Lab 1: Non-Ideal Operational Amplifier and Op-Amp Circuits

Size: px
Start display at page:

Download "Lab 1: Non-Ideal Operational Amplifier and Op-Amp Circuits"

Transcription

1 Lab 1: Non-Ideal Operational Amplifier and Op-Amp Circuits 1. Learning Outcomes In this lab, the students evaluate characteristics of the non-ideal operational amplifiers. Students use a simulation tool (LTspice) to simulate the two most popular configurations op-amp circuits: inverting and non-inverting amplifiers. Students also build, predict the results, and observe the gain and frequency response of the amplifiers. 2. Health and Safety Any laboratory environment may contain conditions that are potentially hazardous to a person s health if not handled appropriately. The Electrical Engineering laboratories obviously have electrical potentials that may be lethal and must be treated with respect. In addition, there are also mechanical hazards, particularly when dealing with rotating machines, and chemical hazards because of the materials used in various components. Our LEARNING OUTCOME is to educate all laboratory users to be able to handle laboratory materials and situations safely and thereby ensure a safe and healthy experience for all. Watch for posted information in and around the laboratories, and on the class web site. 3. Lab Report Students work in groups of 2 with laboratories being on alternative week (in 2C80/82). Each student must have a lab book for the labs. The lab book is used for lab preparation, notes, record, and lab reports. The lab books must be handed before 5:00 pm on the due date (same day of the following week) into the box labeled for your section across from 2C94. The lab books are marked and returned before the next lab. Marking Scheme All labs must be performed and a lab write-up submitted in order to pass the class. If one or more labs have not been performed, then a grade of INC (incomplete) will be submitted. You will be required to demonstrate correct operation of various parts of the lab to a lab instructor during your scheduled lab period (these parts are highlighted in the lab procedure section) to be considered as having "completed" the lab. A mark for each lab will be assigned based upon your submitted lab book. Lab books can be considered to be fulfilling the same functions as logbooks in industry. Logbooks are used to record the results of all tests performed on systems, subsystems and equipment during the various phases of a project including R&D, design, systems integration, etc. Logbooks are official, permanent documents, and can be used in court to prove ownership of a design! The following points must be followed when writing up lab reports: The first page must contain a table of contents. All pages in the lab book must be numbered. Formal structure is not critical; logical order is important. Rev A Copyright 2016 University of Saskatchewan Page 1 of 18

2 Try to use pen, avoid pencil. Legibility and neatness are important, as is orderly notes. The lab book is standalone. There should be no references to any outside documents. Remember that you may be allowed to bring in your lab books for the final exam. They are your cheat sheets make sure they re complete! Theory and background information must be completed prior to the lab. Cross out unwanted or erroneous material with a single large X. Do not remove any pages from your lab book. The left-hand page can be used for rough calculations, notes, measurements, etc. This page is not considered part of the official write-up, unless you ask that it be considered. Do not cut and paste any material from the lab manual into your lab book; only graphs, plots, experimental waveforms, and schematics can. Use glue wherever possible; tape is acceptable, but staples are not! One lab partner must have the original of any experimental waveform; his/her partner may have a photocopy of that waveform. Label all diagrams and schematics; include an equipment list. Schematic diagrams and waveforms without explanation are not acceptable. Discussion of results and/or conclusions resulting from each portion of the lab should be found with that portion. The end of the lab should have a short summary of all conclusions. The instructors may request you to hand-in your lab books at the end of the term for accreditation purposes. If in doubt about what to include (and how), remember that it should be clear, concise and complete. 4. Material and Equipment Material (supplied by department) TL082 op-amp Resistors: 2 x 1 kω, 1 x 10 kω Capacitors: 1 x 470 pf Equipment (supplied by student) Analog Discovery Waveforms 2015 software Breadboard and wiring kit Rev A Copyright 2016 University of Saskatchewan Page 2 of 18

3 5. Prelab Op Amp Specifications The TL082 Op-Amp is used for this lab. The pin-out diagram for the TL082 op-amp IC is shown in Figure dot 1 4 Figure 5-1: TL082 Op-Amp 1. Go to and search for TL082. Select the Linear Amplifiers category and apply the Mounting Type = Through Hole filter. Select the TL082IP. Fill in the following table: Price Break ,000 10,000 Unit Price 2. Using the datasheet link in step #1, make note of the following ratings/characteristics: Rating Maximum Positive Supply Voltage Maximum Negative Supply Voltage Input Voltage Range Typical Loop Signal Voltage Gain Input Resistance Slew Rate Gain Bandwidth Value Rev A Copyright 2016 University of Saskatchewan Page 3 of 18

4 Rev A Copyright 2016 University of Saskatchewan Page 4 of 18

5 Inverting Amplifier 1. Analytically determine the gain of the inverting amplifier shown in Figure 6-1 (ignore the Capacitor C1). 2. Simulate the inverting amplifier shown in Figure 6-1 using SPICE (see Appendix A on how to run LTSpice) and include a screen shot of the output plot. A SPICE circuit file for the inverting amplifier is shown in Figure 5-2. An on-line SPICE Reference Manual can be found at Inverting Amplifier ** Subcircuit: ideal_opamp ** Voltage controlled voltage source.subckt ideal_opamp Evcvs e6 ; V_1_0 = V_2_3 * 1e6.ends ideal_opamp ** Inverting Amplifier Circuit Vin Vin 0 DC 0 AC 100mV ; Input voltage 100 mv AC signal R1 Vin 2 1k ; 1 kohm input resistor R2 2 Vo 10k ; 10 kohm feedback resistor C1 2 Vo 470pF ; 470 pf feedback capacitor R3 Vo 0 1k ; 1 kohm load resistor on output XA1 Vo 0 2 ideal_opamp ; Op Amp subcircuit set up with negative feedback ** Analysis.AC LIN 100 1Hz 100kHz ; AC analysis from 1 Hz to 100 khz.end Non-Inverting Amplifier Figure 5-2: Inverting Amplifier SPICE Circuit File 1. Analytically determine the gain of the non-inverting amplifier shown in Figure 6-7 (ignore the Capacitor C1). 2. Simulate the non-inverting amplifier shown in Figure 6-7 (include the Capacitor C1) using SPICE and include a screen shot of the output plot. You will need to modify the SPICE circuit file from the inverting amplifier. Rev A Copyright 2016 University of Saskatchewan Page 5 of 18

6 Breadboards 1. Watch the video at " 2. Answer the following questions: 2.1. Why is it called a breadboard? 2.2. What feature makes it easy to connect to the power supply? Resistors 1. Watch the video at " 2. Answer the following questions (a Resistor Colour Code Chart can be found in Appendix B): 2.1. What would be the colour code of a 2.2 kω resistor with 5% tolerance? 2.2. A resistor has colour code Brown-Black-Orange-Gold. What is its resistance value? 2.3. A resistor has colour code Brown-Black-Black-Brown-Brown. What is its resistance value? 3. You can also download one of a number of apps to your smartphone for identifying resistors (e.g. Resistor Color Code for Android). Rev A Copyright 2016 University of Saskatchewan Page 6 of 18

7 6. Lab Procedures Debugging (or What To Try When Things Aren't Working) There are a number of things/procedures you should use to debugging circuits when things are not working correctly. These include (but are not limited to): Check that all component pins are correctly inserted in the breadboard (sometimes they get bent underneath a component). Make sure that components are not "misaligned" in the breadboard (e.g. off by one row). Double check component values (you can measure resistors, capacitors, and inductors). Try a different section in the breadboard (in case there is a bad internal connection). Measure the source voltages to verify power input. Measure key points in the circuit for proper voltage/waveform (i.e. divide-and-conquer). Inverting Amplifier One of the most common applications of the op-amp is the simple inverting amplifier. The output is inverted relative to the input and the amplification gain is determined by the ratio of the feedback resistor (R2) to the input resistor (R1). 1. Construct the circuit shown in Figure 6-1 on your breadboard. A Resistor Colour Chart can be found in Appendix B and an Analog Discovery Pin Out in Appendix C: 1.1. The +5 V supply is provide by V+ of the Analog Discovery (red wire) and the -5 V supply is provided by V- of the ADM (white wire) V in is supplied by the Arbitrary Waveform Generator W1 (yellow wire), make sure to include at least one ground (black wire) An example of a circuit layout with above connections is shown in Figure 6-2. C1 470 pf R2 R1 1 kω 10 kω +5 V _ TL082 + Vo Vin -5 V R3 1 kω Rev A Copyright 2016 University of Saskatchewan Page 7 of 18

8 Figure 6-1: Inverting Amplifier Circuit Schematic Figure 6-2: Inverting Amplifier Example Layout 2. Use "Supplies" on Waveforms 2015 to turn on the V+ and V- supplies. 3. Set "Vin" to be a 100 mv 1 khz sine wave using the "WaveGen" tool as shown in Figure 6-3 and turn on by pressing "Run". Figure 6-3: Arbitrary Waveform Generator 1 Setting 4. Connect "Channel 1" to measure the input voltage "Vin" (relative to ground). Channel 1 is the voltage difference between 1+ (orange wire, also called "Scope Channel 1 Positive") and 1- (orange/white wire, also called "Scope Channel 1 Negative"). Rev A Copyright 2016 University of Saskatchewan Page 8 of 18

9 5. Connect "Channel 2" to measure the output voltage "Vo" (relative to ground). Channel 2 is the voltage difference between 2+ (blue wire, also called "Scope Channel 2 Positive") and 2- (blue/white wire, also called "Scope Channel 2 Negative"). 6. Bring up the Scope window by selecting "Scope" from the WaveForms main screen. Press "Run" and the Scope window should look similar to Figure 6-4 if everything is working correctly. Figure 6-4: Initial Scope Window 7. To be able to better see and measure the waveforms: 7.1. Set "Time Base" = 200 us/div, set "C1 Range" = 50 mv/div and set "C2 Range" = 500 mv/div. Turn off Noise for both channels (refer to Lab 0 if you need instructions) Click on the "View Measure" option and "Add": "Channel 1 Horizontal Frequency" "Channel 1 Vertical Amplitude" "Channel 2 Vertical Amplitude" 7.3. Click on "Single" to freeze the capture and read off the Measurements The Scope window should look similar to Figure 6-5: Include a screen capture in your report Note that the output waveform should have an amplitude 10 times larger than the input waveform and that they are 180 o out of phase with each other (e.g. when the input reaches a peak, the output reaches a valley). The Gain is REQUIRED: Demonstrate to a lab instructor and make sure your demonstration is recorded by the lab instructor. Rev A Copyright 2016 University of Saskatchewan Page 9 of 18

10 Figure 6-5: Scope Window With Measurements 8. Measure and fill in the values for the table below (be sure to include units). You will need to adjust "Time Base" so that the sine waves are discernable as you change frequency. Frequency Vin Amplitude Vo Amplitude Gain = Vo/Vin Modeled Vo from Prelab 1 khz 5 khz 10 khz Every 10 khz until 100 khz 9. Comment on what happens to the relative "phase" (delay) between the input and output voltages when the frequency is changed from 1 khz to 100 khz. Get a screen capture of the Scope at 100 khz. 10. Determine the frequency at which the gain equals of the maximum gain: This is most easily accomplished by determining the target Vo, and using the slider on the Frequency parameter in Wavegen (change Simple to Basic, see Figure 6-6). Move the slider until the "C2 Amplitude" closely matches as possible to the target Vo. Note that setting appropriate "Max" and "Min" value for the slider makes it easier. You may need to adjust "Time Base" so that you only see a few cycles of the sine waves (to get reasonable measurements) as you change frequency Include a screen capture of the Oscilloscope window showing the found gain point Is there a specific name for this frequency? Rev A Copyright 2016 University of Saskatchewan Page 10 of 18

11 Figure 6-6: Basic Waveform Generator Mode 11. Remove Capacitor C1. Measure and fill in the values for the table below (be sure to include units): Frequency Vin Amplitude Vo Amplitude Gain = Vo/Vin 1 khz 5 khz 10 khz 20 khz 50 khz 100 khz 12. Plot the output voltage Vo versus Frequency for the measured Vo from step and step and the simulated Vo from Prelab 5.2. Rev A Copyright 2016 University of Saskatchewan Page 11 of 18

12 Non-Inverting Amplifier 1. Construct the circuit shown in Figure 6-7 on your breadboard. C1 470 pf R2 R1 1 kω 10 kω +5 V _ TL082 + Vo Vin -5 V R3 1 kω 2. Set "Vin" to be a 100 mv 1 khz sine wave. Figure 6-7: Non-Inverting Amplifier Circuit Schematic 3. Connect "Channel 1" to measure the input voltage "Vin" and connect "Channel 2" to measure the output voltage "Vo". 4. Similar to section 6.2, bring up the Scope window and adjust its parameters (including the Measurement functions) to provide a good picture of the input and output voltages. Include a screen capture in your report REQUIRED: Demonstrate to a lab instructor and make sure your demonstration is recorded by the lab instructor. 5. Measure and fill in the values for the table below (be sure to include units): Frequency Vin Amplitude Vo Amplitude Gain = Vo/Vin Modeled Vo from Prelab 1 khz 5 khz 10 khz Every 10 khz until 100 khz 6. Comment on what happens to the relative "phase" (delay) between the input and output voltages when the frequency is changed from 1 khz to 100 khz. 7. Determine the frequency at which the gain equals of the maximum gain. Include a screen capture of the Oscilloscope window showing the found gain point. Rev A Copyright 2016 University of Saskatchewan Page 12 of 18

13 8. Remove Capacitor C1. Measure and fill in the values for the table below (be sure to include units): Frequency Vin Amplitude Vo Amplitude Gain = Vo/Vin 1 khz 5 khz 10 khz 20 khz 50 khz 100 khz 9. Plot the output voltage Vo versus Frequency for the measured Vo from step and step and the simulated Vo from Prelab 5.3. Rev A Copyright 2016 University of Saskatchewan Page 13 of 18

14 Appendix A SPICE "SPICE (Simulation Program with Integrated Circuit Emphasis) is a general-purpose, open source analog electronic circuit simulator. It is a powerful program that is used in integrated circuit and board-level design to check the integrity of circuit designs and to predict circuit behavior" (from Wikipedia). There are a number of freeware SPICE simulation programs available. "LTspice IV" is available on the Engineering computers in the "Electrical Engineering" folder under the Start menu. It can also be downloaded to your home computer from To run a simulation: 1. Create a text file with the SPICE circuit description with a ".cir" extension (a good Windows text editor is Notepad++ can be found at 2. Run "LTspice IV" and "File Open" the file from step 1 (make sure you select "Files of type: Netlists (*.cir, *.net, *.sp)"). Your screen should look similar to Figure A-1. Figure A-1: LTspice IV Circuit Description 3. Select the "Simulate Run" menu item to run the simulation. A blank plot window should be opened as shown in Figure A Select the "Plot Settings Add trace" menu item. Select the "V(vin)" and "V(vo)" traces to plot as shown in Figure A Maximize the plot window. The screen should look similar to Figure A-4. Note that the vertical scale is in "db". Change the range using the "Plot Settings Manual Limits" menu item to match what is shown in Figure A-5. Also Plot Settings Grid. The final plot window should now look similar to Figure A-6. Rev A Copyright 2016 University of Saskatchewan Page 14 of 18

15 Figure A-2: Initial Plot Window Figure A-3: Add Traces Dialog Figure A-4: Maximized Plot Window Rev A Copyright 2016 University of Saskatchewan Page 15 of 18

16 Figure A-5: Plot Limits Dialog Figure A-6: Final Plot Rev A Copyright 2016 University of Saskatchewan Page 16 of 18

17 Appendix B - Resistor Colour Codes Rev A Copyright 2016 University of Saskatchewan Page 17 of 18

18 Appendix C - ADM Pin Out Rev A Copyright 2016 University of Saskatchewan Page 18 of 18

Lab 1: Non-Ideal Operational Amplifier and Op-Amp Circuits

Lab 1: Non-Ideal Operational Amplifier and Op-Amp Circuits Lab 1: Non-Ideal Operational Amplifier and Op-Amp Circuits 1. Learning Outcomes In this lab, the students evaluate characteristics of the non-ideal operational amplifiers. Students use a simulation tool

More information

Lab 2: Diode Characteristics and Diode Circuits

Lab 2: Diode Characteristics and Diode Circuits 1. Learning Outcomes Lab 2: Diode Characteristics and Diode Circuits At the end of this lab, the students should be able to compare the experimental data to the theoretical curve of the diodes. The students

More information

Lab 6: MOSFET AMPLIFIER

Lab 6: MOSFET AMPLIFIER Lab 6: MOSFET AMPLIFIER NOTE: This is a "take home" lab. You are expected to do the lab on your own time (still working with your lab partner) and then submit your lab reports. Lab instructors will be

More information

Lab 5: MOSFET I-V Characteristics

Lab 5: MOSFET I-V Characteristics 1. Learning Outcomes Lab 5: MOSFET I-V Characteristics In this lab, students will determine the MOSFET I-V characteristics of both a P-Channel MOSFET and an N- Channel MOSFET. Also examined is the effect

More information

Lab 5: MOSFET I-V Characteristics

Lab 5: MOSFET I-V Characteristics 1. Learning Outcomes Lab 5: MOSFET I-V Characteristics In this lab, students will determine the MOSFET I-V characteristics of both a P-Channel MOSFET and an N- Channel MOSFET. Also examined is the effect

More information

Lab 3: BJT I-V Characteristics

Lab 3: BJT I-V Characteristics 1. Learning Outcomes Lab 3: BJT I-V Characteristics At the end of this lab, students should know how to theoretically determine the I-V (Current-Voltage) characteristics of both NPN and PNP Bipolar Junction

More information

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering EE320L Electronics I Laboratory Laboratory Exercise #2 Basic Op-Amp Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective: The purpose of

More information

Integrators, differentiators, and simple filters

Integrators, differentiators, and simple filters BEE 233 Laboratory-4 Integrators, differentiators, and simple filters 1. Objectives Analyze and measure characteristics of circuits built with opamps. Design and test circuits with opamps. Plot gain vs.

More information

Lab 6: Instrumentation Amplifier

Lab 6: Instrumentation Amplifier Lab 6: Instrumentation Amplifier INTRODUCTION: A fundamental building block for electrical measurements of biological signals is an instrumentation amplifier. In this lab, you will explore the operation

More information

1. Hand Calculations (in a manner suitable for submission) For the circuit in Fig. 1 with f = 7.2 khz and a source vin () t 1.

1. Hand Calculations (in a manner suitable for submission) For the circuit in Fig. 1 with f = 7.2 khz and a source vin () t 1. Objectives The purpose of this laboratory project is to introduce to equipment, measurement techniques, and simulations commonly used in AC circuit analysis. In this laboratory session, each student will:

More information

Chapter 12: Electronic Circuit Simulation and Layout Software

Chapter 12: Electronic Circuit Simulation and Layout Software Chapter 12: Electronic Circuit Simulation and Layout Software In this chapter, we introduce the use of analog circuit simulation software and circuit layout software. I. Introduction So far we have designed

More information

EE 1210 Op Amps, Gain, and Signal Integrity Laboratory Project 6

EE 1210 Op Amps, Gain, and Signal Integrity Laboratory Project 6 Objective Information The purposes of this laboratory project are for the student to observe an inverting operational amplifier circuit, to demonstrate how the resistors in an operational amplifier circuit

More information

EK307 Active Filters and Steady State Frequency Response

EK307 Active Filters and Steady State Frequency Response EK307 Active Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of active signal-processing filters Learning Objectives: Active Filters, Op-Amp Filters, Bode plots Suggested

More information

Lab 6 Prelab Grading Sheet

Lab 6 Prelab Grading Sheet Lab 6 Prelab Grading Sheet NAME: Read through the Background section of this lab and print the prelab and in-lab grading sheets. Then complete the steps below and fill in the Prelab 6 Grading Sheet. You

More information

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I ECE285 Electric Circuit Analysis I Spring 2014 Nathalia Peixoto Rev.2.0: 140124. Rev 2.1. 140813 1 Lab reports Background: these 9 experiments are designed as simple building blocks (like Legos) and students

More information

EE 233 Circuit Theory Lab 3: First-Order Filters

EE 233 Circuit Theory Lab 3: First-Order Filters EE 233 Circuit Theory Lab 3: First-Order Filters Table of Contents 1 Introduction... 1 2 Precautions... 1 3 Prelab Exercises... 2 3.1 Inverting Amplifier... 3 3.2 Non-Inverting Amplifier... 4 3.3 Integrating

More information

Introduction to the Analog Discovery

Introduction to the Analog Discovery Introduction to the Analog Discovery The Analog Discovery from Digilent (http://store.digilentinc.com/all-products/scopes-instruments) is a versatile and powerful USB-connected instrument that lets you

More information

LABORATORY 5 v3 OPERATIONAL AMPLIFIER

LABORATORY 5 v3 OPERATIONAL AMPLIFIER University of California Berkeley Department of Electrical Engineering and Computer Sciences EECS 100, Professor Bernhard Boser LABORATORY 5 v3 OPERATIONAL AMPLIFIER Integrated operational amplifiers opamps

More information

OPERATIONAL AMPLIFIERS (OP-AMPS) II

OPERATIONAL AMPLIFIERS (OP-AMPS) II OPERATIONAL AMPLIFIERS (OP-AMPS) II LAB 5 INTRO: INTRODUCTION TO INVERTING AMPLIFIERS AND OTHER OP-AMP CIRCUITS GOALS In this lab, you will characterize the gain and frequency dependence of inverting op-amp

More information

Cir cuit s 212 Lab. Lab #7 Filter Design. Introductions:

Cir cuit s 212 Lab. Lab #7 Filter Design. Introductions: Cir cuit s 22 Lab Lab #7 Filter Design The purpose of this lab is multifold. This is a three-week experiment. You are required to design a High / Low Pass filter using the LM38 OP AMP. In this lab, you

More information

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page!

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page! ECE3204 D2015 Lab 1 The Operational Amplifier: Inverting and Non-inverting Gain Configurations Gain-Bandwidth Product Relationship Frequency Response Limitation Transfer Function Measurement DC Errors

More information

Operational Amplifiers 2 Active Filters ReadMeFirst

Operational Amplifiers 2 Active Filters ReadMeFirst Operational Amplifiers 2 Active Filters ReadMeFirst Lab Summary In this lab you will build two active filters on a breadboard, using an op-amp, resistors, and capacitors, and take data for the magnitude

More information

Intro To Engineering II for ECE: Lab 7 The Op Amp Erin Webster and Dr. Jay Weitzen, c 2014 All rights reserved.

Intro To Engineering II for ECE: Lab 7 The Op Amp Erin Webster and Dr. Jay Weitzen, c 2014 All rights reserved. Lab 7: The Op Amp Laboratory Objectives: 1) To introduce the operational amplifier or Op Amp 2) To learn the non-inverting mode 3) To learn the inverting mode 4) To learn the differential mode Before You

More information

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS EXPERIMENT : 3 TITLE : Operational Amplifier (Op-Amp) OUTCOME : Upon completion of this unit, the student should be able to: 1. Gain

More information

Digital Applications of the Operational Amplifier

Digital Applications of the Operational Amplifier Lab Procedure 1. Objective This project will show the versatile operation of an operational amplifier in a voltage comparator (Schmitt Trigger) circuit and a sample and hold circuit. 2. Components Qty

More information

Prelab 10: Differential Amplifiers

Prelab 10: Differential Amplifiers Name: Lab Section: Prelab 10: Differential Amplifiers For this lab, assume all NPN transistors are identical 2N3904 BJTs and all PNP transistors are identical 2N3906 BJTs. Component I S (A) V A (V) 2N3904

More information

EE320L Electronics I. Laboratory. Laboratory Exercise #3. Operational Amplifier Application Circuits. Angsuman Roy

EE320L Electronics I. Laboratory. Laboratory Exercise #3. Operational Amplifier Application Circuits. Angsuman Roy EE320L Electronics I Laboratory Laboratory Exercise #3 Operational Amplifier Application Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective:

More information

ELEG 205 Analog Circuits Laboratory Manual Fall 2016

ELEG 205 Analog Circuits Laboratory Manual Fall 2016 ELEG 205 Analog Circuits Laboratory Manual Fall 2016 University of Delaware Dr. Mark Mirotznik Kaleb Burd Patrick Nicholson Aric Lu Kaeini Ekong 1 Table of Contents Lab 1: Intro 3 Lab 2: Resistive Circuits

More information

CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - II

CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - II CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - II OBJECTIVE The purpose of the experiment is to examine non-ideal characteristics of an operational amplifier. The characteristics that are investigated include

More information

ECE Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback

ECE Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback ECE 214 Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback 20 February 2018 Introduction: The TL082 Operational Amplifier (OpAmp) and the Texas Instruments Analog System Lab Kit Pro evaluation

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 5 GAIN-BANDWIDTH PRODUCT AND SLEW RATE OBJECTIVES In this experiment the student will explore two

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #1 Lab Report Frequency Response of Operational Amplifiers Submission Date: 05/29/2018 Instructors: Dr. Ahmed Dallal Shangqian Gao Submitted By: Nick Haver & Alex Williams

More information

Each individual is to report on the design, simulations, construction, and testing according to the reporting guidelines attached.

Each individual is to report on the design, simulations, construction, and testing according to the reporting guidelines attached. EE 352 Design Project Spring 2015 FM Receiver Revision 0, 03-02-15 Interim report due: Friday April 3, 2015, 5:00PM Project Demonstrations: April 28, 29, 30 during normal lab section times Final report

More information

10: AMPLIFIERS. Circuit Connections in the Laboratory. Op-Amp. I. Introduction

10: AMPLIFIERS. Circuit Connections in the Laboratory. Op-Amp. I. Introduction 10: AMPLIFIERS Circuit Connections in the Laboratory From now on you will construct electrical circuits and test them. The usual way of constructing circuits would be to solder each electrical connection

More information

BME 3512 Bioelectronics Laboratory Five - Operational Amplifiers

BME 3512 Bioelectronics Laboratory Five - Operational Amplifiers BME 351 Bioelectronics Laboratory Five - Operational Amplifiers Learning Objectives: Be familiar with the operation of a basic op-amp circuit. Be familiar with the characteristics of both ideal and real

More information

Instructions for the final examination:

Instructions for the final examination: School of Information, Computer and Communication Technology Sirindhorn International Institute of Technology Thammasat University Practice Problems for the Final Examination COURSE : ECS304 Basic Electrical

More information

EE 3305 Lab I Revised July 18, 2003

EE 3305 Lab I Revised July 18, 2003 Operational Amplifiers Operational amplifiers are high-gain amplifiers with a similar general description typified by the most famous example, the LM741. The LM741 is used for many amplifier varieties

More information

Using LTSPICE to Analyze Circuits

Using LTSPICE to Analyze Circuits Using LTSPICE to Analyze Circuits Overview: LTSPICE is circuit simulation software that automatically constructs circuit equations using circuit element models (built in or downloadable). In its modern

More information

EK307 Passive Filters and Steady State Frequency Response

EK307 Passive Filters and Steady State Frequency Response EK307 Passive Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of passive signal-processing filters Learning Objectives: Passive filters, Frequency domain, Bode plots

More information

ECEN Network Analysis Section 3. Laboratory Manual

ECEN Network Analysis Section 3. Laboratory Manual ECEN 3714----Network Analysis Section 3 Laboratory Manual LAB 07: Active Low Pass Filter Oklahoma State University School of Electrical and Computer Engineering. Section 3 Laboratory manual - 1 - Spring

More information

Common-Source Amplifiers

Common-Source Amplifiers Lab 2: Common-Source Amplifiers Introduction The common-source stage is the most basic amplifier stage encountered in CMOS analog circuits. Because of its very high input impedance, moderate-to-high gain,

More information

EE 210 Lab Exercise #5: OP-AMPS I

EE 210 Lab Exercise #5: OP-AMPS I EE 210 Lab Exercise #5: OP-AMPS I ITEMS REQUIRED EE210 crate, DMM, EE210 parts kit, T-connector, 50Ω terminator, Breadboard Lab report due at the ASSIGNMENT beginning of the next lab period Data and results

More information

TTL LOGIC and RING OSCILLATOR TTL

TTL LOGIC and RING OSCILLATOR TTL ECE 2274 TTL LOGIC and RING OSCILLATOR TTL We will examine two digital logic inverters. The first will have a passive resistor pull-up output stage. The second will have an active transistor and current

More information

BME/ISE 3512 Bioelectronics. Laboratory Five - Operational Amplifiers

BME/ISE 3512 Bioelectronics. Laboratory Five - Operational Amplifiers BME/ISE 3512 Bioelectronics Laboratory Five - Operational Amplifiers Learning Objectives: Be familiar with the operation of a basic op-amp circuit. Be familiar with the characteristics of both ideal and

More information

LABORATORY 2: Bridge circuits, Superposition, Thevenin Circuits, and Amplifier Circuits

LABORATORY 2: Bridge circuits, Superposition, Thevenin Circuits, and Amplifier Circuits LABORATORY 2: Bridge circuits, Superposition, Thevenin Circuits, and Amplifier Circuits Note: If your partner is no longer in the class, please talk to the instructor. Material covered: Bridge circuits

More information

ELEG 205 Analog Circuits Laboratory Manual Fall 2017

ELEG 205 Analog Circuits Laboratory Manual Fall 2017 ELEG 205 Analog Circuits Laboratory Manual Fall 2017 University of Delaware Dr. Mark Mirotznik Kaleb Burd Aric Lu Patrick Nicholson Colby Banbury Table of Contents Policies Policy Page 3 Labs Lab 1: Intro

More information

DiMarzio Section Only: Prelab: 3 items in yellow. Reflection: Summary of what you learned, and answers to two questions in green.

DiMarzio Section Only: Prelab: 3 items in yellow. Reflection: Summary of what you learned, and answers to two questions in green. EECE 2150 - Circuits and Signals: Biomedical Applications Lab 6 Sec 2 Getting started with Operational Amplifier Circuits DiMarzio Section Only: Prelab: 3 items in yellow. Reflection: Summary of what you

More information

University of Michigan EECS 311: Electronic Circuits Fall 2009 LAB 2 NON IDEAL OPAMPS

University of Michigan EECS 311: Electronic Circuits Fall 2009 LAB 2 NON IDEAL OPAMPS University of Michigan EECS 311: Electronic Circuits Fall 2009 LAB 2 NON IDEAL OPAMPS Issued 10/5/2008 Pre Lab Completed 10/12/2008 Lab Due in Lecture 10/21/2008 Introduction In this lab you will characterize

More information

CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - I

CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - I CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - I OBJECTIVE The purpose of the experiment is to examine non-ideal characteristics of an operational amplifier. The characteristics that are investigated include

More information

Laboratory Project 1: AC Circuit Measurements and Simulation

Laboratory Project 1: AC Circuit Measurements and Simulation Objectives The purpose of this laboratory project is to introduce to equipment, measurement techniques, and simulations commonly used in C circuit analysis. In this laboratory session, each student will:

More information

Dept. of Electrical, Computer and Biomedical Engineering. Inverting and non inverting amplifier

Dept. of Electrical, Computer and Biomedical Engineering. Inverting and non inverting amplifier Dept. of Electrical, Computer and Biomedical Engineering Inverting and non inverting amplifier Purpose of this lab Build an inverting and a non inverting amplifier based on a TL081 op amp - use the NI

More information

EE 233 Circuit Theory Lab 4: Second-Order Filters

EE 233 Circuit Theory Lab 4: Second-Order Filters EE 233 Circuit Theory Lab 4: Second-Order Filters Table of Contents 1 Introduction... 1 2 Precautions... 1 3 Prelab Exercises... 2 3.1 Generic Equalizer Filter... 2 3.2 Equalizer Filter for Audio Mixer...

More information

PHYSICS 330 LAB Operational Amplifier Frequency Response

PHYSICS 330 LAB Operational Amplifier Frequency Response PHYSICS 330 LAB Operational Amplifier Frequency Response Objectives: To measure and plot the frequency response of an operational amplifier circuit. History: Operational amplifiers are among the most widely

More information

EE4902 C Lab 7

EE4902 C Lab 7 EE4902 C2007 - Lab 7 MOSFET Differential Amplifier Resistive Load Active Load PURPOSE: The primary purpose of this lab is to measure the performance of the differential amplifier. This is an important

More information

Electronics. RC Filter, DC Supply, and 555

Electronics. RC Filter, DC Supply, and 555 Electronics RC Filter, DC Supply, and 555 0.1 Lab Ticket Each individual will write up his or her own Lab Report for this two-week experiment. You must also submit Lab Tickets individually. You are expected

More information

Name: First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits

Name: First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits Table of Contents: Pre-Lab Assignment 2 Background 2 National Instruments MyDAQ 2 Resistors 3 Capacitors

More information

ECE4902 C Lab 7

ECE4902 C Lab 7 ECE902 C2012 - Lab MOSFET Differential Amplifier Resistive Load Active Load PURPOSE: The primary purpose of this lab is to measure the performance of the differential amplifier. This is an important topology

More information

EE2210 Laboratory Project 1 Fall 2013 Function Generator and Oscilloscope

EE2210 Laboratory Project 1 Fall 2013 Function Generator and Oscilloscope EE2210 Laboratory Project 1 Fall 2013 Function Generator and Oscilloscope For students to become more familiar with oscilloscopes and function generators. Pre laboratory Work Read the TDS 210 Oscilloscope

More information

Op-Amp Simulation Part II

Op-Amp Simulation Part II Op-Amp Simulation Part II EE/CS 5720/6720 This assignment continues the simulation and characterization of a simple operational amplifier. Turn in a copy of this assignment with answers in the appropriate

More information

Laboratory #4: Solid-State Switches, Operational Amplifiers Electrical and Computer Engineering EE University of Saskatchewan

Laboratory #4: Solid-State Switches, Operational Amplifiers Electrical and Computer Engineering EE University of Saskatchewan Authors: Denard Lynch Date: Oct 24, 2012 Revised: Oct 21, 2013, D. Lynch Description: This laboratory explores the characteristics of operational amplifiers in a simple voltage gain configuration as well

More information

Lab: Operational Amplifiers

Lab: Operational Amplifiers Page 1 of 6 Laboratory Goals Familiarize students with Integrated Circuit (IC) construction on a breadboard Introduce the LM 741 Op-amp and its applications Design and construct an inverting amplifier

More information

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 2 ACTIVE FILTERS

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 2 ACTIVE FILTERS University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 2 ACTIVE FILTERS Issued 9/22/2008 Pre Lab Completed 9/29/2008 Lab Due in Lecture 10/6/2008 Introduction In this lab you will design a

More information

When you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp

When you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp Op Amp Fundamentals When you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp In general, the parameters are interactive. However, in this unit, circuit input

More information

Fill in the following worksheet-style pages. A colored pen or pencil works best. The procedure is:

Fill in the following worksheet-style pages. A colored pen or pencil works best. The procedure is: 14: ALIASING I. PRELAB FOR ALIASING LAB You might expect that to record a frequency of 4000 Hz you would have to sample at a rate of at least 4000 Hz. It turns out, however, that you actually have to sample

More information

EE 210 Lab Exercise #3 Introduction to PSPICE

EE 210 Lab Exercise #3 Introduction to PSPICE EE 210 Lab Exercise #3 Introduction to PSPICE Appending 4 in your Textbook contains a short tutorial on PSPICE. Additional information, tutorials and a demo version of PSPICE can be found at the manufacturer

More information

EE 233 Circuit Theory Lab 2: Amplifiers

EE 233 Circuit Theory Lab 2: Amplifiers EE 233 Circuit Theory Lab 2: Amplifiers Table of Contents 1 Introduction... 1 2 Precautions... 1 3 Prelab Exercises... 2 3.1 LM348N Op-amp Parameters... 2 3.2 Voltage Follower Circuit Analysis... 2 3.2.1

More information

EECS 100/43 Lab 6 Frequency Response

EECS 100/43 Lab 6 Frequency Response Summer 7 Lab 6 EE/EE43. Objective EECS /43 Lab 6 Frequency Response In this lab, you will learn about the concept of gain-bandwidth product of an op-amp.. Equipment a. Breadboard b. Wire cutters c. Wires

More information

1.5k. (a) Resistive Circuit (b) Capacitive Circuit

1.5k. (a) Resistive Circuit (b) Capacitive Circuit Objective Information The purposes of this laboratory project are to become further acquainted with the use of an oscilloscope, and to observe the behavior of resistor and resistor capacitor circuits.

More information

ECE 310L : LAB 9. Fall 2012 (Hay)

ECE 310L : LAB 9. Fall 2012 (Hay) ECE 310L : LAB 9 PRELAB ASSIGNMENT: Read the lab assignment in its entirety. 1. For the circuit shown in Figure 3, compute a value for R1 that will result in a 1N5230B zener diode current of approximately

More information

Precalculations Individual Portion Introductory Lab: Basic Operation of Common Laboratory Instruments

Precalculations Individual Portion Introductory Lab: Basic Operation of Common Laboratory Instruments Name: Date of lab: Section number: M E 345. Lab 1 Precalculations Individual Portion Introductory Lab: Basic Operation of Common Laboratory Instruments Precalculations Score (for instructor or TA use only):

More information

EE 2274 RC and Op Amp Circuit Completed Prior to Coming to Lab. Prelab Part I: RC Circuit

EE 2274 RC and Op Amp Circuit Completed Prior to Coming to Lab. Prelab Part I: RC Circuit EE 2274 RC and Op Amp Circuit Completed Prior to Coming to Lab Prelab Part I: RC Circuit 1. Design a high pass filter (Fig. 1) which has a break point f b = 1 khz at 3dB below the midband level (the -3dB

More information

Lab Exercise # 9 Operational Amplifier Circuits

Lab Exercise # 9 Operational Amplifier Circuits Objectives: THEORY Lab Exercise # 9 Operational Amplifier Circuits 1. To understand how to use multiple power supplies in a circuit. 2. To understand the distinction between signals and power. 3. To understand

More information

Electronics I. laboratory measurement guide

Electronics I. laboratory measurement guide Electronics I. laboratory measurement guide Andras Meszaros, Mark Horvath 2015.02.01. 5. Measurement Basic circuits with operational amplifiers 2015.02.01. In this measurement you will need both controllable

More information

Physics 310 Lab 6 Op Amps

Physics 310 Lab 6 Op Amps Physics 310 Lab 6 Op Amps Equipment: Op-Amp, IC test clip, IC extractor, breadboard, silver mini-power supply, two function generators, oscilloscope, two 5.1 k s, 2.7 k, three 10 k s, 1 k, 100 k, LED,

More information

ENSC 220 Lab #2: Op Amps Vers 1.2 Oct. 20, 2005: Due Oct. 24, 2004

ENSC 220 Lab #2: Op Amps Vers 1.2 Oct. 20, 2005: Due Oct. 24, 2004 ENSC 220 Lab #2: Op Amps Vers 1.2 Oct. 20, 2005: Due Oct. 24, 2004 OBJECTIVE: Using the circuits below you can study op amps and characterize their behavior. Comparator Inverting Amplifier PREPARATION:

More information

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook.

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook. EE4902 Lab 9 CMOS OP-AMP PURPOSE: The purpose of this lab is to measure the closed-loop performance of an op-amp designed from individual MOSFETs. This op-amp, shown in Fig. 9-1, combines all of the major

More information

Mechatronics. Analog and Digital Electronics: Studio Exercises 1 & 2

Mechatronics. Analog and Digital Electronics: Studio Exercises 1 & 2 Mechatronics Analog and Digital Electronics: Studio Exercises 1 & 2 There is an electronics revolution taking place in the industrialized world. Electronics pervades all activities. Perhaps the most important

More information

California University of Pennsylvania. Department of Applied Engineering & Technology. Electrical / Computer Engineering Technology

California University of Pennsylvania. Department of Applied Engineering & Technology. Electrical / Computer Engineering Technology California University of Pennsylvania Department of Applied Engineering & Technology Electrical / Computer Engineering Technology EET 215: Introduction to Instrumentations Lab No.5b Operational Amplifier

More information

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope EET 150 Introduction to EET Lab Activity 5 Oscilloscope Introduction Required Parts, Software and Equipment Parts Figure 1, Figure 2, Figure 3 Component /Value Quantity Resistor 10 kω, ¼ Watt, 5% Tolerance

More information

ECE3042 Lab Report and Homework Guidelines. Homework. Lab Report

ECE3042 Lab Report and Homework Guidelines. Homework. Lab Report ECE3042 Lab Report and Homework Guidelines Homework The first page of the homework is a cover sheet in the specified format. Homework is due in lab at the beginning of the period. Label all figures/graphs

More information

Common-source Amplifiers

Common-source Amplifiers Lab 1: Common-source Amplifiers Introduction The common-source amplifier is one of the basic amplifiers in CMOS analog circuits. Because of its very high input impedance, relatively high gain, low noise,

More information

ECEN 325 Lab 5: Operational Amplifiers Part III

ECEN 325 Lab 5: Operational Amplifiers Part III ECEN Lab : Operational Amplifiers Part III Objectives The purpose of the lab is to study some of the opamp configurations commonly found in practical applications and also investigate the non-idealities

More information

Experiment 5.A. Basic Wireless Control. ECEN 2270 Electronics Design Laboratory 1

Experiment 5.A. Basic Wireless Control. ECEN 2270 Electronics Design Laboratory 1 .A Basic Wireless Control ECEN 2270 Electronics Design Laboratory 1 Procedures 5.A.0 5.A.1 5.A.2 5.A.3 5.A.4 5.A.5 5.A.6 Turn in your pre lab before doing anything else. Receiver design band pass filter

More information

EE 2274 DIODE OR GATE & CLIPPING CIRCUIT

EE 2274 DIODE OR GATE & CLIPPING CIRCUIT EE 2274 DIODE OR GATE & CLIPPING CIRCUIT Prelab Part I: Wired Diode OR Gate LTspice use 1N4002 1. Design a diode OR gate, Figure 1 in which the maximum current thru R1 I R1 = 9mA assume Vin = 5Vdc. Design

More information

BME/ISE 3511 Laboratory One - Laboratory Equipment for Measurement. Introduction to biomedical electronic laboratory instrumentation and measurements.

BME/ISE 3511 Laboratory One - Laboratory Equipment for Measurement. Introduction to biomedical electronic laboratory instrumentation and measurements. BME/ISE 3511 Laboratory One - Laboratory Equipment for Measurement Learning Objectives: Introduction to biomedical electronic laboratory instrumentation and measurements. Supplies and Components: Breadboard

More information

UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering. EEC 180A DIGITAL SYSTEMS I Winter 2015

UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering. EEC 180A DIGITAL SYSTEMS I Winter 2015 UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering EEC 180A DIGITAL SYSTEMS I Winter 2015 LAB 2: INTRODUCTION TO LAB INSTRUMENTS The purpose of this lab is to introduce the

More information

Data Conversion and Lab Lab 1 Fall Operational Amplifiers

Data Conversion and Lab Lab 1 Fall Operational Amplifiers Operational Amplifiers Lab Report Objectives Materials See separate report form located on the course webpage. This form should be completed during the performance of this lab. 1) To construct and operate

More information

Lab 4: Analysis of the Stereo Amplifier

Lab 4: Analysis of the Stereo Amplifier ECE 212 Spring 2010 Circuit Analysis II Names: Lab 4: Analysis of the Stereo Amplifier Objectives In this lab exercise you will use the power supply to power the stereo amplifier built in the previous

More information

Lab 13 AC Circuit Measurements

Lab 13 AC Circuit Measurements Lab 13 AC Circuit Measurements Objectives concepts 1. what is impedance, really? 2. function generator and oscilloscope 3. RMS vs magnitude vs Peak-to-Peak voltage 4. phase between sinusoids skills 1.

More information

Class #7: Experiment L & C Circuits: Filters and Energy Revisited

Class #7: Experiment L & C Circuits: Filters and Energy Revisited Class #7: Experiment L & C Circuits: Filters and Energy Revisited In this experiment you will revisit the voltage oscillations of a simple LC circuit. Then you will address circuits made by combining resistors

More information

Chapter 2 BASIC LINEAR AMPLIFIER CIRCUITS Name: Date

Chapter 2 BASIC LINEAR AMPLIFIER CIRCUITS Name: Date AN INTRODUCTION TO THE EXPERIMENTS The following experiments are designed to demonstrate the design and operation of the fundamental linear amplifier circuits whose out put signal is directly proportional

More information

Operational Amplifier Circuits

Operational Amplifier Circuits ECE VIII. Basic 5 Operational Amplifier Circuits Lab 8 In this lab we will verify the operation of inverting and noninverting amplifiers constructed using Operational Amplifiers. We will also observe the

More information

ITT Technical Institute. ET275 Electronic Communications Systems I Onsite Course SYLLABUS

ITT Technical Institute. ET275 Electronic Communications Systems I Onsite Course SYLLABUS ITT Technical Institute ET275 Electronic Communications Systems I Onsite Course SYLLABUS Credit hours: 4 Contact/Instructional hours: 50 (30 Theory Hours, 20 Lab Hours) Prerequisite(s) and/or Corequisite(s):

More information

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS

DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS DEPARTMENT OF ELECTRICAL ENGINEERING LAB WORK EE301 ELECTRONIC CIRCUITS EXPERIMENT : 5 TITLE : ACTIVE FILTERS OUTCOME : Upon completion of this unit, the student should be able to: 1. gain experience with

More information

Combinational logic: Breadboard adders

Combinational logic: Breadboard adders ! ENEE 245: Digital Circuits & Systems Lab Lab 1 Combinational logic: Breadboard adders ENEE 245: Digital Circuits and Systems Laboratory Lab 1 Objectives The objectives of this laboratory are the following:

More information

MultiSim and Analog Discovery 2 Manual

MultiSim and Analog Discovery 2 Manual MultiSim and Analog Discovery 2 Manual 1 MultiSim 1.1 Running Windows Programs Using Mac Obtain free Microsoft Windows from: http://software.tamu.edu Set up a Windows partition on your Mac: https://support.apple.com/en-us/ht204009

More information

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17 LABORATORY 4 ASSIGNED: 3/21/17 OBJECTIVE: The purpose of this lab is to evaluate the transient and steady-state circuit response of first order and second order circuits. MINIMUM EQUIPMENT LIST: You will

More information

ECE 220 Laboratory 3 Thevenin Equivalent Circuits, Constant Current Source, and Inverting Amplifier

ECE 220 Laboratory 3 Thevenin Equivalent Circuits, Constant Current Source, and Inverting Amplifier ECE 220 Laboratory 3 Thevenin Equivalent Circuits, Constant Current Source, and Inverting Amplifier Michael W. Marcellin The first portion of this document describes preparatory work to be completed in

More information

UC Berkeley, EECS Department EECS 40/42/100 Lab LAB3: Operational Amplifier UID:

UC Berkeley, EECS Department EECS 40/42/100 Lab LAB3: Operational Amplifier UID: UC Berkeley, EECS Department EECS 40/42/100 Lab LAB3: Operational Amplifier UID: B. E. Boser 1 Enter the names and SIDs for you and your lab partner into the boxes below. Name 1 SID 1 Name 2 SID 2 Sensor

More information

Lab 7: DELTA AND SIGMA-DELTA A/D CONVERTERS

Lab 7: DELTA AND SIGMA-DELTA A/D CONVERTERS ANALOG & TELECOMMUNICATION ELECTRONICS LABORATORY EXERCISE 6 Lab 7: DELTA AND SIGMA-DELTA A/D CONVERTERS Goal The goals of this experiment are: - Verify the operation of a differential ADC; - Find the

More information