in

More information

332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title: Function Generators and Oscilloscopes Suggested Equipment:

332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title: Function Generators and Oscilloscopes Suggested Equipment: RUTGERS UNIVERSITY The State University of New Jersey School of Engineering Department Of Electrical and Computer Engineering 332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title:

More information

ECE 201 LAB 8 TRANSFORMERS & SINUSOIDAL STEADY STATE ANALYSIS

ECE 201 LAB 8 TRANSFORMERS & SINUSOIDAL STEADY STATE ANALYSIS Version 1.1 1 of 8 ECE 201 LAB 8 TRANSFORMERS & SINUSOIDAL STEADY STATE ANALYSIS BEFORE YOU BEGIN PREREQUISITE LABS Introduction to MATLAB Introduction to Lab Equipment Introduction to Oscilloscope Capacitors,

More information

PHYSICS 326 LAB # 1: The Oscilloscope and Signal Generators 1/6

PHYSICS 326 LAB # 1: The Oscilloscope and Signal Generators 1/6 PHYSICS 326 LAB # 1: The Oscilloscope and Signal Generators 1/6 PURPOSE: To be sure that each student begins the course with at least the minimum required knowledge of two instruments which we will be

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Name: MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.091 Hands-On Introduction to EE Lab Skills Laboratory No. 1 Oscilloscopes, Multimeter, Function Generator IAP 2008 1 Objective In this laboratory, you will

More information

Agilent 33220A Function Generator Tutorial

Agilent 33220A Function Generator Tutorial Contents UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE105 Lab Experiments Agilent 33220A Function Generator Tutorial 1 Introduction

More information

Experiment A8 Electronics III Procedure

Experiment A8 Electronics III Procedure Experiment A8 Electronics III Procedure Deliverables: checked lab notebook, plots Overview Electronics have come a long way in the last century. Using modern fabrication techniques, engineers can now print

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab University of Jordan School of Engineering Electrical Engineering Department EE 219 Electrical Circuits Lab EXPERIMENT 4 TRANSIENT ANALYSIS Prepared by: Dr. Mohammed Hawa EXPERIMENT 4 TRANSIENT ANALYSIS

More information

Laboratory Exercise 6 THE OSCILLOSCOPE

Laboratory Exercise 6 THE OSCILLOSCOPE Introduction Laboratory Exercise 6 THE OSCILLOSCOPE The aim of this exercise is to introduce you to the oscilloscope (often just called a scope), the most versatile and ubiquitous laboratory measuring

More information