EE 210 Lab Exercise #3 Introduction to PSPICE

Size: px
Start display at page:

Download "EE 210 Lab Exercise #3 Introduction to PSPICE"

Transcription

1 EE 210 Lab Exercise #3 Introduction to PSPICE Appending 4 in your Textbook contains a short tutorial on PSPICE. Additional information, tutorials and a demo version of PSPICE can be found at the manufacturer s website: Introduction This tutorial provides an overview of the Orcad software application. This software package uses an interactive schematics editor to draw circuits (Capture) that can be simulated and analyzed (PSPICE). This software has many useful functions for analyzing all types and aspects of electronic circuitry. It is very important to become familiar with the standard functions because the software be used in most of the subsequent labs as a supplement and circuit verification tool. Exercise 1. Using Orcad Capture Part 1. Calculations 1. For the circuit shown in Figure 1, analytically determine the voltages at each node, the voltage across R1, the current flowing through the resistors, and the power across each component including the source. Part 2. Getting into Capture 1. Log onto the Computer Network with your Penn State s username and password 2. From the start menu in Windows, select the Orcad 10.0 demo application. Consult with your instructor for directions for different software versions. Part 3. Creating a schematic for simulation 1. From the File menu at the top of the screen select New and then Project Note: Project must be selected in order to run simulations. EE 210 Laboratory Exercise #3 page 1

2 2. In the new project window, enter the name of your Project, select the Analog or Mixed A/D and specify the location of the files to be saved. 3. The Create Pspice project window should appear. Select Create a blank project and OK. 4. The schematic and project manager windows should now appear on the screen. The project manager window contains all of the resources for the current project. The schematic window is where the circuits are to be constructed. 5. To begin placing parts in the schematic window select the part button on the vertical toolbar at the right of the screen or by selecting Place then Part from the menu at the top of the screen. From the Place Part window, select R from the Analog library. Notice that the symbol for a resistor appears in the lower right hand corner. Select OK and place the resistor on the schematic window by left clicking once. Place another resistor by left clicking again. Right click and select End mode to finish placing resistors. Note: Libraries containing other parts may be added to the project in the place part window. 6. Using the same procedure, place a voltage source (VDC) from the Source library in the schematic window. Note: Current sources can also be found in the Source library. They are manipulated in a similar manner as the voltage sources. 7. Select 0/SOURCE from the ground button from the toolbar on the left or in the CAPSYM library. Important: This is the ground that must be selected and placed in every circuit to avoid errors! Select OK to place the ground in the schematic window. Note: all parts currently used in the schematic can be selected from the pull down menu at the top of the screen. 8. Arrange the parts to roughly match Figure 1 by left clicking on the part to select it (turns pink) and holding the button down to drag it into the desired position. Once the part is in desired position, it can be rotated or mirrored horizontally or vertically by right clicking on the part and selecting the desired orientation. Note: Groups of parts may be selected and moved together by drawing a box around the desired parts with the cursor and clicking on the group to drag. 9. To connect the parts wires to form the circuit in Figure 1, select the place wire icon from the vertical toolbar to the right of the screen or by selecting Place then Wire from the menu. 10. Position the pointer at the top end of the source and click to drag a wire from the source. A solid line should connect the pointer with the source, right angles can be made in the wire by clicking and changing direction during this step. When the pointer is over the connection terminals of one of the other devices on the screen (i.e. resistor or earth ground), a red dot should appear indicating a terminal connection. Click, then right click and select end wire. Follow this pattern until the source-resistor-resistor loop similar to Figure 1 is complete. EE 210 Laboratory Exercise #3 page 2

3 Note: Placing parts end to end without using a wire is a common source of error because the parts may not properly connect. Note: Holding shift while dragging parts retains connections. Figure 1: Circuit with independent voltage sources and resistors. 11. The value of each component must be defined. The same procedure is used for each component. Double click on the resistor value. A dialogue box should appear. Enter the desired value in the dialog box labeled Value:. Click on the OK button. Repeat the above procedure for the other resistor. Note: The scale factor abbreviations in PSPICE are standard except that milli is represented by m and mega is represented by meg. 12. The voltage source may be corrected in a similar manner. Double click on the voltage source to bring up the dialogue box. Select the DC= line. Move the cursor to the Value input box and type in 10, since it is a 10V source. Click on the OK button. Part 4. DC Analysis 1. Place the voltage and voltage differential markers on the circuit as shown in Figure 2. This is done by selecting the respective icons (left) from the upper tool bar and placing them in contact with the point on the circuit to be analyzed and displayed in PSPICE. The voltage markers display the voltage at the node and the voltage differential markers compute the difference in voltage between two points with the positive and negative markers. Note: The voltage markers must be connected to a wire or node. The current makers must be placed to the pin of a specific device. The polarity of the resulting current determines if it is flowing into (+) or out of (-) the device at that pin. The power markers must be connected directly to a part. (see Figure 3) EE 210 Laboratory Exercise #3 page 3

4 Figure 2: Circuit with voltage markers. Figure 3: Example of current and power marker placement. 2. From the upper toolbar select the new simulation profile icon or by selecting PSPICE from the main menu and then new simulation profile. The new simulation window should open. 3. The simulation settings window should now appear. Check the Analysis tab to make sure that the Time Domain (Transient) analysis type is selected. 4. To simulate the circuit, select the run button from the upper toolbar, or by selecting PSPICE from the main menu then Run. 5. The PSPICE window should open, with the simulation progress reading at the lower part of the window. The simulation profile left hand side of the window will read simulation complete when it is finished simulating. 6. A plot should appear in the upper portion of the PSPICE window with all of the measurements color-coded corresponding to the markers from step 1. This plot is with respect to time (hence Time analysis) and the plots should not vary with time since the simulation is a simple DC circuit. Note: The simulations can be edited and executed from the PSPICE window by selecting the Edit simulation settings button and the Run button. 7. Add two additional plots by selecting the Plot menu at the top of the screen and selecting Add plot to window (window must be maximized!). Select the first new plot and used the add trace button. Add the currents I(R1) and I(R2). This displays the current through R1 and R2 on the new plot. Select the second new plot and ad the power values W(R1), W(R2), and W(V1). This displays the power dissipation of R1, R2, and the source. Doing this makes it easier to view voltages, currents, and powers separately with common units. For the remainder of the semester, traces of voltage, current, and power must be contained on separate plots unless directed otherwise! Note: Diferent functions can be performed on the traces by selecting the desired function from the list on the right of the add trace window. EE 210 Laboratory Exercise #3 page 4

5 Note: These currents and powers can also be displayed on a plot by repeating step 1 with the current and power markers. The simulations must be completed separately in order for the traces to appear on different plots as desired. 7. Place markers on each trace to display the exact value on the plot at any point in time by enabling the cursor display icon on the menu and positioning the cursor on the desired point on the plot. Select the mark icon to display the value on the screen. Select another trace by highlighting its name at the bottom of the screen. Always use marks when plotting DC values so that the exact value is always visible! Note: Other cursor functions such as finding the peak and slope can be performed using the buttons on the cursor menu. 8. Add your name and a title to the plots by selecting the text icon and placing the text on the desired plot. Always make sure the plots are clearly labeled with text! 9. (2) Print the plots by selecting File Print and specifying the desired printer. 10. Return the Capture window and the voltages, currents, and powers should be labeled on the schematic. Note : The simulation results can be viewed at any time by pressing the view simulation results button. 11. All of the circuits voltages, currents, and power measurements may be enabled or disabled for display by selecting the respective buttons from the menu at the top of the screen (left). Note : these values displayed on the schematic are the value of the node at the last simulation point. This is consistent for simple DC circuits but can be misleading for AC circuits. 11. Enable all of the measurements and verify that the match the calculations from Part 1. Also, and your name and a title to the schematic by selecting the place text icon from the menu to the right of the screen. 12. Print the schematic by selecting File Print. EE 210 Laboratory Exercise #3 page 5

6 Part 5: AC Time Domain Analysis 1. Replace the source from Figure 2 with the part VSIN from the Source library. This produces a sinusoid of variable frequency, amplitude, and dc offset just as the waveform generator does. 2. Set the frequency to 100Hz, the dc offset to 2V, and the amplitude to 6V, similar to adjusting the function generator. Remember that the amplitude is the peak value of the waveform no the peak-to-peak value. 3. Choose the edit simulation profile buttonfrom the upper toolbar, or by selecting PSPICE from the main menu then Edit simulation profile. 4. Setup the transient simulation as before except, set Run to time under the Analysis tab such that 2 cycles of the waveform are simulated and displayed. This is similar to the adjusting the oscilloscope display in Lab 1. Adjust the Maximum step size when necessary to provide an adequate number of data points from the simulation. When considering the step size, remember that the smaller the step size, the longer the simulation run time. 4. Following the same procedure described previously, simulate the circuit. 5. Remember that the values displayed on the schematic represent the values at the last simulation point. Since they do not provide much insight to the AC analysis, turn the display off. However, when printing a sinusoidal waveform, always mark the positive and negative peaks on the plots with a label. Label and print schematic and the plots, EE 210 Laboratory Exercise #3 page 6

7 Exercise 2. Circuit with Dependent Voltage Sources and Resistors Dependent source symbols used in PSPICE are shown in Figure 4. The source enclosed in the circle produces the current or voltage. The symbols in the source (not inside the circle) provide the reference. For the current dependencies, the reference is connected in series with the device used as the reference, as would done with the DMM. For the voltage dependencies, the reference wires are connected in parallel with the device used as the reference, also as would be done with the DMM. Figure 4: Dependent source icons. The top row indicates the PSPICE part corresponding to the circuit symbol below. 1. Begin a new schematic for the circuit in Figure 5. The dependent sources are found in the ANALOG library. 2. Look at the dependent sources. The small independent source acts as the dependent source (the diamond shape in Figure 4). The second port is used to indicate the reference voltage or current. Place the sources in the schematic window, noting the polarity of the ports. Double clicking on the dependent source will bring up a dialogue box as with all of the other components. The gain of the dependent source is the only parameter that is needed to describe the part, adjust the gain accordingly. 3. Once all of the components are in place and connected, follow the same procedure for the analysis as specified in Exercise Print out the schematic of the circuit and the probe plots for the current through the 1: resistor and the voltage across the 3Ω resistor. Be sure to label the requested traces in the probe. Also, make sure that only the requested voltages and currents are displayed on the schematic. 5. Replace the 12A dc current source with a 10kHz, 6A peak AC sinusoidal current source with a DC offset of 6A. Repeat the simulation (remember to adjust for the proper end time). Print out the schematic of the circuit and the probe plots for the current through the 1: resistor and the voltage across the 3Ω resistor. Be sure to label the requested traces in the probe. EE 210 Laboratory Exercise #3 page 7

8 Figure 5: Circuit with independent and dependent sources and resistors. EE 210 Laboratory Exercise #3 page 8

EXPERIMENT NUMBER 10 TRANSIENT ANALYSIS USING PSPICE

EXPERIMENT NUMBER 10 TRANSIENT ANALYSIS USING PSPICE EXPERIMENT NUMBER 10 TRANSIENT ANALYSIS USING PSPICE Objective: To learn to use a circuit simulator package for plotting the response of a circuit in the time domain. Preliminary: Revise laboratory 8 to

More information

ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis

ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis All circuit simulation packages that use the Pspice engine allow users to do complex analysis that were once impossible to

More information

Engineering 3821 Fall Pspice TUTORIAL 1. Prepared by: J. Tobin (Class of 2005) B. Jeyasurya E. Gill

Engineering 3821 Fall Pspice TUTORIAL 1. Prepared by: J. Tobin (Class of 2005) B. Jeyasurya E. Gill Engineering 3821 Fall 2003 Pspice TUTORIAL 1 Prepared by: J. Tobin (Class of 2005) B. Jeyasurya E. Gill 2 INTRODUCTION The PSpice program is a member of the SPICE (Simulation Program with Integrated Circuit

More information

ECE 201 LAB 6 INTRODUCTION TO SPICE/PSPICE

ECE 201 LAB 6 INTRODUCTION TO SPICE/PSPICE Version 1.1 1 of 33 BEFORE YOU BEGIN PREREQUISITE LABS Resistive Circuits EXPECTED KNOWLEDGE ECE 201 LAB 6 INTRODUCTION TO SPICE/PSPICE Ohm's Law: v = ir Node Voltage and Mesh Current Methods of Circuit

More information

Introduction to PSpice

Introduction to PSpice Electric Circuit I Lab Manual 4 Session # 5 Introduction to PSpice 1 PART A INTRODUCTION TO PSPICE Objective: The objective of this experiment is to be familiar with Pspice (learn how to connect circuits,

More information

Since transmission lines can be modeled using PSpice, you can do your analysis by downloading the student version of this excellent program.

Since transmission lines can be modeled using PSpice, you can do your analysis by downloading the student version of this excellent program. PSpice Analysis Since transmission lines can be modeled using PSpice, you can do your analysis by downloading the student version of this excellent program. PSpice can be downloaded from the following

More information

Background Theory and Simulation Practice

Background Theory and Simulation Practice CAD and Simulation Objectives Experiment Topic: CAD and Simulation PSpice 9.1 Student Version To obtain your free copy of the software and user s guide, go to Electronics Lab website ( http://www.electronics-lab.com/downloads/schematic/013/

More information

14:332:223 Principles of Electrical Engineering I Instructions for using PSPICE Tools Sharanya Chandrasekar February 1, 2006

14:332:223 Principles of Electrical Engineering I Instructions for using PSPICE Tools Sharanya Chandrasekar February 1, 2006 14:332:223 Principles of Electrical Engineering I Instructions for using PSPICE Tools Sharanya Chandrasekar February 1, 2006 1. Getting Started PSPICE is available on the ECE Computer labs in EE 103, DSV

More information

Electric Circuit Fall 2015 Pingqiang Zhou. ShanghaiTech University. School of Information Science and Technology. Professor Pingqiang Zhou

Electric Circuit Fall 2015 Pingqiang Zhou. ShanghaiTech University. School of Information Science and Technology. Professor Pingqiang Zhou ShanghaiTech University School of Information Science and Technology Professor Pingqiang Zhou LABORATORY 2 CAD Tools Guide Practical circuit design occurs in three stages: 1. Design of an appropriate circuit

More information

OrCAD PSpice - Tutorial. TA: 黃玉龍

OrCAD PSpice - Tutorial. TA: 黃玉龍 OrCAD PSpice - Tutorial TA: 黃玉龍 r9994320@ntu.edu.tw Outline 2 Introduction Preparation Schematic Simulation Conclusion Introduction 3 OrCAD PSpice is developed by Cadence Analog circuit simulation tool

More information

Lab Reference Manual. ECEN 326 Electronic Circuits. Texas A&M University Department of Electrical and Computer Engineering

Lab Reference Manual. ECEN 326 Electronic Circuits. Texas A&M University Department of Electrical and Computer Engineering Lab Reference Manual ECEN 326 Electronic Circuits Texas A&M University Department of Electrical and Computer Engineering Contents 1. Circuit Analysis in PSpice 3 1.1 Transient and DC Analysis 3 1.2 Measuring

More information

Introduction to SPICE. Simulator of Electronic devices

Introduction to SPICE. Simulator of Electronic devices Introduction to SPICE Simulator of Electronic devices Main steps: Download Instalation Open OrCAD capture CIS Lite Create a circuit. Place parts. Design a Simulation Profile Run PSpice F11 View simulation

More information

1. Hand Calculations (in a manner suitable for submission) For the circuit in Fig. 1 with f = 7.2 khz and a source vin () t 1.

1. Hand Calculations (in a manner suitable for submission) For the circuit in Fig. 1 with f = 7.2 khz and a source vin () t 1. Objectives The purpose of this laboratory project is to introduce to equipment, measurement techniques, and simulations commonly used in AC circuit analysis. In this laboratory session, each student will:

More information

PSPICE T UTORIAL P ART I: INTRODUCTION AND DC ANALYSIS. for the Orcad PSpice Release 9.2 Lite Edition

PSPICE T UTORIAL P ART I: INTRODUCTION AND DC ANALYSIS. for the Orcad PSpice Release 9.2 Lite Edition PSPICE T UTORIAL P ART I: INTRODUCTION AND DC ANALYSIS for the Orcad PSpice Release 9.2 Lite Edition INTRODUCTION The Simulation Program with Integrated Circuit Emphasis (SPICE) circuit simulation tool

More information

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17 LABORATORY 4 ASSIGNED: 3/21/17 OBJECTIVE: The purpose of this lab is to evaluate the transient and steady-state circuit response of first order and second order circuits. MINIMUM EQUIPMENT LIST: You will

More information

EE-3010 Lab # 5 Simulation of Operational Amplifier Circuits

EE-3010 Lab # 5 Simulation of Operational Amplifier Circuits EE-3010 Lab # 5 Simulation of Operational Amplifier Circuits Objectives Investigation of amplifier circuits containing operational amplifiers. (Note: This is a two-part lab and may be done in two consecutive

More information

Time-Varying Signals

Time-Varying Signals Time-Varying Signals Objective This lab gives a practical introduction to signals that varies with time using the components such as: 1. Arbitrary Function Generator 2. Oscilloscopes The grounding issues

More information

Introduction to LT Spice IV with Examples

Introduction to LT Spice IV with Examples Introduction to LT Spice IV with Examples 400D - Fall 2015 Purpose Part of Electronics & Control Division Technical Training Series by Nicholas Lombardo The purpose of this document is to give a basic

More information

EECE Circuits and Signals: Biomedical Applications. Lab 3. Basic Instruments, Components and Circuits. Introduction to Spice and AC circuits

EECE Circuits and Signals: Biomedical Applications. Lab 3. Basic Instruments, Components and Circuits. Introduction to Spice and AC circuits EECE 2150 - Circuits and Signals: Biomedical Applications Lab 3 Basic Instruments, Components and Circuits. Introduction to Spice and AC circuits Introduction and Preamble: In this lab you will experiment

More information

A Brief Handout for Introduction to

A Brief Handout for Introduction to A Brief Handout for Introduction to Electric cal Engineering Course This handout is a compilation of PSPICE, A Brief Primer, Department of Electrical and Systems Engineering, University of Pennsylvania

More information

EE 210: CIRCUITS AND DEVICES

EE 210: CIRCUITS AND DEVICES EE 210: CIRCUITS AND DEVICES LAB #3: VOLTAGE AND CURRENT MEASUREMENTS This lab features a tutorial on the instrumentation that you will be using throughout the semester. More specifically, you will see

More information

Fig. 1. NI Elvis System

Fig. 1. NI Elvis System Lab 2: Introduction to I Elvis Environment. Objectives: The purpose of this laboratory is to provide an introduction to the NI Elvis design and prototyping environment. Basic operations provided by Elvis

More information

Excel Lab 2: Plots of Data Sets

Excel Lab 2: Plots of Data Sets Excel Lab 2: Plots of Data Sets Excel makes it very easy for the scientist to visualize a data set. In this assignment, we learn how to produce various plots of data sets. Open a new Excel workbook, and

More information

Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm

Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm EGR 220: Engineering Circuit Theory Lab 1: Introduction to Laboratory Equipment Pre-lab Read through the entire lab handout

More information

Lab 13 AC Circuit Measurements

Lab 13 AC Circuit Measurements Lab 13 AC Circuit Measurements Objectives concepts 1. what is impedance, really? 2. function generator and oscilloscope 3. RMS vs magnitude vs Peak-to-Peak voltage 4. phase between sinusoids skills 1.

More information

LT Spice Getting Started Very Quickly. First Get the Latest Software!

LT Spice Getting Started Very Quickly. First Get the Latest Software! LT Spice Getting Started Very Quickly First Get the Latest Software! 1. After installing LT Spice, run it and check to make sure you have the latest version with respect to the latest version available

More information

Figure AC circuit to be analyzed.

Figure AC circuit to be analyzed. 7.2(1) MULTISIM DEMO 7.2: INTRODUCTION TO AC ANALYSIS In this section, we ll introduce AC Analysis in Multisim. This is perhaps one of the most useful Analyses that Multisim offers, and we ll use it in

More information

Introduction to Pspice

Introduction to Pspice 1. Objectives Introduction to Pspice The learning objectives for this laboratory are to give the students a brief introduction to using Pspice as a tool to analyze circuits and also to demonstrate the

More information

LAB II. INTRODUCTION TO LAB EQUIPMENT

LAB II. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE LAB II. INTRODUCTION TO LAB EQUIPMENT In this lab you will learn how to properly operate the oscilloscope Keysight DSOX1102A, the Keithley Source Measure Unit (SMU) 2430, the function generator

More information

Using LTSPICE to Analyze Circuits

Using LTSPICE to Analyze Circuits Using LTSPICE to Analyze Circuits Overview: LTSPICE is circuit simulation software that automatically constructs circuit equations using circuit element models (built in or downloadable). In its modern

More information

An Introductory Guide to Circuit Simulation using NI Multisim 12

An Introductory Guide to Circuit Simulation using NI Multisim 12 School of Engineering and Technology An Introductory Guide to Circuit Simulation using NI Multisim 12 This booklet belongs to: This document provides a brief overview and introductory tutorial for circuit

More information

Ansoft Designer Tutorial ECE 584 October, 2004

Ansoft Designer Tutorial ECE 584 October, 2004 Ansoft Designer Tutorial ECE 584 October, 2004 This tutorial will serve as an introduction to the Ansoft Designer Microwave CAD package by stepping through a simple design problem. Please note that there

More information

Laboratory Project 1: AC Circuit Measurements and Simulation

Laboratory Project 1: AC Circuit Measurements and Simulation Objectives The purpose of this laboratory project is to introduce to equipment, measurement techniques, and simulations commonly used in C circuit analysis. In this laboratory session, each student will:

More information

EE 2274 RC and Op Amp Circuit Completed Prior to Coming to Lab. Prelab Part I: RC Circuit

EE 2274 RC and Op Amp Circuit Completed Prior to Coming to Lab. Prelab Part I: RC Circuit EE 2274 RC and Op Amp Circuit Completed Prior to Coming to Lab Prelab Part I: RC Circuit 1. Design a high pass filter (Fig. 1) which has a break point f b = 1 khz at 3dB below the midband level (the -3dB

More information

Lab 12 Laboratory 12 Data Acquisition Required Special Equipment: 12.1 Objectives 12.2 Introduction 12.3 A/D basics

Lab 12 Laboratory 12 Data Acquisition Required Special Equipment: 12.1 Objectives 12.2 Introduction 12.3 A/D basics Laboratory 12 Data Acquisition Required Special Equipment: Computer with LabView Software National Instruments USB 6009 Data Acquisition Card 12.1 Objectives This lab demonstrates the basic principals

More information

Lab #2 First Order RC Circuits Week of 27 January 2015

Lab #2 First Order RC Circuits Week of 27 January 2015 ECE214: Electrical Circuits Laboratory Lab #2 First Order RC Circuits Week of 27 January 2015 1 Introduction In this lab you will investigate the magnitude and phase shift that occurs in an RC circuit

More information

Real Analog - Circuits 1 Chapter 1: Lab Projects

Real Analog - Circuits 1 Chapter 1: Lab Projects Real Analog - Circuits 1 Chapter 1: Lab Projects 1.2.2: Dependent Sources and MOSFETs Overview: In this lab assignment, a qualitative discussion of dependent sources is presented in the context of MOSFETs

More information

LAB I. INTRODUCTION TO LAB EQUIPMENT

LAB I. INTRODUCTION TO LAB EQUIPMENT LAB I. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE In this lab you will learn how to properly operate the basic bench equipment used for characterizing active devices: 1. Oscilloscope (Keysight DSOX 1102A),

More information

ENEE207 Electric Circuits Lab Manual

ENEE207 Electric Circuits Lab Manual ENEE207 Electric Circuits Lab Manual Department of Engineering, Physical & Computer Sciences Montgomery College Version 3 Copyright Lan Xiang (Do not distribute without permission) 1 TABLE OF CONTENTS

More information

FACULTY OF ENGINEERING LAB SHEET

FACULTY OF ENGINEERING LAB SHEET FACULTY OF ENGINEERING LAB SHEET CIRCUITS AND SIGNALS EEL 2186 TRIMESTER 1 (218/219) -Circuit analysis using ORCAD PSpice *Note: You will be given an assessment sheet during the lab session to be completed

More information

MultiSim and Analog Discovery 2 Manual

MultiSim and Analog Discovery 2 Manual MultiSim and Analog Discovery 2 Manual 1 MultiSim 1.1 Running Windows Programs Using Mac Obtain free Microsoft Windows from: http://software.tamu.edu Set up a Windows partition on your Mac: https://support.apple.com/en-us/ht204009

More information

CHAPTER 6. Motor Driver

CHAPTER 6. Motor Driver CHAPTER 6 Motor Driver In this lab, we will construct the circuitry that your robot uses to drive its motors. However, before testing the motor circuit we will begin by making sure that you are able to

More information

Laboratory 3 (drawn from lab text by Alciatore)

Laboratory 3 (drawn from lab text by Alciatore) Laboratory 3 (drawn from lab text by Alciatore) The Oscilloscope Required Components: 1 10 resistor 2 100 resistors 2 lk resistors 1 2k resistor 2 4.7M resistors 1 0.F capacitor 1 0.1 F capacitor 1 1.0uF

More information

Week 1: Preparing for PSpice Simulations

Week 1: Preparing for PSpice Simulations Week 1: Preparing for PSpice Simulations Week 1 is composed of two experiments from the lab manual Experiment 1: Breadboard Basics Experiment 3: Ohm s Law Separate lectures on Modules will be posted for

More information

Introduction to OrCAD. Simulation Program With Integrated Circuits Emphasis.

Introduction to OrCAD. Simulation Program With Integrated Circuits Emphasis. Islamic University of Gaza Faculty of Engineering Electrical Engineering department Digital Electronics Lab (EELE 3121) Eng. Mohammed S. Jouda Eng. Amani S. abu reyala Experiment 1 Introduction to OrCAD

More information

LABORATORY 2: Bridge circuits, Superposition, Thevenin Circuits, and Amplifier Circuits

LABORATORY 2: Bridge circuits, Superposition, Thevenin Circuits, and Amplifier Circuits LABORATORY 2: Bridge circuits, Superposition, Thevenin Circuits, and Amplifier Circuits Note: If your partner is no longer in the class, please talk to the instructor. Material covered: Bridge circuits

More information

Lab 3: Very Brief Introduction to Micro-Cap SPICE

Lab 3: Very Brief Introduction to Micro-Cap SPICE Lab 3: Very Brief Introduction to Micro-Cap SPICE Starting Micro-Cap SPICE Micro-Cap SPICE is available on CoE machines under the Spectrum Software menu: Programs Spectrum Software Micro-Cap 10 Evaluation

More information

Page 1/10 Digilent Analog Discovery (DAD) Tutorial 6-Aug-15. Figure 2: DAD pin configuration

Page 1/10 Digilent Analog Discovery (DAD) Tutorial 6-Aug-15. Figure 2: DAD pin configuration Page 1/10 Digilent Analog Discovery (DAD) Tutorial 6-Aug-15 INTRODUCTION The Diligent Analog Discovery (DAD) allows you to design and test both analog and digital circuits. It can produce, measure and

More information

Laboratory 2 (drawn from lab text by Alciatore)

Laboratory 2 (drawn from lab text by Alciatore) Laboratory 2 (drawn from lab text by Alciatore) Instrument Familiarization and Basic Electrical Relations Required Components: 2 1k resistors 2 1M resistors 1 2k resistor Objectives This exercise is designed

More information

SIMULATIONS WITH THE BUCK-BOOST TOPOLOGY EE562: POWER ELECTRONICS I COLORADO STATE UNIVERSITY. Modified February 2006

SIMULATIONS WITH THE BUCK-BOOST TOPOLOGY EE562: POWER ELECTRONICS I COLORADO STATE UNIVERSITY. Modified February 2006 SIMULATIONS WITH THE BUCK-BOOST TOPOLOGY EE562: POWER ELECTRONICS I COLORADO STATE UNIVERSITY Modified February 2006 Page 1 of 13 PURPOSE: The purpose of this lab is to simulate the Buck-Boost converter

More information

ECE 2274 Lab 1 (Intro)

ECE 2274 Lab 1 (Intro) ECE 2274 Lab 1 (Intro) Richard Dumene: Spring 2018 Revised: Richard Cooper: Spring 2018 Forward (DO NOT TURN IN) The purpose of this lab course is to familiarize you with high-end lab equipment, and train

More information

Lab 1: Steady State Error and Step Response MAE 433, Spring 2012

Lab 1: Steady State Error and Step Response MAE 433, Spring 2012 Lab 1: Steady State Error and Step Response MAE 433, Spring 2012 Instructors: Prof. Rowley, Prof. Littman AIs: Brandt Belson, Jonathan Tu Technical staff: Jonathan Prévost Princeton University Feb. 14-17,

More information

ECE 220 Laboratory 3 Thevenin Equivalent Circuits, Constant Current Source, and Inverting Amplifier

ECE 220 Laboratory 3 Thevenin Equivalent Circuits, Constant Current Source, and Inverting Amplifier ECE 220 Laboratory 3 Thevenin Equivalent Circuits, Constant Current Source, and Inverting Amplifier Michael W. Marcellin The first portion of this document describes preparatory work to be completed in

More information

Chapter 12: Electronic Circuit Simulation and Layout Software

Chapter 12: Electronic Circuit Simulation and Layout Software Chapter 12: Electronic Circuit Simulation and Layout Software In this chapter, we introduce the use of analog circuit simulation software and circuit layout software. I. Introduction So far we have designed

More information

LTSpice Basic Tutorial

LTSpice Basic Tutorial Index: I. Opening LTSpice II. Drawing the circuit A. Making Sure You Have a GND B. Getting the Parts C. Placing the Parts D. Connecting the Circuit E. Changing the Name of the Part F. Changing the Value

More information

ArbStudio Triggers. Using Both Input & Output Trigger With ArbStudio APPLICATION BRIEF LAB912

ArbStudio Triggers. Using Both Input & Output Trigger With ArbStudio APPLICATION BRIEF LAB912 ArbStudio Triggers Using Both Input & Output Trigger With ArbStudio APPLICATION BRIEF LAB912 January 26, 2012 Summary ArbStudio has provision for outputting triggers synchronous with the output waveforms

More information

Using LTspice a Short Intro with Examples

Using LTspice a Short Intro with Examples Using LTspice a Short Intro with Examples LTspice, also called SwitcherCAD, is a powerful and easy to use schematic capture program and SPICE engine, which is a general-purpose circuit simulation program

More information

PSPICE SIMULATIONS WITH THE RESONANT INVERTER POWER ELECTRONICS COLORADO STATE UNIVERSITY. Created by Colorado State University student

PSPICE SIMULATIONS WITH THE RESONANT INVERTER POWER ELECTRONICS COLORADO STATE UNIVERSITY. Created by Colorado State University student PSPICE SIMULATIONS WITH THE RESONANT INVERTER POWER ELECTRONICS COLORADO STATE UNIVERSITY Created by Colorado State University student Page 1 of 13 PURPOSE: The purpose of this lab is to simulate the resonant

More information

Integrators, differentiators, and simple filters

Integrators, differentiators, and simple filters BEE 233 Laboratory-4 Integrators, differentiators, and simple filters 1. Objectives Analyze and measure characteristics of circuits built with opamps. Design and test circuits with opamps. Plot gain vs.

More information

LAB I. INTRODUCTION TO LAB EQUIPMENT

LAB I. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE LAB I. INTRODUCTION TO LAB EQUIPMENT In this lab you will learn how to properly operate the oscilloscope Agilent MSO6032A, the Keithley Source Measure Unit (SMU) 2430, the function generator

More information

Introduction to the Analog Discovery

Introduction to the Analog Discovery Introduction to the Analog Discovery The Analog Discovery from Digilent (http://store.digilentinc.com/all-products/scopes-instruments) is a versatile and powerful USB-connected instrument that lets you

More information

1.5k. (a) Resistive Circuit (b) Capacitive Circuit

1.5k. (a) Resistive Circuit (b) Capacitive Circuit Objective Information The purposes of this laboratory project are to become further acquainted with the use of an oscilloscope, and to observe the behavior of resistor and resistor capacitor circuits.

More information

Laboratory #2 PSpice Analyses

Laboratory #2 PSpice Analyses Laboratory #2 PSpice Analyses I. Objectives 1. Know the development of SPICE. 2. Learn to install the PSpice software. 3. Learn to use the Capture CIS to draw circuit. 4. Learn to use the four analyses

More information

Lab 6: Building a Function Generator

Lab 6: Building a Function Generator ECE 212 Spring 2010 Circuit Analysis II Names: Lab 6: Building a Function Generator Objectives In this lab exercise you will build a function generator capable of generating square, triangle, and sine

More information

Equipment: You will use the bench power supply, function generator and oscilloscope.

Equipment: You will use the bench power supply, function generator and oscilloscope. EE203 Lab #0 Laboratory Equipment and Measurement Techniques Purpose Your objective in this lab is to gain familiarity with the properties and effective use of the lab power supply, function generator

More information

Name: First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits

Name: First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits Table of Contents: Pre-Lab Assignment 2 Background 2 National Instruments MyDAQ 2 Resistors 3 Capacitors

More information

Week 7: Design a Logarithmic Voltmeter. A variation on Experiment 19 Validation by 8pm on October 14

Week 7: Design a Logarithmic Voltmeter. A variation on Experiment 19 Validation by 8pm on October 14 Week 7: Design a Logarithmic Voltmeter A variation on Experiment 19 Validation by 8pm on October 14 Op Amps Will not work if V+ and V- are not connected to +9V and -9V, respectively. Will get extremely

More information

Introduction to SwitcherCAD

Introduction to SwitcherCAD Introduction to SwitcherCAD 1 PREFACE 1.1 What is SwitcherCAD? SwitcherCAD III is a new Spice based program that was developed for modelling board level switching regulator systems. The program consists

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #5 Lab Report Diode Applications and PSPICE Introduction Submission Date: 10/10/2017 Instructors: Dr. Minhee Yun John Erickson Yanhao Du Submitted By: Nick Haver & Alex

More information

Laboratory Experiment #1 Introduction to Spectral Analysis

Laboratory Experiment #1 Introduction to Spectral Analysis J.B.Francis College of Engineering Mechanical Engineering Department 22-403 Laboratory Experiment #1 Introduction to Spectral Analysis Introduction The quantification of electrical energy can be accomplished

More information

CPE 310L EMBEDDED SYSTEM DESIGN LABORATORY

CPE 310L EMBEDDED SYSTEM DESIGN LABORATORY CPE 310L EMBEDDED SYSTEM DESIGN LABORATORY LABORATORY 1 LAB SAFETY & LAB EQUIPMENT USE TUTORIAL DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS GOALS: Introduce laboratory

More information

Name EET 1131 Lab #2 Oscilloscope and Multisim

Name EET 1131 Lab #2 Oscilloscope and Multisim Name EET 1131 Lab #2 Oscilloscope and Multisim Section 1. Oscilloscope Introduction Equipment and Components Safety glasses Logic probe ETS-7000 Digital-Analog Training System Fluke 45 Digital Multimeter

More information

EE 2274 DIODE OR GATE & CLIPPING CIRCUIT

EE 2274 DIODE OR GATE & CLIPPING CIRCUIT EE 2274 DIODE OR GATE & CLIPPING CIRCUIT Prelab Part I: Wired Diode OR Gate LTspice use 1N4002 1. Design a diode OR gate, Figure 1 in which the maximum current thru R1 I R1 = 9mA assume Vin = 5Vdc. Design

More information

Introduction to basic laboratory instruments

Introduction to basic laboratory instruments BEE 233 Laboratory-1 Introduction to basic laboratory instruments 1. Objectives To learn safety procedures in the laboratory. To learn how to use basic laboratory instruments: power supply, function generator,

More information

Excel Tool: Plots of Data Sets

Excel Tool: Plots of Data Sets Excel Tool: Plots of Data Sets Excel makes it very easy for the scientist to visualize a data set. In this assignment, we learn how to produce various plots of data sets. Open a new Excel workbook, and

More information

Uncovering a Hidden RCL Series Circuit

Uncovering a Hidden RCL Series Circuit Purpose Uncovering a Hidden RCL Series Circuit a. To use the equipment and techniques developed in the previous experiment to uncover a hidden series RCL circuit in a box and b. To measure the values of

More information

RC Filters and Basic Timer Functionality

RC Filters and Basic Timer Functionality RC-1 Learning Objectives: RC Filters and Basic Timer Functionality The student who successfully completes this lab will be able to: Build circuits using passive components (resistors and capacitors) from

More information

Precalculations Individual Portion Introductory Lab: Basic Operation of Common Laboratory Instruments

Precalculations Individual Portion Introductory Lab: Basic Operation of Common Laboratory Instruments Name: Date of lab: Section number: M E 345. Lab 1 Precalculations Individual Portion Introductory Lab: Basic Operation of Common Laboratory Instruments Precalculations Score (for instructor or TA use only):

More information

for Solidworks TRAINING GUIDE LESSON-9-CAD

for Solidworks TRAINING GUIDE LESSON-9-CAD for Solidworks TRAINING GUIDE LESSON-9-CAD Mastercam for SolidWorks Training Guide Objectives You will create the geometry for SolidWorks-Lesson-9 using SolidWorks 3D CAD software. You will be working

More information

Laboratory Equipment Instruction Manual 2011

Laboratory Equipment Instruction Manual 2011 University of Toronto Department of Electrical and Computer Engineering Instrumentation Laboratory GB341 Laboratory Equipment Instruction Manual 2011 Page 1. Wires and Cables A-2 2. Protoboard A-3 3. DC

More information

BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY

BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY Electronics Circuits II Laboratory (EEE 208) Simulation Experiment No. 02 Study of the Characteristics and Application of Operational Amplifier (Part B)

More information

LAB 1: Familiarity with Laboratory Equipment (_/10)

LAB 1: Familiarity with Laboratory Equipment (_/10) LAB 1: Familiarity with Laboratory Equipment (_/10) PURPOSE o gain familiarity with basic laboratory equipment oscilloscope, oscillator, multimeter and electronic components. EQUIPMEN (i) Oscilloscope

More information

CPE 100L DIGITAL LOGIC DESIGN I DESIGN LABORATORY LABORATORY 1 LAB SAFETY QUIZ & LAB EQUIPMENT USE TUTORIAL UNIVERSITY OF NEVADA, LAS VEGAS GOALS:

CPE 100L DIGITAL LOGIC DESIGN I DESIGN LABORATORY LABORATORY 1 LAB SAFETY QUIZ & LAB EQUIPMENT USE TUTORIAL UNIVERSITY OF NEVADA, LAS VEGAS GOALS: CPE 100L DESIGN LABORATORY LABORATORY 1 LAB SAFETY QUIZ & LAB EQUIPMENT USE TUTORIAL DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS GOALS: Introduce laboratory safety

More information

Laboratory 2. Lab 2. Instrument Familiarization and Basic Electrical Relations. Required Components: 2 1k resistors 2 1M resistors 1 2k resistor

Laboratory 2. Lab 2. Instrument Familiarization and Basic Electrical Relations. Required Components: 2 1k resistors 2 1M resistors 1 2k resistor Laboratory 2 nstrument Familiarization and Basic Electrical Relations Required Components: 2 1k resistors 2 1M resistors 1 2k resistor 2.1 Objectives This exercise is designed to acquaint you with the

More information

Introduction to NI Multisim & Ultiboard Software version 14.1

Introduction to NI Multisim & Ultiboard Software version 14.1 School of Engineering and Applied Science Electrical and Computer Engineering Department Introduction to NI Multisim & Ultiboard Software version 14.1 Dr. Amir Aslani August 2018 Parts Probes Tools Outline

More information

OrCAD 17.2 Pspice Tutorial. High-Speed Circuits & Systems Lab. Yonsei University

OrCAD 17.2 Pspice Tutorial. High-Speed Circuits & Systems Lab. Yonsei University OrCAD 17.2 Pspice Tutorial High-Speed Circuits & Systems Lab. Yonsei University Installation Move to http://www.orcad.com/resources/orcaddownloads#demo Installation Click Download FREE-OrCAD 17.2 Lite

More information

SAMPLE: EXPERIMENT 2 Series RLC Circuit / Bode Plot

SAMPLE: EXPERIMENT 2 Series RLC Circuit / Bode Plot SAMPLE: EXPERIMENT 2 Series RLC Circuit / Bode Plot ---------------------------------------------------------------------------------------------------- This experiment is an excerpt from: Electric Experiments

More information

Analog Discovery Arbitrary Function Generator for Windows 7 by Mr. David Fritz and Ms. Ellen Robertson

Analog Discovery Arbitrary Function Generator for Windows 7 by Mr. David Fritz and Ms. Ellen Robertson Analog Discovery Arbitrary Function Generator for Windows 7 by Mr. David Fritz and Ms. Ellen Robertson Financial support to develop this tutorial was provided by the Bradley Department of Electrical and

More information

Exponential Waveforms

Exponential Waveforms ENGR 210 Lab 9 Exponential Waveforms Purpose: To measure the step response of circuits containing dynamic elements such as capacitors. Equipment Required: 1 - HP 54xxx Oscilloscope 1 - HP 33120A Function

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab University of Jordan School of Engineering Electrical Engineering Department EE 204 Electrical Engineering Lab EXPERIMENT 1 MEASUREMENT DEVICES Prepared by: Prof. Mohammed Hawa EXPERIMENT 1 MEASUREMENT

More information

Lab 4: Analysis of the Stereo Amplifier

Lab 4: Analysis of the Stereo Amplifier ECE 212 Spring 2010 Circuit Analysis II Names: Lab 4: Analysis of the Stereo Amplifier Objectives In this lab exercise you will use the power supply to power the stereo amplifier built in the previous

More information

LAB EXERCISE 3 FET Amplifier Design and Linear Analysis

LAB EXERCISE 3 FET Amplifier Design and Linear Analysis ADS 2012 Workspaces and Simulation Tools (v.1 Oct 2012) LAB EXERCISE 3 FET Amplifier Design and Linear Analysis Topics: More schematic capture, DC and AC simulation, more on libraries and cells, using

More information

Page 21 GRAPHING OBJECTIVES:

Page 21 GRAPHING OBJECTIVES: Page 21 GRAPHING OBJECTIVES: 1. To learn how to present data in graphical form manually (paper-and-pencil) and using computer software. 2. To learn how to interpret graphical data by, a. determining the

More information

UNIVERSITY OF UTAH ELECTRICAL ENGINEERING DEPARTMENT

UNIVERSITY OF UTAH ELECTRICAL ENGINEERING DEPARTMENT UNIVERSITY OF UTAH ELECTRICAL ENGINEERING DEPARTMENT ECE 3110 LAB EXPERIMENT NO. 4 CLASS AB POWER OUTPUT STAGE Objective: In this laboratory exercise you will build and characterize a class AB power output

More information

332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title: Function Generators and Oscilloscopes Suggested Equipment:

332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title: Function Generators and Oscilloscopes Suggested Equipment: RUTGERS UNIVERSITY The State University of New Jersey School of Engineering Department Of Electrical and Computer Engineering 332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title:

More information

Introduction to Simulink Assignment Companion Document

Introduction to Simulink Assignment Companion Document Introduction to Simulink Assignment Companion Document Implementing a DSB-SC AM Modulator in Simulink The purpose of this exercise is to explore SIMULINK by implementing a DSB-SC AM modulator. DSB-SC AM

More information

Experiment #6: Biasing an NPN BJT Introduction to CE, CC, and CB Amplifiers

Experiment #6: Biasing an NPN BJT Introduction to CE, CC, and CB Amplifiers SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Experiment #6: Biasing an NPN BJT Introduction to CE, CC, and CB

More information

Digital Debug With Oscilloscopes Lab Experiment

Digital Debug With Oscilloscopes Lab Experiment Digital Debug With Oscilloscopes A collection of lab exercises to introduce you to digital debugging techniques with a digital oscilloscope. Revision 1.0 Page 1 of 23 Revision 1.0 Page 2 of 23 Copyright

More information

Chapter 6 Title Blocks

Chapter 6 Title Blocks Chapter 6 Title Blocks In previous exercises, every drawing started by creating a number of layers. This is time consuming and unnecessary. In this exercise, we will start a drawing by defining layers

More information

Real Analog - Circuits 1 Chapter 11: Lab Projects

Real Analog - Circuits 1 Chapter 11: Lab Projects Real Analog - Circuits 1 Chapter 11: Lab Projects 11.2.1: Signals with Multiple Frequency Components Overview: In this lab project, we will calculate the magnitude response of an electrical circuit and

More information