Exercise 2: FM Detection With a PLL

Size: px
Start display at page:

Download "Exercise 2: FM Detection With a PLL"

Transcription

1 Phase-Locked Loop Analog Communications Exercise 2: FM Detection With a PLL EXERCISE OBJECTIVE When you have completed this exercise, you will be able to explain how the phase detector s input frequencies affect the output signals, explain how the feedback signal to the VCO varies with the phase change between the input signals, and describe how a PLL demodulates an FM signal. You will use an oscilloscope and a multimeter to make measurements. EXERCISE DISCUSSION The PLL s phase detector is a balanced modulator that multiplies the inputs to produce sum and difference frequencies at the output. 408 FACET by Lab-Volt

2 Analog Communications Phase-Locked Loop The PLL output is also the feedback signal that controls f vco to match f i. When a PLL is locked, the phase detector s input frequencies (f i and f vco output contains a sum frequency, which is twice the input frequency, and a difference component, which is a dc voltage. When f i changes, what occurs? a. i and f vco. b. The phase detector s dc voltage difference component changes. c. Both of the above Every variation in f i causes a phase change with f vco, which then causes the dc voltage difference component to change. FACET by Lab-Volt 409

3 Phase-Locked Loop Analog Communications The dc voltage, which is the feedback to the VCO, causes f vco to change so it equals f i. When the RF signal to the PLL is an FM signal, the continuous FM frequency deviations cause continuous phase changes between f i and f vco. The FM signal s frequency deviations are a function of what signal? a. VCO b. carrier c. message Because the f i and f vco phase difference changes with the message signal, the phase detector s dc voltage difference component varies with what signal? a. message b. VCO 410 FACET by Lab-Volt

4 Analog Communications Phase-Locked Loop recovered message signal. The recovered message signal from the PLL is also the feedback signal to the VCO. FACET by Lab-Volt 411

5 Phase-Locked Loop Analog Communications The message signal feedback to the VCO varies f vco to match what signal? a. the phase detector s sum frequency b. the changing f i After capture, if the bandwidth of the FM signal stays within the PLL s lock range, the PLL recovers the message signal. However, if the bandwidth of the FM signal becomes greater than the PLL s lock range, to what frequency will f vco return? a. its free-running frequency (f o ) b. the message signal frequency PROCEDURE Connect the PHASE-LOCKED LOOP circuit block as shown. Two-post connectors should be in the 452 khz terminals on the VCO-LO circuit block and between the FILTER and AMP on the PHASE-LOCKED LOOP circuit block. 412 FACET by Lab-Volt

6 Analog Communications Phase-Locked Loop Connect the channel 2 probe to the VCO output on the PHASE-LOCKED LOOP circuit block. Turn the NEGATIVE SUPPLY knob on the base unit fully CCW. Adjust the potentiometer knob on the VCO-LO circuit block for a 150 mv pk-pk signal at RF. FACET by Lab-Volt 413

7 Phase-Locked Loop Analog Communications Set the oscilloscope vertical mode to DUAL and trigger on channel 1. Set the voltmeter to measure volts dc. Connect the voltmeter to the VCO input, and connect the voltmeter common lead to a ground terminal on the circuit board. During the next step, you will observe the RF and VCO signals on the oscilloscope and the VCO input voltage (V I ) on the voltmeter. Slowly increase (f i ) (channel 1) by turning the NEGATIVE SUPPLY knob CW. When the f vco signal starts to track f i and V I is 4.0 Vdc, stop turning the NEGATIVE SUPPLY knob CW. The signals should appear as shown. 414 FACET by Lab-Volt

8 Analog Communications Phase-Locked Loop On the oscilloscope screen, compare f vco and f i by overlaying the signal traces. Are the frequencies about equal? a. yes b. no Trigger the oscilloscope on channel 1. The signals should appear as shown. Is f i vco (channel 2)? a. yes b. no When the RF input frequency (f i ) equals the VCO output frequency (f vco ), what signals are in the PHASE DETECTOR s output? a. the sum frequency of the inputs and a difference component, which is a dc voltage b. f i and the sum difference frequencies of the inputs FACET by Lab-Volt 415

9 Phase-Locked Loop Analog Communications Connect the channel 2 probe to the PHASE DETECTOR s output. Set channel 2 to Is the frequency of the signal on channel 2 twice the frequency of the RF signal on channel 1? a. yes b. no What is the PHASE DETECTOR s output signal shown on channel 2? a. difference frequency b. sum frequency 416 FACET by Lab-Volt

10 Analog Communications Phase-Locked Loop Connect the channel 2 probe to the FILTER s output. Set channel 2 to dc and trigger on channel 1 (see the image below). While observing the FILTER s output on channel 2, slightly vary f i by slowly turning the NEGATIVE SUPPLY knob CCW and then CW. When f i varies, does the FILTER s dc output voltage level change? a. yes b. no What is the FILTER s output signal shown on channel 2? a. the PHASE DETECTOR s sum frequency b. the PHASE DETECTOR s difference component FACET by Lab-Volt 417

11 Phase-Locked Loop Analog Communications What causes the PHASE DETECTOR s dc difference component to change with a varying f i? a. an amplitude difference between f i and f vco b. a changing phase difference between f i and f vco Does the change in the FILTER s dc output voltage cause V I to change? a. yes b. no What does V I control? a. f vco b. f i Trigger on channel FACET by Lab-Volt

12 Analog Communications Phase-Locked Loop While observing f vco on channel 2 and V I on the voltmeter, vary f i by slightly turning the NEGATIVE SUPPLY knob CW and then CCW. When V I changes, does f vco change and stay equal to f i on channel 1? a. yes b. no Connect the SIGNAL GENERATOR s output to the (M) terminal on the VCO-LO circuit block. Connect the channel 1 probe to (M). Adjust the SIGNAL GENERATOR for a 150 mv pk-pk, 3 khz sine wave message signal at (M). On the PHASE-LOCKED LOOP circuit block, connect the channel 1 probe to RF at the PHASE DETECTOR input, and connect the channel 2 probe to the VCO output. Set channel FACET by Lab-Volt 419

13 Phase-Locked Loop Analog Communications Adjust the NEGATIVE SUPPLY knob on the base unit completely CCW. You should observe an FM signal on channel 1, as shown in the image below. During the next step, you will observe the RF and VCO signals on the oscilloscope and V I on the voltmeter. Slowly increase f i (channel 1) by turning the NEGATIVE SUPPLY knob CW. When the f vco signal starts to track f i and V I is about 4.0 Vdc, stop turning the NEGATIVE SUPPLY knob CW. The signals should appear as shown. 420 FACET by Lab-Volt

14 Analog Communications Phase-Locked Loop Connect the channel 1 probe to (M) on the VCO-LO circuit block, and trigger on channel 1. in the image below. What signals compose the PHASE DETECTOR output signal on channel 2? a. the sum frequency and the varying dc voltage difference component b. the VCO signal and the difference frequency What signal is the varying dc voltage difference component? a. the FM carrier signal b. the recovered message signal FACET by Lab-Volt 421

15 Phase-Locked Loop Analog Communications Connect the channel 2 probe to the FILTER output on the PHASE-LOCKED LOOP circuit What is the signal at the FILTER s output on channel 2? a. the recovered message signal b. the error signal c. Both of the above. Slightly vary the frequency and amplitude of the message signal from the SIGNAL GENERATOR. Do the frequency and amplitude of the recovered message signal vary with the message signal? a. yes b. no Does the message signal feedback to VCO change f vco to match the varying f i? a. yes b. no 422 FACET by Lab-Volt

16 Analog Communications Phase-Locked Loop Connect the channel 2 oscilloscope probe to the FILTER output. Set channel 2 to At the SIGNAL GENERATOR, increase the message signal amplitude on channel 1 to 300 mv pk-pk. Is the signal on channel 2 the recovered message signal? a. yes b. no CONCLUSION When the PLL is locked, the phase detector outputs a dc voltage difference component that changes with the phase change between the RF and VCO input signals. When the RF input is an FM signal, the phase detector s dc voltage difference component varies with the message signal contained in the FM signal. the low-frequency recovered message signal. The recovered message signal is the PLL s output, and it is also the feedback signal that controls the frequency of the VCO to match the frequency of the FM input signal. To recover the message signal, the bandwidth of the FM signal must be within the PLL s lock range. FACET by Lab-Volt 423

17 Phase-Locked Loop Analog Communications REVIEW QUESTIONS 1. When the PLL is locked, how is the phase detector s output affected by a phase change between the f i and f vco inputs? a. The phase of the sum frequency changes by an equivalent amount. b. The difference frequency increases. c. The dc voltage difference component changes. d. All of the above 2. When the RF input to a PLL is an FM signal, what signal causes the phase detector s dc voltage difference component to vary? a. VCO signal b. sum frequency signal c. feedback signal d. FM message signal 424 FACET by Lab-Volt

18 Analog Communications Phase-Locked Loop 3. When the RF input to a PLL is an FM signal, what is the PLL s output signal? a. recovered message signal b. error signal c. feedback signal d. All of the above 4. In order for a locked PLL to demodulate an FM signal, the FM signal s bandwidth must be within what range? a. capture range b. lock range c. free-running frequency ±3 khz d. audio frequency range 5. In order for a PLL to capture an FM signal, the VCO s free-running frequency must be close to what frequency? a. message signal frequency b. lock range c. FM center frequency d. product detector s sum frequency FACET by Lab-Volt 425

Exercise 2: Demodulation (Quadrature Detector)

Exercise 2: Demodulation (Quadrature Detector) Analog Communications Angle Modulation and Demodulation Exercise 2: Demodulation (Quadrature Detector) EXERCISE OBJECTIVE When you have completed this exercise, you will be able to explain demodulation

More information

Exercise 1: Frequency and Phase Modulation

Exercise 1: Frequency and Phase Modulation Exercise 1: Frequency and Phase Modulation EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe frequency modulation and an FM circuit. You will also be able to describe

More information

Exercise 1: Amplitude Modulation

Exercise 1: Amplitude Modulation AM Transmission Analog Communications Exercise 1: Amplitude Modulation EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe the generation of amplitudemodulated signals

More information

When you have completed this exercise, you will be able to determine ac operating characteristics of a

When you have completed this exercise, you will be able to determine ac operating characteristics of a When you have completed this exercise, you will be able to determine ac operating characteristics of a multimeter and an oscilloscope. A sine wave generator connected between the transistor base and ground

More information

When you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp

When you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp Op Amp Fundamentals When you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp In general, the parameters are interactive. However, in this unit, circuit input

More information

Exercise 1: AC Waveform Generator Familiarization

Exercise 1: AC Waveform Generator Familiarization Exercise 1: AC Waveform Generator Familiarization EXERCISE OBJECTIVE When you have completed this exercise, you will be able to operate an ac waveform generator by using equipment provided. You will verify

More information

Exercise 1: RF Stage, Mixer, and IF Filter

Exercise 1: RF Stage, Mixer, and IF Filter SSB Reception Analog Communications Exercise 1: RF Stage, Mixer, and IF Filter EXERCISE OBJECTIVE DISCUSSION On the circuit board, you will set up the SSB transmitter to transmit a 1000 khz SSB signal

More information

When you have completed this exercise, you will be able to determine the frequency response of an

When you have completed this exercise, you will be able to determine the frequency response of an RC Coupling When you have completed this exercise, you will be able to determine the frequency response of an oscilloscope. The way in which the gain varies with frequency is called the frequency response.

More information

AC LAB ECE-D ecestudy.wordpress.com

AC LAB ECE-D ecestudy.wordpress.com PART B EXPERIMENT NO: 1 AIM: PULSE AMPLITUDE MODULATION (PAM) & DEMODULATION DATE: To study Pulse Amplitude modulation and demodulation process with relevant waveforms. APPARATUS: 1. Pulse amplitude modulation

More information

Exercise 2: Temperature Measurement

Exercise 2: Temperature Measurement Exercise 2: Temperature Measurement EXERCISE OBJECTIVE When you have completed this exercise, you will be able to explain and demonstrate the use of an RTD in a temperature measurement application by using

More information

Schmitt trigger. V I is converted from a sine wave into a square wave. V O switches between +V SAT SAT and is in phase with V I.

Schmitt trigger. V I is converted from a sine wave into a square wave. V O switches between +V SAT SAT and is in phase with V I. When you have completed this exercise, you will be able to operate a sine wave to square wave converter. You will verify your results with an oscilloscope. Schmitt trigger. V I is converted from a sine

More information

When you have completed this exercise, you will be able to determine the frequency response of a

When you have completed this exercise, you will be able to determine the frequency response of a When you have completed this exercise, you will be able to determine the frequency response of a an oscilloscope. Voltage gain (Av), the voltage ratio of the input signal to the output signal, can be expressed

More information

Experiment No. 3 Pre-Lab Phase Locked Loops and Frequency Modulation

Experiment No. 3 Pre-Lab Phase Locked Loops and Frequency Modulation Experiment No. 3 Pre-Lab Phase Locked Loops and Frequency Modulation The Pre-Labs are informational and although they follow the procedures in the experiment, they are to be completed outside of the laboratory.

More information

Exercise 1: Circuit Block Familiarization

Exercise 1: Circuit Block Familiarization Exercise 1: Circuit Block Familiarization EXERCISE OBJECTIVE When you have completed this exercise, you will be able to locate and identify the circuit blocks and components on the DIGITAL LOGIC FUNDAMENTALS

More information

Exercise 1: Inductors

Exercise 1: Inductors Exercise 1: Inductors EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe the effect an inductor has on dc and ac circuits by using measured values. You will verify your

More information

Exercise Generation and Demodulation of DPSK Signal

Exercise Generation and Demodulation of DPSK Signal Exercise Generation and Demodulation of DPSK Signal EXERCISE OBJECTIVE When you have completed this exercise, you will see the operation principle and characteristics of the DPSK signal generator by measuring

More information

Exercise 2: Inductors in Series and in Parallel

Exercise 2: Inductors in Series and in Parallel Exercise 2: Inductors in Series and in Parallel EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine the total inductance of a circuit containing inductors in series

More information

When you have completed this exercise, you will be able to determine the ac operating characteristics of

When you have completed this exercise, you will be able to determine the ac operating characteristics of When you have completed this exercise, you will be able to determine the ac operating characteristics of multimeter and an oscilloscope. A sine wave generator connected between the transistor and ground

More information

EXPERIMENT 2: Frequency Shift Keying (FSK)

EXPERIMENT 2: Frequency Shift Keying (FSK) EXPERIMENT 2: Frequency Shift Keying (FSK) 1) OBJECTIVE Generation and demodulation of a frequency shift keyed (FSK) signal 2) PRELIMINARY DISCUSSION In FSK, the frequency of a carrier signal is modified

More information

using dc inputs. You will verify circuit operation with a multimeter.

using dc inputs. You will verify circuit operation with a multimeter. Op Amp Fundamentals using dc inputs. You will verify circuit operation with a multimeter. FACET by Lab-Volt 77 Op Amp Fundamentals O circuit common. a. inverts the input voltage polarity. b. does not invert

More information

Experiment One: Generating Frequency Modulation (FM) Using Voltage Controlled Oscillator (VCO)

Experiment One: Generating Frequency Modulation (FM) Using Voltage Controlled Oscillator (VCO) Experiment One: Generating Frequency Modulation (FM) Using Voltage Controlled Oscillator (VCO) Modified from original TIMS Manual experiment by Mr. Faisel Tubbal. Objectives 1) Learn about VCO and how

More information

Exercise 3: Ohm s Law Circuit Voltage

Exercise 3: Ohm s Law Circuit Voltage Ohm s Law DC Fundamentals Exercise 3: Ohm s Law Circuit Voltage EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine voltage by using Ohm s law. You will verify your

More information

Chapter 14 FSK Demodulator

Chapter 14 FSK Demodulator Chapter 14 FSK Demodulator 14-1 : Curriculum Objectives 1. To understand the operation theory of FSK demodulator. 2. To implement the FSK detector circuit by using PLL. 3. To understand the operation theory

More information

Exercise 1: Series RLC Circuits

Exercise 1: Series RLC Circuits RLC Circuits AC 2 Fundamentals Exercise 1: Series RLC Circuits EXERCISE OBJECTIVE When you have completed this exercise, you will be able to analyze series RLC circuits by using calculations and measurements.

More information

An input resistor suppresses noise and stray pickup developed across the high input impedance of the op amp.

An input resistor suppresses noise and stray pickup developed across the high input impedance of the op amp. When you have completed this exercise, you will be able to operate a voltage follower using dc voltages. You will verify your results with a multimeter. O I The polarity of V O is identical to the polarity

More information

Department of Electronics & Telecommunication Engg. LAB MANUAL. B.Tech V Semester [ ] (Branch: ETE)

Department of Electronics & Telecommunication Engg. LAB MANUAL. B.Tech V Semester [ ] (Branch: ETE) Department of Electronics & Telecommunication Engg. LAB MANUAL SUBJECT:-DIGITAL COMMUNICATION SYSTEM [BTEC-501] B.Tech V Semester [2013-14] (Branch: ETE) KCT COLLEGE OF ENGG & TECH., FATEHGARH PUNJAB TECHNICAL

More information

EE-4022 Experiment 3 Frequency Modulation (FM)

EE-4022 Experiment 3 Frequency Modulation (FM) EE-4022 MILWAUKEE SCHOOL OF ENGINEERING 2015 Page 3-1 Student Objectives: EE-4022 Experiment 3 Frequency Modulation (FM) In this experiment the student will use laboratory modules including a Voltage-Controlled

More information

Part I - Amplitude Modulation

Part I - Amplitude Modulation EE/CME 392 Laboratory 1-1 Part I - Amplitude Modulation Safety: In this lab, voltages are less than 15 volts and this is not normally dangerous to humans. However, you should assemble or modify a circuit

More information

EXPERIMENT 1: Amplitude Shift Keying (ASK)

EXPERIMENT 1: Amplitude Shift Keying (ASK) EXPERIMENT 1: Amplitude Shift Keying (ASK) 1) OBJECTIVE Generation and demodulation of an amplitude shift keyed (ASK) signal 2) PRELIMINARY DISCUSSION In ASK, the amplitude of a carrier signal is modified

More information

200GTL ALIGNMENT REVISION: 1.0 BURKE MODEL: 200GTL REVISION: 1.2 DATE: 02/14/06. Total Pages: 6 pages. Page:1 print date: 9/23/09

200GTL ALIGNMENT REVISION: 1.0 BURKE MODEL: 200GTL REVISION: 1.2 DATE: 02/14/06. Total Pages: 6 pages. Page:1 print date: 9/23/09 ALIGNMENT PROCEDURE MODEL: 200GTL REVISION: 1.2 DATE: 02/14/06 PREPARED BY: BURKE Total Pages: 6 pages Page:1 print date: 9/23/09 1 TEST CONDITION: 200GTL ALIGNMENT INSTRUCTION 1.0. TEST TEMPERTAURE: 77

More information

Experiment Topic : FM Modulator

Experiment Topic : FM Modulator 7-1 Experiment Topic : FM Modulator 7.1: Curriculum Objectives 1. To understand the characteristics of varactor diodes. 2. To understand the operation theory of voltage controlled oscillator (VCO). 3.

More information

Exercise 1: Power Division

Exercise 1: Power Division Power in AC Circuits AC 2 Fundamentals Exercise 1: Power Division EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine ac power division among the components of an RLC

More information

Check out from stockroom:! Two 10x scope probes

Check out from stockroom:! Two 10x scope probes University of Utah Electrical & Computer Engineering Department ECE 3510 Lab 6 Basic Phase - Locked Loop M. Bodson, A. Stolp, 2/26/06 rev,3/1/09 Note : Bring a proto board, parts, and lab card this week.

More information

cosω t Y AD 532 Analog Multiplier Board EE18.xx Fig. 1 Amplitude modulation of a sine wave message signal

cosω t Y AD 532 Analog Multiplier Board EE18.xx Fig. 1 Amplitude modulation of a sine wave message signal University of Saskatchewan EE 9 Electrical Engineering Laboratory III Amplitude and Frequency Modulation Objectives: To observe the time domain waveforms and spectra of amplitude modulated (AM) waveforms

More information

EE 460L University of Nevada, Las Vegas ECE Department

EE 460L University of Nevada, Las Vegas ECE Department EE 460L PREPARATION 1- ASK Amplitude shift keying - ASK - in the context of digital communications is a modulation process which imparts to a sinusoid two or more discrete amplitude levels. These are related

More information

Department of Electronic and Information Engineering. Communication Laboratory

Department of Electronic and Information Engineering. Communication Laboratory Department of Electronic and Information Engineering Communication Laboratory Frequency Shift Keying (FSK) & Differential Phase Shift Keying (DPSK) & Differential Quadrature Phase Shift Keying (DQPSK)

More information

Exercise 1: Tri-State Buffer Output Control

Exercise 1: Tri-State Buffer Output Control Exercise 1: Tri-State Buffer Output Control EXERCISE OBJECTIVE When you have completed this exercise, you will be able to demonstrate how the enable and data inputs control the output state of a tri-state

More information

DEPARTMENT OF E.C.E.

DEPARTMENT OF E.C.E. PVP SIDDHARTHA INSTITUTE OF TECHNOLOGY, KANURU, VIJAYAWADA-7 DEPARTMENT OF E.C.E. ANALOG COMMUNICATIONS LAB MANUAL Department of Electronics & Communication engineering Prasad V.Potluri Siddhartha Institute

More information

Exercise 2: Q and Bandwidth of a Series RLC Circuit

Exercise 2: Q and Bandwidth of a Series RLC Circuit Series Resonance AC 2 Fundamentals Exercise 2: Q and Bandwidth of a Series RLC Circuit EXERCISE OBJECTIVE When you have completed this exercise, you will be able to calculate the bandwidth and Q of a series

More information

ELG3175: Introduction to Communication Systems. Laboratory II: Amplitude Modulation

ELG3175: Introduction to Communication Systems. Laboratory II: Amplitude Modulation Introduction: ELG3175: Introduction to Communication Systems Laboratory II: Amplitude Modulation In this lab, we shall investigate some fundamental aspects of the conventional AM and DSB-SC modulation

More information

LAB INSTRUMENTATION. RC CIRCUITS.

LAB INSTRUMENTATION. RC CIRCUITS. LAB INSTRUMENTATION. RC CIRCUITS. I. OBJECTIVE a) Becoming accustomed to using the lab instrumentation (voltage supply, digital multimeter, signal generator, oscilloscope) necessary to the experimental

More information

Communication Systems Lab

Communication Systems Lab LAB MANUAL Communication Systems Lab (EE-226-F) Prepared by: Varun Sharma (Lab In-charge) Dayal C. Sati (Faculty In-charge) B R C M CET BAHAL DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING Page

More information

German Jordanian University. Department of Communication Engineering. Digital Communication Systems Lab. CME 313-Lab. Experiment 8

German Jordanian University. Department of Communication Engineering. Digital Communication Systems Lab. CME 313-Lab. Experiment 8 German Jordanian University Department of Communication Engineering Digital Communication Systems Lab CME 313-Lab Experiment 8 Binary Frequency-shift keying (BPSK) Eng. Anas Al-ashqar Dr. Ala' Khalifeh

More information

Exercise 1: The Rheostat

Exercise 1: The Rheostat Potentiometers and Rheostats DC Fundamentals Exercise 1: The Rheostat EXERCISE OBJECTIVE When you have completed this exercise, you will be able to vary current by using a rheostat. You will verify your

More information

OBJECTIVES EQUIPMENT LIST

OBJECTIVES EQUIPMENT LIST 1 Reception of Amplitude Modulated Signals AM Demodulation OBJECTIVES The purpose of this experiment is to show how the amplitude-modulated signals are demodulated to obtain the original signal. Also,

More information

Experiment 7: Frequency Modulation and Phase Locked Loops

Experiment 7: Frequency Modulation and Phase Locked Loops Experiment 7: Frequency Modulation and Phase Locked Loops Frequency Modulation Background Normally, we consider a voltage wave form with a fixed frequency of the form v(t) = V sin( ct + ), (1) where c

More information

MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Linear Integrated Circuit Subject Code:

MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Linear Integrated Circuit Subject Code: MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Linear Integrated Circuit Subject Code: Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as

More information

Introduction to Basic Laboratory Instruments

Introduction to Basic Laboratory Instruments Introduction to Contents: 1. Objectives... 2 2. Laboratory Safety... 2 3.... 2 4. Using a DC Power Supply... 2 5. Using a Function Generator... 3 5.1 Turn on the Instrument... 3 5.2 Setting Signal Type...

More information

Universitas Sumatera Utara

Universitas Sumatera Utara Amplitude Shift Keying & Frequency Shift Keying Aim: To generate and demodulate an amplitude shift keyed (ASK) signal and a binary FSK signal. Intro to Generation of ASK Amplitude shift keying - ASK -

More information

Digital Communication

Digital Communication Digital Communication Laboratories bako@ieee.org DigiCom Labs There are 5 labs related to the digital communication. Study of the parameters of metal cables including: characteristic impendance, attenuation

More information

Exercise 2: Ohm s Law Circuit Current

Exercise 2: Ohm s Law Circuit Current Exercise 2: Circuit Current EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine current by using Ohm s law. You will verify your results with a multimeter. DISCUSSION

More information

Lecture 6. Angle Modulation and Demodulation

Lecture 6. Angle Modulation and Demodulation Lecture 6 and Demodulation Agenda Introduction to and Demodulation Frequency and Phase Modulation Angle Demodulation FM Applications Introduction The other two parameters (frequency and phase) of the carrier

More information

LINEAR IC APPLICATIONS

LINEAR IC APPLICATIONS 1 B.Tech III Year I Semester (R09) Regular & Supplementary Examinations December/January 2013/14 1 (a) Why is R e in an emitter-coupled differential amplifier replaced by a constant current source? (b)

More information

Introduction to basic laboratory instruments

Introduction to basic laboratory instruments Introduction to basic laboratory instruments 1. OBJECTIVES... 2 2. LABORATORY SAFETY... 2 3. BASIC LABORATORY INSTRUMENTS... 2 4. USING A DC POWER SUPPLY... 2 5. USING A FUNCTION GENERATOR... 3 5.1 TURN

More information

Modulation is the process of impressing a low-frequency information signal (baseband signal) onto a higher frequency carrier signal

Modulation is the process of impressing a low-frequency information signal (baseband signal) onto a higher frequency carrier signal Modulation is the process of impressing a low-frequency information signal (baseband signal) onto a higher frequency carrier signal Modulation is a process of mixing a signal with a sinusoid to produce

More information

EE470 Electronic Communication Theory Exam II

EE470 Electronic Communication Theory Exam II EE470 Electronic Communication Theory Exam II Open text, closed notes. For partial credit, you must show all formulas in symbolic form and you must work neatly!!! Date: November 6, 2013 Name: 1. [16%]

More information

Study of Analog Phase-Locked Loop (APLL)

Study of Analog Phase-Locked Loop (APLL) Laboratory Exercise 9. (Last updated: 18/1/013, Tamás Krébesz) Study of Analog Phase-Locked Loop (APLL) Required knowledge Operation principle of analog phase-locked-loop (APLL) Operation principle of

More information

EE-4022 Experiment 2 Amplitude Modulation (AM)

EE-4022 Experiment 2 Amplitude Modulation (AM) EE-4022 MILWAUKEE SCHOOL OF ENGINEERING 2015 Page 2-1 Student objectives: EE-4022 Experiment 2 Amplitude Modulation (AM) In this experiment the student will use laboratory modules to implement operations

More information

ELEC3242 Communications Engineering Laboratory Frequency Shift Keying (FSK)

ELEC3242 Communications Engineering Laboratory Frequency Shift Keying (FSK) ELEC3242 Communications Engineering Laboratory 1 ---- Frequency Shift Keying (FSK) 1) Frequency Shift Keying Objectives To appreciate the principle of frequency shift keying and its relationship to analogue

More information

EE 400L Communications. Laboratory Exercise #7 Digital Modulation

EE 400L Communications. Laboratory Exercise #7 Digital Modulation EE 400L Communications Laboratory Exercise #7 Digital Modulation Department of Electrical and Computer Engineering University of Nevada, at Las Vegas PREPARATION 1- ASK Amplitude shift keying - ASK - in

More information

Exercise 2: High-Pass Filters

Exercise 2: High-Pass Filters Exercise 2: High-Pass Filters EXERCISE OBJECTIVE When you have completed this exercise, you will be able to calculate and measure the cutoff frequencies oscilloscope. DISCUSSION of inductors, capacitors,

More information

The University of Jordan Mechatronics Engineering Department Electronics Lab.( ) Experiment 1: Lab Equipment Familiarization

The University of Jordan Mechatronics Engineering Department Electronics Lab.( ) Experiment 1: Lab Equipment Familiarization The University of Jordan Mechatronics Engineering Department Electronics Lab.(0908322) Experiment 1: Lab Equipment Familiarization Objectives To be familiar with the main blocks of the oscilloscope and

More information

Exercise 1: Series Resonant Circuits

Exercise 1: Series Resonant Circuits Series Resonance AC 2 Fundamentals Exercise 1: Series Resonant Circuits EXERCISE OBJECTIVE When you have completed this exercise, you will be able to compute the resonant frequency, total current, and

More information

Glossary of VCO terms

Glossary of VCO terms Glossary of VCO terms VOLTAGE CONTROLLED OSCILLATOR (VCO): This is an oscillator designed so the output frequency can be changed by applying a voltage to its control port or tuning port. FREQUENCY TUNING

More information

Experiment # 4. Frequency Modulation

Experiment # 4. Frequency Modulation ECE 416 Fall 2002 Experiment # 4 Frequency Modulation 1 Purpose In Experiment # 3, a modulator and demodulator for AM were designed and built. In this experiment, another widely used modulation technique

More information

Exercise 3: Voltage in a Series Resistive Circuit

Exercise 3: Voltage in a Series Resistive Circuit DC Fundamentals Series Resistive Circuits Exercise 3: Voltage in a Series Resistive Circuit EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine the voltage in a series

More information

2011 PSW American Society for Engineering Education Conference

2011 PSW American Society for Engineering Education Conference Communications Laboratory with Commercial Test and Training Instrument Peter Kinman and Daniel Murdock California State University Fresno Abstract A communications laboratory course has been designed around

More information

EXPERIMENT 4 - Part I: DSB Amplitude Modulation

EXPERIMENT 4 - Part I: DSB Amplitude Modulation OBJECTIVE To generate DSB amplitude modulated signal. EXPERIMENT 4 - Part I: DSB Amplitude Modulation PRELIMINARY DISCUSSION In an amplitude modulation (AM) communications system, the message signal is

More information

Department of Electronic and Information Engineering. Communication Laboratory. Phase Shift Keying (PSK) & Quadrature Phase Shift Keying (QPSK)

Department of Electronic and Information Engineering. Communication Laboratory. Phase Shift Keying (PSK) & Quadrature Phase Shift Keying (QPSK) Department of Electronic and Information Engineering Communication Laboratory Phase Shift Keying (PSK) & Quadrature Phase Shift Keying (QPSK) Objectives To familiar with the concept of describing phase

More information

Lock in Amplifier. Introduction. Motivation. Liz Schell and Allan Sadun Project Proposal

Lock in Amplifier. Introduction. Motivation. Liz Schell and Allan Sadun Project Proposal Liz Schell and Allan Sadun 6.101 Project Proposal Lock in Amplifier Introduction A lock in amplifier is an analog circuit that picks out and amplifies a particular frequency of oscillation and rejects

More information

Laboratory 6. Lab 6. Operational Amplifier Circuits. Required Components: op amp 2 1k resistor 4 10k resistors 1 100k resistor 1 0.

Laboratory 6. Lab 6. Operational Amplifier Circuits. Required Components: op amp 2 1k resistor 4 10k resistors 1 100k resistor 1 0. Laboratory 6 Operational Amplifier Circuits Required Components: 1 741 op amp 2 1k resistor 4 10k resistors 1 100k resistor 1 0.1 F capacitor 6.1 Objectives The operational amplifier is one of the most

More information

Hours / 100 Marks Seat No.

Hours / 100 Marks Seat No. 17445 21415 3 Hours / 100 Seat No. Instructions (1) All Questions are Compulsory. (2) Illustrate your answers with neat sketches wherever necessary. (3) Figures to the right indicate full marks. (4) Assume

More information

CME 312-Lab Communication Systems Laboratory

CME 312-Lab Communication Systems Laboratory Objective: By the end of this experiment, the student should be able to: 1. Demonstrate the Modulation and Demodulation of the AM. 2. Observe the relation between modulation index and AM signal envelope.

More information

Exercise 1: Touch and Position Sensing

Exercise 1: Touch and Position Sensing Exercise 1: Touch and Position Sensing EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe and demonstrate the use of a capacitance sensor as a touch sensor and a position

More information

AC : DEVELOPING DIGITAL/ANALOG TELECOMMUNICA- TION LABORATORY

AC : DEVELOPING DIGITAL/ANALOG TELECOMMUNICA- TION LABORATORY AC 2011-2119: DEVELOPING DIGITAL/ANALOG TELECOMMUNICA- TION LABORATORY Dr. Yuhong Zhang, Texas Southern University Yuhong Zhang is an assistant professor at Texas Southern University Xuemin Chen, Texas

More information

Exercise 2: Source and Sink Current

Exercise 2: Source and Sink Current Digital Logic Fundamentals Tri-State Output Exercise 2: Source and Sink Current EXERCISE OBJECTIVE When you have completed this exercise, you will be able to demonstrate how a tri-state buffer output can

More information

Exercise 2: AC Voltage and Power Gains

Exercise 2: AC Voltage and Power Gains Exercise 2: AC Voltage and Power Gains an oscilloscope. Signals of equal magnitude but opposite polarity are needed for each transistor (Q1 and Q2). Center-tapped input transformer T1 is used as a phase

More information

Exercise 2: Current in a Series Resistive Circuit

Exercise 2: Current in a Series Resistive Circuit DC Fundamentals Series Resistive Circuits Exercise 2: Current in a Series Resistive Circuit EXERCISE OBJECTIVE circuit by using a formula. You will verify your results with a multimeter. DISCUSSION Electric

More information

EE390 Frequency Modulation/Demodulation Lab #4

EE390 Frequency Modulation/Demodulation Lab #4 EE390 Frequency Modulation/Demodulation Lab #4 Objective Observe FM signals in both the time and frequency domain while making basic measurements. Equipment used. The Dual Function Generator: A feature

More information

Exercise 1: Effect of Shunt Feedback on AC Gain

Exercise 1: Effect of Shunt Feedback on AC Gain Exercise 1: Effect of Shunt Feedback on AC Gain When you have completed this exercise, you will be able to understand the effect of shunt negative feedback on ac gain by using a typical shunt feedback

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 8 AMPLITUDE MODULATION AND DEMODULATION OBJECTIVES The focus of this lab is to familiarize the student

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 7 PHASE LOCKED LOOPS OBJECTIVES The purpose of this lab is to familiarize students with the operation

More information

ericssonz LBI-38640E MAINTENANCE MANUAL FOR VHF TRANSMITTER SYNTHESIZER MODULE 19D902780G1 DESCRIPTION

ericssonz LBI-38640E MAINTENANCE MANUAL FOR VHF TRANSMITTER SYNTHESIZER MODULE 19D902780G1 DESCRIPTION MAINTENANCE MANUAL FOR VHF TRANSMITTER SYNTHESIZER MODULE 19D902780G1 TABLE OF CONTENTS Page DESCRIPTION........................................... Front Cover GENERAL SPECIFICATIONS...................................

More information

Exercise 1: DC Operation of a NOT and an OR-TIE

Exercise 1: DC Operation of a NOT and an OR-TIE Open Collector and Other TTL Gates Digital Logic Fundamentals Exercise 1: DC Operation of a NOT and an OR-TIE EXERCISE OBJECTIVE When you have completed this exercise, you will be able to demonstrate the

More information

Exercise 2: Parallel RLC Circuits

Exercise 2: Parallel RLC Circuits RLC Circuits AC 2 Fundamentals Exercise 2: Parallel RLC Circuits EXERCSE OBJECTVE When you have completed this exercise, you will be able to analyze parallel RLC circuits by using calculations and measurements.

More information

Basic Communication Laboratory Manual. Shimshon Levy&Harael Mualem

Basic Communication Laboratory Manual. Shimshon Levy&Harael Mualem Basic Communication Laboratory Manual Shimshon Levy&Harael Mualem September 2006 CONTENTS 1 The oscilloscope 2 1.1 Objectives... 2 1.2 Prelab... 2 1.3 Background Theory- Analog Oscilloscope...... 3 1.4

More information

PHYS Contemporary Physics Laboratory Laboratory Exercise: LAB 01 Resistivity, Root-mean-square Voltage, Potentiometer (updated 1/25/2017)

PHYS Contemporary Physics Laboratory Laboratory Exercise: LAB 01 Resistivity, Root-mean-square Voltage, Potentiometer (updated 1/25/2017) PHYS351001 Contemporary Physics Laboratory Laboratory Exercise: LAB 01 Resistivity, Root-mean-square Voltage, Potentiometer (updated 1/25/2017) PART I: SOME FUNDAMENTAL CONCEPTS: 1. Limits on accuracy

More information

Laboratory 9. Required Components: Objectives. Optional Components: Operational Amplifier Circuits (modified from lab text by Alciatore)

Laboratory 9. Required Components: Objectives. Optional Components: Operational Amplifier Circuits (modified from lab text by Alciatore) Laboratory 9 Operational Amplifier Circuits (modified from lab text by Alciatore) Required Components: 1x 741 op-amp 2x 1k resistors 4x 10k resistors 1x l00k resistor 1x 0.1F capacitor Optional Components:

More information

CHADALAWADA RAMANAMMA ENGINEERING COLLEGE (AUTONOMOUS) Chadalawada Nagar, Renigunta Road, Tirupati

CHADALAWADA RAMANAMMA ENGINEERING COLLEGE (AUTONOMOUS) Chadalawada Nagar, Renigunta Road, Tirupati IC APPLICATIONS LABORATORY MANUAL Subject Code : 15A04507 Regulations : R15 Class : V Semester (ECE) CHADALAWADA RAMANAMMA ENGINEERING COLLEGE (AUTONOMOUS) Chadalawada Nagar, Renigunta Road, Tirupati 517

More information

Costas Loop. Modules: Sequence Generator, Digital Utilities, VCO, Quadrature Utilities (2), Phase Shifter, Tuneable LPF (2), Multiplier

Costas Loop. Modules: Sequence Generator, Digital Utilities, VCO, Quadrature Utilities (2), Phase Shifter, Tuneable LPF (2), Multiplier Costas Loop Modules: Sequence Generator, Digital Utilities, VCO, Quadrature Utilities (2), Phase Shifter, Tuneable LPF (2), Multiplier 0 Pre-Laboratory Reading Phase-shift keying that employs two discrete

More information

6.101 Project Proposal April 9, 2014 Kayla Esquivel and Jason Yang. General Outline

6.101 Project Proposal April 9, 2014 Kayla Esquivel and Jason Yang. General Outline 6.101 Project Proposal April 9, 2014 Kayla Esquivel and Jason Yang General Outline We will build a superheterodyne AM Radio Receiver circuit that will have a bandwidth of the entire AM spectrum, and whose

More information

Multiple Instrument Station Module

Multiple Instrument Station Module Multiple Instrument Station Module Digital Storage Oscilloscope Vertical Channels Sampling rate Bandwidth Coupling Input impedance Vertical sensitivity Vertical resolution Max. input voltage Horizontal

More information

EECS 318 Electronics Lab Laboratory #2 Electronic Test Equipment

EECS 318 Electronics Lab Laboratory #2 Electronic Test Equipment EECS 318 Electronics Lab Laboratory #2 Electronic Test Equipment Objectives: The purpose of this laboratory is to acquaint you with the electronic sources and measuring equipment you will be using throughout

More information

ANALOG COMMUNICATION

ANALOG COMMUNICATION ANALOG COMMUNICATION TRAINING LAB Analog Communication Training Lab consists of six kits, one each for Modulation (ACL-01), Demodulation (ACL-02), Modulation (ACL-03), Demodulation (ACL-04), Noise power

More information

Exercise 2: Temperature Measurement

Exercise 2: Temperature Measurement Exercise 2: Temperature Measurement EXERCISE OBJECTIVE When you have completed this exercise, you will be able to explain the use of a thermocouple in temperature measurement applications. DISCUSSION the

More information

The Sampling Theorem:

The Sampling Theorem: The Sampling Theorem: Aim: Experimental verification of the sampling theorem; sampling and message reconstruction (interpolation). Experimental Procedure: Taking Samples: In the first part of the experiment

More information

Phase-locked loop PIN CONFIGURATIONS

Phase-locked loop PIN CONFIGURATIONS NE/SE DESCRIPTION The NE/SE is a versatile, high guaranteed frequency phase-locked loop designed for operation up to 0MHz. As shown in the Block Diagram, the NE/SE consists of a VCO, limiter, phase comparator,

More information

Exercise 3: EXERCISE OBJECTIVE

Exercise 3: EXERCISE OBJECTIVE Exercise 3: EXERCISE OBJECTIVE voltage equal to double the peak ac input voltage by using a voltage doubler circuit. You will verify your results with a multimeter and an oscilloscope. DISCUSSION times

More information

Twelve voice signals, each band-limited to 3 khz, are frequency -multiplexed using 1 khz guard bands between channels and between the main carrier

Twelve voice signals, each band-limited to 3 khz, are frequency -multiplexed using 1 khz guard bands between channels and between the main carrier Twelve voice signals, each band-limited to 3 khz, are frequency -multiplexed using 1 khz guard bands between channels and between the main carrier and the first channel. The modulation of the main carrier

More information

Volumes 1 and 2 Experiments in Modern Analog & Digital Telecommunications Barry Duncan

Volumes 1 and 2 Experiments in Modern Analog & Digital Telecommunications Barry Duncan Emona 101 Trainer SAMPLE Lab Manual Volumes 1 and 2 Experiments in Modern Analog & Digital Telecommunications Barry Duncan Emona 101 Trainer SAMPLE Lab Manual Volumes 1 and 2 Experiments in Modern Analog

More information