1.5k. (a) Resistive Circuit (b) Capacitive Circuit

Size: px
Start display at page:

Download "1.5k. (a) Resistive Circuit (b) Capacitive Circuit"

Transcription

1 Objective Information The purposes of this laboratory project are to become further acquainted with the use of an oscilloscope, and to observe the behavior of resistor and resistor capacitor circuits. No new equipment are introduced in this project. However, new functionality of the function generator and oscilloscope will be introduced. Pre laboratory Work This work will be submitted to the Laboratory Project 7 Pre Laboratory Analysis dropbox at the beginning of the week of the laboratory project. For the circuits in Fig. 1, with Vs=5 VAC, do a frequency sweep using B2Spice. Sweep over the range of 10Hz to 1MHz with 100 points per decade. Use a logarithmic rather than a linear sweep (i.e. the horizontal axis should be a logarithmic scale). Obtain results for both the magnitude and phase of the voltage v2. V1 V2 V1 V2 Vs Vs 10nF (a) Resistive Circuit (b) Capacitive Circuit Fig. 1. These are the circuits to be simulated in B2Spice Submit both schematics and the results for the magnitude and phase shift from each simulation to the prelaboratory assignment in Canvas. Procedure In EGH337: Resistive vs. Resistor Capacitor Circuits. 1. Apply a sinusoidal voltage with a peak of 5V (actual peak, not the setting on the function generator. This means that the oscilloscope should display 10V peak to peak) and a frequency of 10 khz to each of the circuits in Fig. 1. Measure and record the amplitude and the frequency of the input and output. Also, measure the phase shift between the peaks of V1 and V2. To measure the phase shift: i. Press the Meas button. ii. Press the button next to the Time. iii. To display the phase angle on the screen, use the select knob to select the Phas A B option that produces an angle less than 90. Pha_F2 1 should produce the correct phase angle. This measurement is adjusted by pressing the Menu button and pressing the button next to the large down arrow. Select PhaseA to be CH2 and PhaseB to be CH1. iv. Record the magnitude of the phase shift displayed on the screen. v. Observe both V1 and V2 on the same graph for each circuit. With the peak to peak voltage for channels one and two displayed, along with the phase shift, download the oscilloscope image. 1 of 5

2 1. Open a Word document and open Intuilink from the computer desktop. 2. If the program is not in the Windows menu it is found in: C:\Program Files (x86)\agilent\intuilink\data Capture a. The program is named agtdtcpt2.exe Downloading images from the Keysight 1xxx series oscilloscopes. b. In any operation of the Keysight oscilloscope if Rmt appears on the screen press Force Trigger (Local) to enable the oscilloscope inputs. c. With the oscilloscope on start Intuilink Data Capture from Windows. d. Under Instrument select Agilent 1000 Series e. Under the Set I/O tab, click Find Instrument f. Under Select Address(es), select the address beginning with USB g. Click Identify Instrument(s) h. Select the oscilloscope and click OK to close the Find Instrument dialog box i. Click OK on the Agilent 1000 Series Add In dialog box 3. At this point two windows should appear within the Agilent Intuilink Data Capture window. a. One is a screen shot that can be copied as an image. i. This can be copied and pasted into a Word document or saved as a png or bmp. b. One is a text data file. i. This can be imported and manipulated in a program like Excel. 4. To download another image click on the Get Data icon. 5. Download the oscilloscope image to the Word document a. The resolution of the image is dependent upon the size of the window when the screen is captured, so maximize the screen window before capturing data. Press Run/Stop before downloading the screen. b. If the image does not paste with the correct orientation: i. Right click on the image and select Size and Position ii. Under absolute height enter 3 inches iii. Under rotation enter 90 degrees iv. The image should now be upright and of an appropriate size for a document. c. If the image is oriented correctly, resize the image using the above procedure. i. Save your Word document to your user drive. ii. Press Run/Stop to perform the next measurement. 2. For the capacitive circuit repeat part 1 for frequencies of 100Hz, 1kHz, 100kHz and 1 MHz. Record the amplitudes, measured frequency and phase shift for each frequency. (Remember that you did a measurement at 10kHz in the previous step. Those data should be included here for the resistive capacitive circuit.) Images do not have to be saved for each measurement. Determine the phase shift at each frequency. The magnitude of the phase shift should be less than If your results exceed this, ask for assistance. 3. Apply the signal shown in Fig. 3 to each of the circuits. Measure the amplitude and the 2 of 5

3 Download the images from the oscilloscope. i. Note: the frequency of the signal in Fig. 3 can be determined by dividing 1 by Fig. 2 shows a symmetric square wave input for the circuit so that switching behavior can be observed. 4. Apply the signal shown in Fig. 4 to each of the circuits. Measure the amplitude and the Download images from the oscilloscope. i. Note: the frequency of the signal Fig. 4 can be determined by dividing 1 by the period of the signal. ii. Use the square waveform. iii. Use the duty cycle function to change the width of the waveform. Fig. 3 shows a square wave with an adjusted duty cycle so that the adjustment of the input duty cycle can be learned and so that any changes to the output voltage waveform can be observed. Using the Analog Discovery: Resistive vs. Resistor Capacitor Circuits. 1. Apply a sinusoidal voltage with a peak of 5V and a frequency of 10 khz to each of the circuits in Fig. 2. Measure and record the amplitude and the frequency of the input and output. Also, measure the phase shift between the peaks of V1 and V2. To measure the phase shift: iv. Under the View menu add Measurements. 1. Add Defined Measurement Channel1 Vertical Peak2Peak 2. Add Defined Measurement Channel2 Horizontal Frequency 3. Add Defined Measurement Channel1 Vertical Peak2Peak 3 of 5

4 Assignment 4. Add Defined Measurement Channel2 Horizontal Frequency 5. Add Custom Global a. This should add Phase v. Observe both V1 and V2 on the same graph for each circuit. With the peak to peak voltage for channels one and two displayed, along with the phase shift, download the oscilloscope image. 1. Open a Word document 2. Download the oscilloscope image to the Word document a. The simplest way to do this may be grabbing the scope window and measurements using the snipping tool. b. If the image does not paste with the correct orientation: i. Right click on the image and select Size and Position ii. Under absolute height enter 3 inches iii. Under rotation enter 90 degrees iv. The image should now be upright and of an appropriate size for a document. c. If the image is oriented correctly, resize the image using the above procedure. i. Save your Word document to your user drive. ii. Press Run/Stop to perform the next measurement. 2. For the capacitive circuit repeat part 1 for frequencies of 100Hz, 1kHz, 100kHz and 1 MHz. Record the amplitudes, measured frequency and phase shift for each frequency. (Remember that you did a measurement at 10kHz in the previous step. Those data should be included here for the resistive capacitive circuit.) Images do not have to be saved for each measurement. Determine the phase shift at each frequency. The magnitude of the phase shift should be less than If your results exceed this, ask for assistance. 3. Apply the signal shown in Fig. 3 to each of the circuits. Measure the amplitude and the Download the image from the oscilloscope. vi. Note: the frequency of the signal in Fig. 3 can be determined by dividing 1 by 4. Apply the signal shown in Fig. 4 to each of the circuits. Measure the amplitude and the Download images from the oscilloscope. vii. Note: the frequency of the signal in Fig. 4 can be determined by dividing 1 by viii. Use the square waveform. ix. Use the Symmetry function to change the width of the waveform. Generate a laboratory report following the informal laboratory report format from the electrical engineering department webpage and includes all applicable sections. In the laboratory project report, discuss how the response of RC circuits differs from the response of resistive circuits. Include all data measured in the laboratory. The magnitude and phase of the sinusoids should be graphed and shown next to or on the same graph as the simulations results to compare the simulated and measured results for the capacitive circuit. Include images of the waveforms required in the laboratory procedure. 4 of 5

5 Check off All figures, tables, and graphs must be descriptively captioned. In order to receive credit for performing this laboratory project it is necessary to have the instructor or student lab assistant review your data. The data must then be submitted for the laboratory project data assignment in Canvas for this project (only files in pdf are accepted). 5 of 5

EE 1210 Op Amps, Gain, and Signal Integrity Laboratory Project 6

EE 1210 Op Amps, Gain, and Signal Integrity Laboratory Project 6 Objective Information The purposes of this laboratory project are for the student to observe an inverting operational amplifier circuit, to demonstrate how the resistors in an operational amplifier circuit

More information

1. Hand Calculations (in a manner suitable for submission) For the circuit in Fig. 1 with f = 7.2 khz and a source vin () t 1.

1. Hand Calculations (in a manner suitable for submission) For the circuit in Fig. 1 with f = 7.2 khz and a source vin () t 1. Objectives The purpose of this laboratory project is to introduce to equipment, measurement techniques, and simulations commonly used in AC circuit analysis. In this laboratory session, each student will:

More information

EE2210 Laboratory Project 1 Fall 2013 Function Generator and Oscilloscope

EE2210 Laboratory Project 1 Fall 2013 Function Generator and Oscilloscope EE2210 Laboratory Project 1 Fall 2013 Function Generator and Oscilloscope For students to become more familiar with oscilloscopes and function generators. Pre laboratory Work Read the TDS 210 Oscilloscope

More information

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17 LABORATORY 4 ASSIGNED: 3/21/17 OBJECTIVE: The purpose of this lab is to evaluate the transient and steady-state circuit response of first order and second order circuits. MINIMUM EQUIPMENT LIST: You will

More information

Notes on Experiment #1

Notes on Experiment #1 Notes on Experiment #1 Bring graph paper (cm cm is best) From this week on, be sure to print a copy of each experiment and bring it with you to lab. There will not be any experiment copies available in

More information

Laboratory Project 1: AC Circuit Measurements and Simulation

Laboratory Project 1: AC Circuit Measurements and Simulation Objectives The purpose of this laboratory project is to introduce to equipment, measurement techniques, and simulations commonly used in C circuit analysis. In this laboratory session, each student will:

More information

ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis

ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis All circuit simulation packages that use the Pspice engine allow users to do complex analysis that were once impossible to

More information

PHASORS AND PHASE SHIFT CIRCUITS

PHASORS AND PHASE SHIFT CIRCUITS PHASORS AND PHASE SHIFT CIRCUITS YOUR NAME GTA S SIGNATURE LAB MEETING TIME PHASOR CIRCUIT 4. Assemble the series RC circuit with the following circuit element values: C = 0.027 μf R = 10 kω v s (t) =

More information

EENG-201 Experiment # 4: Function Generator, Oscilloscope

EENG-201 Experiment # 4: Function Generator, Oscilloscope EENG-201 Experiment # 4: Function Generator, Oscilloscope I. Objectives Upon completion of this experiment, the student should be able to 1. To become familiar with the use of a function generator. 2.

More information

Name: First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits

Name: First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits Table of Contents: Pre-Lab Assignment 2 Background 2 National Instruments MyDAQ 2 Resistors 3 Capacitors

More information

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1 .A Working with Lab Equipment Electronics Design Laboratory 1 1.A.0 1.A.1 3 1.A.4 Procedures Turn in your Pre Lab before doing anything else Setup the lab waveform generator to output desired test waveforms,

More information

PHY152 Experiment 4: Oscillations in the RC-Circuits (Measurements with an oscilloscope)

PHY152 Experiment 4: Oscillations in the RC-Circuits (Measurements with an oscilloscope) PHY152 Experiment 4: Oscillations in the RC-Circuits (Measurements with an oscilloscope) If you have not used an oscilloscope before, the web site http://www.upscale.utoronto.ca/generalinterest/harrison/oscilloscope/oscilloscope.html

More information

Class #7: Experiment L & C Circuits: Filters and Energy Revisited

Class #7: Experiment L & C Circuits: Filters and Energy Revisited Class #7: Experiment L & C Circuits: Filters and Energy Revisited In this experiment you will revisit the voltage oscillations of a simple LC circuit. Then you will address circuits made by combining resistors

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Name: MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.091 Hands-On Introduction to EE Lab Skills Laboratory No. 1 Oscilloscopes, Multimeter, Function Generator IAP 2008 1 Objective In this laboratory, you will

More information

Agilent 33522A Function Arbitrary Waveform Generator. Tektronix TDS 3012B Oscilloscope

Agilent 33522A Function Arbitrary Waveform Generator. Tektronix TDS 3012B Oscilloscope Agilent 33522A Function/Arbitrary Waveform Generator and Tektronix TDS 3012B Oscilloscope Agilent 33522A Function Arbitrary Waveform Generator The signal source for this lab is the Agilent 33522A Function

More information

Experiment #2: Introduction to Lab Equipment: Function Generator, Oscilloscope, and Multisim

Experiment #2: Introduction to Lab Equipment: Function Generator, Oscilloscope, and Multisim SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2110: CIRCUIT THEORY LABORATORY Experiment #2: Introduction to Lab Equipment: Function Generator, Oscilloscope,

More information

Waveform Generators and Oscilloscopes. Lab 6

Waveform Generators and Oscilloscopes. Lab 6 Waveform Generators and Oscilloscopes Lab 6 1 Equipment List WFG TEK DPO 4032A (or MDO3012) Resistors: 10kΩ, 1kΩ Capacitors: 0.01uF 2 Waveform Generators (WFG) The WFG supplies a variety of timevarying

More information

EC-3: Capacitors and RC-Decay

EC-3: Capacitors and RC-Decay Your TA will use this sheet to score your lab. It is to be turned in at the end of lab. You must use complete sentences and clearly explain your reasoning to receive full credit. EC-3, Part I: Do not do

More information

Real Analog - Circuits 1 Chapter 11: Lab Projects

Real Analog - Circuits 1 Chapter 11: Lab Projects Real Analog - Circuits 1 Chapter 11: Lab Projects 11.2.1: Signals with Multiple Frequency Components Overview: In this lab project, we will calculate the magnitude response of an electrical circuit and

More information

Time-Varying Signals

Time-Varying Signals Time-Varying Signals Objective This lab gives a practical introduction to signals that varies with time using the components such as: 1. Arbitrary Function Generator 2. Oscilloscopes The grounding issues

More information

EXPERIMENT NUMBER 10 TRANSIENT ANALYSIS USING PSPICE

EXPERIMENT NUMBER 10 TRANSIENT ANALYSIS USING PSPICE EXPERIMENT NUMBER 10 TRANSIENT ANALYSIS USING PSPICE Objective: To learn to use a circuit simulator package for plotting the response of a circuit in the time domain. Preliminary: Revise laboratory 8 to

More information

Lab #2 First Order RC Circuits Week of 27 January 2015

Lab #2 First Order RC Circuits Week of 27 January 2015 ECE214: Electrical Circuits Laboratory Lab #2 First Order RC Circuits Week of 27 January 2015 1 Introduction In this lab you will investigate the magnitude and phase shift that occurs in an RC circuit

More information

Pre-Lab. Introduction

Pre-Lab. Introduction Pre-Lab Read through this entire lab. Perform all of your calculations (calculated values) prior to making the required circuit measurements. You may need to measure circuit component values to obtain

More information

Lab #1 Lab Introduction

Lab #1 Lab Introduction Cir cuit s 212 Lab Lab #1 Lab Introduction Special Information for this Lab s Report Because this is a one-week lab, please hand in your lab report for this lab at the beginning of next week s lab. The

More information

Exponential Waveforms

Exponential Waveforms ENGR 210 Lab 9 Exponential Waveforms Purpose: To measure the step response of circuits containing dynamic elements such as capacitors. Equipment Required: 1 - HP 54xxx Oscilloscope 1 - HP 33120A Function

More information

332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title: Function Generators and Oscilloscopes Suggested Equipment:

332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title: Function Generators and Oscilloscopes Suggested Equipment: RUTGERS UNIVERSITY The State University of New Jersey School of Engineering Department Of Electrical and Computer Engineering 332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title:

More information

EE 210 Lab Exercise #3 Introduction to PSPICE

EE 210 Lab Exercise #3 Introduction to PSPICE EE 210 Lab Exercise #3 Introduction to PSPICE Appending 4 in your Textbook contains a short tutorial on PSPICE. Additional information, tutorials and a demo version of PSPICE can be found at the manufacturer

More information

SAMPLE: EXPERIMENT 2 Series RLC Circuit / Bode Plot

SAMPLE: EXPERIMENT 2 Series RLC Circuit / Bode Plot SAMPLE: EXPERIMENT 2 Series RLC Circuit / Bode Plot ---------------------------------------------------------------------------------------------------- This experiment is an excerpt from: Electric Experiments

More information

Using LTSPICE to Analyze Circuits

Using LTSPICE to Analyze Circuits Using LTSPICE to Analyze Circuits Overview: LTSPICE is circuit simulation software that automatically constructs circuit equations using circuit element models (built in or downloadable). In its modern

More information

EK307 Passive Filters and Steady State Frequency Response

EK307 Passive Filters and Steady State Frequency Response EK307 Passive Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of passive signal-processing filters Learning Objectives: Passive filters, Frequency domain, Bode plots

More information

MultiSim and Analog Discovery 2 Manual

MultiSim and Analog Discovery 2 Manual MultiSim and Analog Discovery 2 Manual 1 MultiSim 1.1 Running Windows Programs Using Mac Obtain free Microsoft Windows from: http://software.tamu.edu Set up a Windows partition on your Mac: https://support.apple.com/en-us/ht204009

More information

Lab 13 AC Circuit Measurements

Lab 13 AC Circuit Measurements Lab 13 AC Circuit Measurements Objectives concepts 1. what is impedance, really? 2. function generator and oscilloscope 3. RMS vs magnitude vs Peak-to-Peak voltage 4. phase between sinusoids skills 1.

More information

EXPERIMENT NUMBER 2 BASIC OSCILLOSCOPE OPERATIONS

EXPERIMENT NUMBER 2 BASIC OSCILLOSCOPE OPERATIONS 1 EXPERIMENT NUMBER 2 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides

More information

Introduction to the Analog Discovery

Introduction to the Analog Discovery Introduction to the Analog Discovery The Analog Discovery from Digilent (http://store.digilentinc.com/all-products/scopes-instruments) is a versatile and powerful USB-connected instrument that lets you

More information

Lab 2: Linear and Nonlinear Circuit Elements and Networks

Lab 2: Linear and Nonlinear Circuit Elements and Networks OPTI 380B Intermediate Optics Laboratory Lab 2: Linear and Nonlinear Circuit Elements and Networks Objectives: Lean how to use: Function of an oscilloscope probe. Characterization of capacitors and inductors

More information

Sonoma State University Department of Engineering Science Spring 2017

Sonoma State University Department of Engineering Science Spring 2017 EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 4 Introduction to AC Measurements (I) AC signals, Function Generators and Oscilloscopes Function Generator (AC) Battery

More information

Integrators, differentiators, and simple filters

Integrators, differentiators, and simple filters BEE 233 Laboratory-4 Integrators, differentiators, and simple filters 1. Objectives Analyze and measure characteristics of circuits built with opamps. Design and test circuits with opamps. Plot gain vs.

More information

Lab 3: AC Low pass filters (version 1.3)

Lab 3: AC Low pass filters (version 1.3) Lab 3: AC Low pass filters (version 1.3) WARNING: Use electrical test equipment with care! Always double-check connections before applying power. Look for short circuits, which can quickly destroy expensive

More information

Advanced Lab LAB 6: Signal Acquisition & Spectrum Analysis Using VirtualBench DSA Equipment: Objectives:

Advanced Lab LAB 6: Signal Acquisition & Spectrum Analysis Using VirtualBench DSA Equipment: Objectives: Advanced Lab LAB 6: Signal Acquisition & Spectrum Analysis Using VirtualBench DSA Equipment: Pentium PC with National Instruments PCI-MIO-16E-4 data-acquisition board (12-bit resolution; software-controlled

More information

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope EET 150 Introduction to EET Lab Activity 5 Oscilloscope Introduction Required Parts, Software and Equipment Parts Figure 1, Figure 2, Figure 3 Component /Value Quantity Resistor 10 kω, ¼ Watt, 5% Tolerance

More information

Tektronix digital oscilloscope, BK Precision Function Generator, coaxial cables, breadboard, the crystal earpiece from your AM radio kit.

Tektronix digital oscilloscope, BK Precision Function Generator, coaxial cables, breadboard, the crystal earpiece from your AM radio kit. Experiment 0: Review I. References The 174 and 275 Lab Manuals Any standard text on error analysis (for example, Introduction to Error Analysis, J. Taylor, University Science Books, 1997) The manual for

More information

Experiment 8: An AC Circuit

Experiment 8: An AC Circuit Experiment 8: An AC Circuit PART ONE: AC Voltages. Set up this circuit. Use R = 500 Ω, L = 5.0 mh and C =.01 μf. A signal generator built into the interface provides the emf to run the circuit from Output

More information

Lab 3: RC Circuits. Construct circuit 2 in EveryCircuit. Set values for the capacitor and resistor to match those in figure 2 and set the frequency to

Lab 3: RC Circuits. Construct circuit 2 in EveryCircuit. Set values for the capacitor and resistor to match those in figure 2 and set the frequency to Lab 3: RC Circuits Prelab Deriving equations for the output voltage of the voltage dividers you constructed in lab 2 was fairly simple. Now we want to derive an equation for the output voltage of a circuit

More information

Fig. 1. NI Elvis System

Fig. 1. NI Elvis System Lab 2: Introduction to I Elvis Environment. Objectives: The purpose of this laboratory is to provide an introduction to the NI Elvis design and prototyping environment. Basic operations provided by Elvis

More information

EE 201 Function / Arbitrary Waveform Generator and Oscilloscope Tutorial

EE 201 Function / Arbitrary Waveform Generator and Oscilloscope Tutorial EE 201 Function / Arbitrary Waveform Generator and Oscilloscope Tutorial 1 This is a programmed learning instruction manual. It is written for the Agilent DSO3202A Digital Storage Oscilloscope. The prerequisite

More information

Lab E5: Filters and Complex Impedance

Lab E5: Filters and Complex Impedance E5.1 Lab E5: Filters and Complex Impedance Note: It is strongly recommended that you complete lab E4: Capacitors and the RC Circuit before performing this experiment. Introduction Ohm s law, a well known

More information

Class #8: Experiment Diodes Part I

Class #8: Experiment Diodes Part I Class #8: Experiment Diodes Part I Purpose: The objective of this experiment is to become familiar with the properties and uses of diodes. We used a 1N914 diode in two previous experiments, but now we

More information

ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION

ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION Objectives: ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION The primary goal of this laboratory is to study the operation and limitations of several commonly used pieces of instrumentation:

More information

Since transmission lines can be modeled using PSpice, you can do your analysis by downloading the student version of this excellent program.

Since transmission lines can be modeled using PSpice, you can do your analysis by downloading the student version of this excellent program. PSpice Analysis Since transmission lines can be modeled using PSpice, you can do your analysis by downloading the student version of this excellent program. PSpice can be downloaded from the following

More information

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a digital oscilloscope.

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a digital oscilloscope. The Oscilloscope Vision is the art of seeing things invisible. J. Swift (1667-1745) OBJECTIVE To learn to operate a digital oscilloscope. THEORY The oscilloscope, or scope for short, is a device for drawing

More information

Laboratory 3 (drawn from lab text by Alciatore)

Laboratory 3 (drawn from lab text by Alciatore) Laboratory 3 (drawn from lab text by Alciatore) The Oscilloscope Required Components: 1 10 resistor 2 100 resistors 2 lk resistors 1 2k resistor 2 4.7M resistors 1 0.F capacitor 1 0.1 F capacitor 1 1.0uF

More information

ENG 100 Lab #2 Passive First-Order Filter Circuits

ENG 100 Lab #2 Passive First-Order Filter Circuits ENG 100 Lab #2 Passive First-Order Filter Circuits In Lab #2, you will construct simple 1 st -order RL and RC filter circuits and investigate their frequency responses (amplitude and phase responses).

More information

Uncovering a Hidden RCL Series Circuit

Uncovering a Hidden RCL Series Circuit Purpose Uncovering a Hidden RCL Series Circuit a. To use the equipment and techniques developed in the previous experiment to uncover a hidden series RCL circuit in a box and b. To measure the values of

More information

RC Filters and Basic Timer Functionality

RC Filters and Basic Timer Functionality RC-1 Learning Objectives: RC Filters and Basic Timer Functionality The student who successfully completes this lab will be able to: Build circuits using passive components (resistors and capacitors) from

More information

Page 1/10 Digilent Analog Discovery (DAD) Tutorial 6-Aug-15. Figure 2: DAD pin configuration

Page 1/10 Digilent Analog Discovery (DAD) Tutorial 6-Aug-15. Figure 2: DAD pin configuration Page 1/10 Digilent Analog Discovery (DAD) Tutorial 6-Aug-15 INTRODUCTION The Diligent Analog Discovery (DAD) allows you to design and test both analog and digital circuits. It can produce, measure and

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab University of Jordan School of Engineering Electrical Engineering Department EE 219 Electrical Circuits Lab EXPERIMENT 7 RESONANCE Prepared by: Dr. Mohammed Hawa EXPERIMENT 7 RESONANCE OBJECTIVE This experiment

More information

Test No. 1. Introduction to Scope Measurements. Report History. University of Applied Sciences Hamburg. Last chance!! EEL2 No 1

Test No. 1. Introduction to Scope Measurements. Report History. University of Applied Sciences Hamburg. Last chance!! EEL2 No 1 University of Applied Sciences Hamburg Group No : DEPARTMENT OF INFORMATION ENGINEERING Laboratory for Instrumentation and Measurement L: in charge of the report Test No. Date: Assistant A2: Professor:

More information

Voltage Current and Resistance II

Voltage Current and Resistance II Voltage Current and Resistance II Equipment: Capstone with 850 interface, analog DC voltmeter, analog DC ammeter, voltage sensor, RLC circuit board, 8 male to male banana leads 1 Purpose This is a continuation

More information

LAB II. INTRODUCTION TO LAB EQUIPMENT

LAB II. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE LAB II. INTRODUCTION TO LAB EQUIPMENT In this lab you will learn how to properly operate the oscilloscope Keysight DSOX1102A, the Keithley Source Measure Unit (SMU) 2430, the function generator

More information

Notes on Experiment #2

Notes on Experiment #2 Notes on Experiment #2 The purpose of this experiment is to get some practice measuring voltage using the oscilloscope. You will be practicing direct and differential measuring techniques. You will also

More information

DEPARTMENT OF INFORMATION ENGINEERING. Test No. 1. Introduction to Scope Measurements. 1. Correction. Term Correction. Term...

DEPARTMENT OF INFORMATION ENGINEERING. Test No. 1. Introduction to Scope Measurements. 1. Correction. Term Correction. Term... 2. Correction. Correction Report University of Applied Sciences Hamburg Group No : DEPARTMENT OF INFORMATION ENGINEERING Laboratory for Instrumentation and Measurement L: in charge of the report Test No.

More information

Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm

Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm EGR 220: Engineering Circuit Theory Lab 1: Introduction to Laboratory Equipment Pre-lab Read through the entire lab handout

More information

Build Your Own Bose WaveRadio Bass Preamp Active Filter Design

Build Your Own Bose WaveRadio Bass Preamp Active Filter Design EE230 Filter Laboratory Build Your Own Bose WaveRadio Bass Preamp Active Filter Design Objectives 1) Design an active filter on paper to meet a particular specification 2) Verify your design using Spice

More information

Combinational logic: Breadboard adders

Combinational logic: Breadboard adders ! ENEE 245: Digital Circuits & Systems Lab Lab 1 Combinational logic: Breadboard adders ENEE 245: Digital Circuits and Systems Laboratory Lab 1 Objectives The objectives of this laboratory are the following:

More information

LAB I. INTRODUCTION TO LAB EQUIPMENT

LAB I. INTRODUCTION TO LAB EQUIPMENT LAB I. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE In this lab you will learn how to properly operate the basic bench equipment used for characterizing active devices: 1. Oscilloscope (Keysight DSOX 1102A),

More information

Lab 1: Non-Ideal Operational Amplifier and Op-Amp Circuits

Lab 1: Non-Ideal Operational Amplifier and Op-Amp Circuits Lab 1: Non-Ideal Operational Amplifier and Op-Amp Circuits 1. Learning Outcomes In this lab, the students evaluate characteristics of the non-ideal operational amplifiers. Students use a simulation tool

More information

ENGR 210 Lab 6 Use of the Function Generator & Oscilloscope

ENGR 210 Lab 6 Use of the Function Generator & Oscilloscope ENGR 210 Lab 6 Use of the Function Generator & Oscilloscope In this laboratory you will learn to use two additional instruments in the laboratory, namely the function/arbitrary waveform generator, which

More information

PART III LABORATORY MANUAL. Electromagnetic Waves and Transmission Lines By Dr. Jayanti Venkataraman

PART III LABORATORY MANUAL. Electromagnetic Waves and Transmission Lines By Dr. Jayanti Venkataraman PART III LABORATORY MANUAL 202 Experiment I - Calibration of the Network Analyzer Objective: Calibrate the Network Analyzer for Transmission Procedure: (i) Turn the Power On (ii) Set the Frequency for

More information

EE EXPERIMENT 1 (2 DAYS) BASIC OSCILLOSCOPE OPERATIONS INTRODUCTION DAY 1

EE EXPERIMENT 1 (2 DAYS) BASIC OSCILLOSCOPE OPERATIONS INTRODUCTION DAY 1 EE 2101 - EXPERIMENT 1 (2 DAYS) BASIC OSCILLOSCOPE OPERATIONS INTRODUCTION The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer

More information

Electrical Engineering Laboratory Equipment Instructional Videos

Electrical Engineering Laboratory Equipment Instructional Videos Summary In this project, instructional videos demonstrating the use of common laboratory equipment were created. The videos include the safe and proper use of DC power supplies, function generators, and

More information

Laboratory Experiment #1 Introduction to Spectral Analysis

Laboratory Experiment #1 Introduction to Spectral Analysis J.B.Francis College of Engineering Mechanical Engineering Department 22-403 Laboratory Experiment #1 Introduction to Spectral Analysis Introduction The quantification of electrical energy can be accomplished

More information

Lab Reference Manual. ECEN 326 Electronic Circuits. Texas A&M University Department of Electrical and Computer Engineering

Lab Reference Manual. ECEN 326 Electronic Circuits. Texas A&M University Department of Electrical and Computer Engineering Lab Reference Manual ECEN 326 Electronic Circuits Texas A&M University Department of Electrical and Computer Engineering Contents 1. Circuit Analysis in PSpice 3 1.1 Transient and DC Analysis 3 1.2 Measuring

More information

ECE 231 Laboratory Exercise 6 Frequency / Time Response of RL and RC Circuits

ECE 231 Laboratory Exercise 6 Frequency / Time Response of RL and RC Circuits ECE 231 Laboratory Exercise 6 Frequency / Time Response of RL and RC Circuits Laboratory Group (Names) OBJECTIVES Observe and calculate the response of first-order low pass and high pass filters. Gain

More information

LAB I. INTRODUCTION TO LAB EQUIPMENT

LAB I. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE LAB I. INTRODUCTION TO LAB EQUIPMENT In this lab you will learn how to properly operate the oscilloscope Agilent MSO6032A, the Keithley Source Measure Unit (SMU) 2430, the function generator

More information

Figure E2-1 The complete circuit showing the oscilloscope and Bode plotter.

Figure E2-1 The complete circuit showing the oscilloscope and Bode plotter. Example 2 An RC network using the oscilloscope and Bode plotter In this example we use the oscilloscope and the Bode plotter in an RC circuit that has an AC source. The circuit which we will construct

More information

EE-4022 Experiment 2 Amplitude Modulation (AM)

EE-4022 Experiment 2 Amplitude Modulation (AM) EE-4022 MILWAUKEE SCHOOL OF ENGINEERING 2015 Page 2-1 Student objectives: EE-4022 Experiment 2 Amplitude Modulation (AM) In this experiment the student will use laboratory modules to implement operations

More information

Magnitude and Phase Measurements. Analog Discovery

Magnitude and Phase Measurements. Analog Discovery Magnitude and Phase Measurements Analog Discovery Set up the oscilloscope to measure the signal of the reference voltage (the input voltage from the arbitrary function generator, in this case) and the

More information

LAB 8: Activity P52: LRC Circuit

LAB 8: Activity P52: LRC Circuit LAB 8: Activity P52: LRC Circuit Equipment: Voltage Sensor 1 Multimeter 1 Patch Cords 2 AC/DC Electronics Lab (100 μf capacitor; 10 Ω resistor; Inductor Coil; Iron core; 5 inch wire lead) The purpose of

More information

EECS 318 Electronics Lab Laboratory #2 Electronic Test Equipment

EECS 318 Electronics Lab Laboratory #2 Electronic Test Equipment EECS 318 Electronics Lab Laboratory #2 Electronic Test Equipment Objectives: The purpose of this laboratory is to acquaint you with the electronic sources and measuring equipment you will be using throughout

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY /6.071 Introduction to Electronics, Signals and Measurement Spring 2006

MASSACHUSETTS INSTITUTE OF TECHNOLOGY /6.071 Introduction to Electronics, Signals and Measurement Spring 2006 MASSACHUSETTS INSTITUTE OF TECHNOLOGY.071/6.071 Introduction to Electronics, Signals and Measurement Spring 006 Lab. Introduction to signals. Goals for this Lab: Further explore the lab hardware. The oscilloscope

More information

Analog Discovery Arbitrary Function Generator for Windows 7 by Mr. David Fritz and Ms. Ellen Robertson

Analog Discovery Arbitrary Function Generator for Windows 7 by Mr. David Fritz and Ms. Ellen Robertson Analog Discovery Arbitrary Function Generator for Windows 7 by Mr. David Fritz and Ms. Ellen Robertson Financial support to develop this tutorial was provided by the Bradley Department of Electrical and

More information

Lab 1: Non-Ideal Operational Amplifier and Op-Amp Circuits

Lab 1: Non-Ideal Operational Amplifier and Op-Amp Circuits Lab 1: Non-Ideal Operational Amplifier and Op-Amp Circuits 1. Learning Outcomes In this lab, the students evaluate characteristics of the non-ideal operational amplifiers. Students use a simulation tool

More information

Notes on Experiment #12

Notes on Experiment #12 Notes on Experiment #12 83 P a g e Phasors and Sinusoidal Analysis We will do experiment #12 AS IS. Follow the instructions in the experiment as given. PREPARE FOR THIS EXPERIMENT! You will take 75 data

More information

Week 4: Experiment 24. Using Nodal or Mesh Analysis to Solve AC Circuits with an addition of Equivalent Impedance

Week 4: Experiment 24. Using Nodal or Mesh Analysis to Solve AC Circuits with an addition of Equivalent Impedance Week 4: Experiment 24 Using Nodal or Mesh Analysis to Solve AC Circuits with an addition of Equivalent Impedance Lab Lectures You have two weeks to complete Experiment 27: Complex Power 2/27/2012 (Pre-Lab

More information

Laboratory Exercise 6 THE OSCILLOSCOPE

Laboratory Exercise 6 THE OSCILLOSCOPE Introduction Laboratory Exercise 6 THE OSCILLOSCOPE The aim of this exercise is to introduce you to the oscilloscope (often just called a scope), the most versatile and ubiquitous laboratory measuring

More information

J. La Favre Fusion 360 Lesson 5 April 24, 2017

J. La Favre Fusion 360 Lesson 5 April 24, 2017 In this lesson, you will create a funnel like the one in the illustration to the left. The main purpose of this lesson is to introduce you to the use of the Revolve tool. The Revolve tool is similar to

More information

Experiment 9 The Oscilloscope and Function Generator

Experiment 9 The Oscilloscope and Function Generator Experiment 9 The Oscilloscope and Function Generator Introduction The oscilloscope is one of the most important electronic instruments available for making circuit measurements. It displays a curve plot

More information

Introduction to oscilloscope. and time dependent circuits

Introduction to oscilloscope. and time dependent circuits Physics 9 Intro to oscilloscope, v.1.0 p. 1 NAME: SECTION DAY/TIME: TA: LAB PARTNER: Introduction to oscilloscope and time dependent circuits Introduction In this lab, you ll learn the basics of how to

More information

Class #9: Experiment Diodes Part II: LEDs

Class #9: Experiment Diodes Part II: LEDs Class #9: Experiment Diodes Part II: LEDs Purpose: The objective of this experiment is to become familiar with the properties and uses of LEDs, particularly as a communication device. This is a continuation

More information

Introduction to Lab Instruments

Introduction to Lab Instruments ECE316, Experiment 00, 2017 Communications Lab, University of Toronto Introduction to Lab Instruments Bruno Korst - bkf@comm.utoronto.ca Abstract This experiment will review the use of three lab instruments

More information

EE 462G Laboratory #1 Measuring Capacitance

EE 462G Laboratory #1 Measuring Capacitance EE 462G Laboratory #1 Measuring Capacitance Drs. A.V. Radun and K.D. Donohue (1/24/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated 8/31/2007 by

More information

LAB #7: Digital Signal Processing

LAB #7: Digital Signal Processing LAB #7: Digital Signal Processing Equipment: Pentium PC with NI PCI-MIO-16E-4 data-acquisition board NI BNC 2120 Accessory Box VirtualBench Instrument Library version 2.6 Function Generator (Tektronix

More information

A semester of Experiments for ECE 225

A semester of Experiments for ECE 225 A semester of Experiments for ECE 225 Contents General Lab Instructions... 3 Notes on Experiment #1... 4 ECE 225 Experiment #1 Introduction to the function generator and the oscilloscope... 5 Notes on

More information

Getting Started with Qucs

Getting Started with Qucs Getting Started with Qucs Graham Edge University of Toronto After downloading Qucs, installing it, and running for the first time you should see a window that looks something like this: The large yellow

More information

BME 3512 Bioelectronics Laboratory Two - Passive Filters

BME 3512 Bioelectronics Laboratory Two - Passive Filters BME 35 Bioelectronics Laboratory Two - Passive Filters Learning Objectives: Understand the basic principles of passive filters. Laboratory Equipment: Agilent Oscilloscope Model 546A Agilent Function Generator

More information

The oscilloscope and RC filters

The oscilloscope and RC filters (ta initials) first name (print) last name (print) brock id (ab17cd) (lab date) Experiment 4 The oscilloscope and C filters The objective of this experiment is to familiarize the student with the workstation

More information

Lab E2: B-field of a Solenoid. In the case that the B-field is uniform and perpendicular to the area, (1) reduces to

Lab E2: B-field of a Solenoid. In the case that the B-field is uniform and perpendicular to the area, (1) reduces to E2.1 Lab E2: B-field of a Solenoid In this lab, we will explore the magnetic field created by a solenoid. First, we must review some basic electromagnetic theory. The magnetic flux over some area A is

More information

INC 253 Digital and electronics laboratory I

INC 253 Digital and electronics laboratory I INC 253 Digital and electronics laboratory I Laboratory 4 Wave Shaping Diode Circuits Author: ID CoAuthors: 1. ID 2. ID 3. ID Experiment Date: Report received Date: Comments For Instructor Full Marks Pre

More information

P a g e 1 ST985. TDR Cable Analyzer Instruction Manual. Analog Arts Inc.

P a g e 1 ST985. TDR Cable Analyzer Instruction Manual. Analog Arts Inc. P a g e 1 ST985 TDR Cable Analyzer Instruction Manual Analog Arts Inc. www.analogarts.com P a g e 2 Contents Software Installation... 4 Specifications... 4 Handling Precautions... 4 Operation Instruction...

More information

Lab 6 Instrument Familiarization

Lab 6 Instrument Familiarization Lab 6 Instrument Familiarization What You Need To Know: Voltages and currents in an electronic circuit as in a CD player, mobile phone or TV set vary in time. Throughout todays lab you will investigate

More information