EVALUATION OF HURRICANE MITCH DAMAGES IN CENTRAL AMERICA

Size: px
Start display at page:

Download "EVALUATION OF HURRICANE MITCH DAMAGES IN CENTRAL AMERICA"

Transcription

1 EVALUATION OF HURRICANE MITCH DAMAGES IN CENTRAL AMERICA 1 Francis YAKAM SIMEN, 1 Edmond NEZRY, 2 Paul ROMEIJN, 1 Iwan SUPIT, 3 Philippe BALLY 1 PRIVATEERS N.V., P.O. Box 190, Great Bay Marina, Philipsburg, Netherlands Antilles @compuserve.com, Internet: 2 TRE , International Forestry Advisors Prins Bernhardlaan 37, BW 6866 Heelsum, The Netherlands. Internet: 3 SPOT IMAGE 5 rue des Satellites, BP 4359, Toulouse Cedex 4, France. Internet: ABSTRACT The states of Honduras, Nicaragua, and El Salvador have been toughly hit by the Mitch hurricane in the first days of November The extent of damages due to this hurricane, as well as their impact upon local economy were exceptional. In this framework, a remote sensing project was scrambled to provide a large scale evaluation of the damages suffered by the three countries. To reach this objective, new remote sensing products called DYNAMIC products have been designed. These products are, based on using, either RADAR satellite images, or Optical/RADAR satellite data fusion. The most efficient techniques have been applied to produce these products, thus enabling change detection at a very fine spatial scale (10x10 meters). Project schedule and operations, as well as the validation of its products are reported in this paper. 1. INTRODUCTION In the first days of November 1998, Central America was devastated by the hurricane Mitch. Although the three states of El Salvador, Honduras and Nicaragua had already often experienced hurricanes in the past, they had never before suffered such total devastation combining wide area floodings, huge forest cover destruction, important landslides, and large scale destruction of housing and infrastructures. To answer the public call for assistance expressed by these three countries, a joint project was put up by PRIVATEERS N.V., Spotimage and the European Space Agency (ESA) in order to carry out a wide area / high spatial resolution evaluation of the damages caused by the hurricane, using optical (SPOT) and radar (ERS) satellite imagery. The aim of the project was to deliver as quickly as possible accurate high spatial resolution digital and printed maps of the damages that could be used as straightforward as possible by local photo-interpreters. 2. TECHNICAL IMPLEMENTATION To reach this goal, the following data processing procedure was applied by PRIVATEERS N.V. 1) The ERS SAR data were used to detect the damages caused by the hurricane. First, calibration [1] of the whole ERS data set has been done to allow further radiometry-based comparison and change detection. In the change detection process, the ERS-1 SAR archive data acquired before Mitch was compared to the ERS-2 SAR data acquired just after Mitch. 2) Combined speckle filtering and super-resolution techniques developed by PRIVATEERS N.V. [2] have been applied to the ERS SAR data, to detect and map existing targets, before and after Mitch, with particular emphasis to housing and infrastructures, at a spatial resolution of 10 x 10 meters (SPOT Panchromatic resolution). 3) Change detection techniques appropriate to SAR images have been applied to detect and map the damages. 4) SPOT panchromatic archive images or speckle filtered ERS Synthetic Aperture Radar (SAR) images were used as mapping background. 5) Finally, two sets of cartographic (Universal Transverse Mercator projection) maps of before/after Mitch changes have been produced, on 10x10 meters (SPOT/ERS) and 20x20 meters (ERS only) grids, respectively. 6) A documentation describing the photo-interpretation keys and procedures for the end-users in Central America was issued and distributed. Since change detection is carried out on the bi- or multitemporal set of RADAR images, the radiometric resolution of the RADAR images used must be of very high quality. Since the radiometric resolution of RADAR images is naturally corrupted by the presence of speckle, speckle filtering (a too seldom mastered technique!) is the most critical issue for the success of the whole operation. The filter that has been used in this project is an adaptive speckle filter for multi-channel detected SAR images, recently developed by PRIVATEERS N.V.: the Distribution-Entropy Maximum A Posteriori (DE-MAP) filter [2]. The superiority of Bayesian speckle filters is mainly due to the introduction of A Priori scene knowledge in the filtering process. Nevertheless, in the presence of very strong texture or of mixed textures, as it is often the case in SAR images of dense tropical forest, and/or in the presence of relief (which is the case in Honduras, Nicaragua and El Salvador), it may be hazardous to make an assumption about the probability density function of the radar reflectivity of the scene. In this context, the A Priori knowledge with regard to

2 the observed scene can hardly be an analytical first order statistical model. However, in the DE-MAP speckle filters, a Maximum Entropy constraint on texture is introduced as A Priori knowledge regarding the imaged scene. The new DE-MAP filter is particularly efficient to reduce speckle noise, while preserving textural properties and spatial resolution, especially in strongly textured SAR images [2]. It adapts to a much larger range of textures than the previous MAP filters [3,4] developed under the assumption of K-distributed SAR intensity [3]. From the theoretical point of view, it is noteworthy that: - this filter presents the very attractive properties of a control system [5], - it allows to super-resolve SAR images [2,5], which is of high particular interest for ERS (PRI: pixel size: 12.5x12.5 meters, spatial resolution 22x25 meters) and SPOT-Panchromatic (pixel size: 10x10 meters) data fusion. Figure 1: The whole ERS and SPOT coverage used in the Mitch project UTM mosaic of DYNAMIC RADAR and DYNAMIC-SPOT products.

3 3. PROJECT SCHEDULE The SPOT and ERS satellite images were made available by Spotimage and ESA/Eurimage respectively in the course of November and December Altogether, these data allowed to study about km 2 in the most devastated areas of Honduras, Nicaragua and El Salvador. PRIVATEERS N.V. was in charge of project implementation and production of the value added products. The first ERS SAR archive images have been received by PRIVATEERS N.V. on November 17th, Before the end of December 1998, all ERS (19 archive images, and 7 images acquired in November 1998) and SPOT (11 archive images, and 2 images acquired in November 1998) images had been produced and delivered to PRIVATEERS N.V. by Spotimage and ESA. The whole ERS / SPOT coverage used in this project is shown in Figure 1. All ERS-based value-added cartographic products and part of the SPOT/ERS-based value-added cartographic products have been delivered by PRIVATEERS N.V. already during the month of December All the cartographic high spatial resolution value-added products had been delivered in the first days of This efficiency in managing and operating the project enabled rapid delivery of these results to the United Nations for validation planned in January/February 1999 in El Salvador. Validation was also carried out in Nicaragua by Spotimage in January/February 1999 and by PRIVATEERS N.V. in Honduras in March DETECTION OF DAMAGES USING SAR DATA ONLY For every ERS frame, a set of products called "DYNAMIC- RADAR" is produced to enable the detection and the photointerpretation of the changes and damages caused by the Mitch hurricane. The DYNAMIC-RADAR products are cartographic products (Universal Transverse Mercator projection, georeference WGS1984). The sampling rate adopted in the present project is 20 x 20 meters. The DYNAMIC-RADAR products are defined as follows: 1. A multi-date composite Black and White (B&W) image called "CARTO". This image is formed by averaging the calibrated and speckle filtered ERS archive data acquired before the Mitch hurricane. 2. A B&W image file illustrating the change in radar backscatter, and called "RATIO". This image is produced by doing the ratio of amplitudes between the calibrated and speckle filtered ERS image acquired after the Mitch hurricane and the CARTO product. 3. A 3 channels color image file called DYNAMIC- RADAR. A DYNAMIC-RADAR product combines: - the CARTO image (B&W), which is the background RADAR map. - the positive changes in radar backscattering (coded in red) build using the RATIO image. - the negative changes in radar backscattering (coded in blue) build using the RATIO image. The DYNAMIC-RADAR product results from the color composition of the CARTO image and of the two masks of temporal changes, in green/red/blue, respectively. Regarding the photo-interpretation keys, in the DYNAMIC- RADAR product, red tones denote in most cases, either the areas where the vegetation has suffered heavy damages, or destroyed infrastructures. Blue tones denote in most cases flooded areas, or water saturated areas (i.e. Figure 3). 5. DETECTION OF DAMAGES USING SAR AND OPTICAL DATA For every SPOT panchromatic frame (SPOT-PAN or SPOT- M), a set of products called "DYNAMIC-SPOT" is produced to enable the detection and the photointerpretation of the changes and damages caused by the Mitch hurricane. The DYNAMIC-SPOT products are cartographic products (Universal Transverse Mercator projection, georeference WGS1984). Their sampling rate is 10 x 10 meters. The DYNAMIC-SPOT products are as follows: 1. A B&W image called CARTO. This image is a SPOT panchromatic image acquired before (archive data) or after (recent acquisitions) the Mitch hurricane. 2. A B&W image file illustrating the change in radar backscatter, and called "RATIO" (same as for the DYNAMIC-RADAR products). This image is produced by doing the ratio of amplitudes between the calibrated and speckle filtered ERS image acquired after the Mitch hurricane and the CARTO product. 3. a 3 channels image file called DYNAMIC-SPOT. Thus, the DYNAMIC-SPOT product combines: - the SPOT panchromatic image (B&W), which is the background map. - a mask of the positive changes in radar backscattering (coded in red) build using the RATIO. - a mask of the negative changes in radar backscattering (coded in blue) build using the RATIO images. The DYNAMIC-SPOT product results from the addition of the SPOT panchromatic image and of the two masks of temporal changes, in green/red/blue, respectively (i.e. Figure 2). It is therefore the result of a common-sense data fusion process integrating RADAR change detection and SPOT panchromatic data to facilitate photo-interpretation of the final product. Regarding the photo-interpretation keys in DYNAMIC- SPOT products, they are similar to those of the DYNAMIC RADAR products

4 Figure 2: DYNAMIC-RADAR: Provinces of Cortès, Yoro, Atlantida. The main banana plantations area in Honduras, near San Pedro Sula, the second city in Honduras. Situation on November 5, Area represented is 56 x 77 kilometers. In blue, the flooded areas. In red, the damages to vegetation.

5 Figure 3: DYNAMIC-SPOT (Area represented is 51 x 52 kilometers): In Blue: Floodings of Rios Choluteca and Rio Negro, Gulf of Fonseca, Honduras. In Red: damages to pisciculture and agriculture. 6. VALIDATION OF RESULTS Nicaragua The mission of the Spotimage team in Nicaragua in January/February 1999 was the first opportunity to confront the DYNAMIC products to ground reality. After Spotimage team members of this validation campaign, the DYNAMIC products were reflecting correctly the situation, and were suitable to assess the material damages caused by the Mitch hurricane. In particular, the damages caused by the deadly mudflow descending from the Casitas vulcano had been correctly detected, as well as the damages in and around the city of Chinandega. Since then, it seems that the DYNAMIC products concerning Nicaragua were intensively used there. El Salvador As mentioned earlier, the results of this project have been transmitted to the commissioned United Nations body. Original intention was to validate and use these results in El Salvador. However, no feedback has been received. Honduras During a visit in Honduras in March 1999, PRIVATEERS N.V. team members went to compare the DYNAMIC products to ground reality in the area around Tegucigalpa, and along the road from Tegucigalpa to Juticalpa.

6 - In Tegucigalpa, missing houses could be identified, and destroyed houses could be found relying on the corresponding DYNAMIC-RADAR product. The outstanding performances of the new PRIVATEERS N.V. processing techniques preserving the spatial resolution of the SAR could be appreciated there. - Along the road Tegucigalpa-Juticalpa, destroyed bridges could be accurately identified on both the DYNAMIC- RADAR and DYNAMIC-SPOT products. We relied on these products to plan in advance overcoming these difficulties when traveling in this area. - Huge areas (mainly north of Tegucigalpa, easily identifiable in red on Figure 1) where the forest cover has been completely wiped out by the hurricane have also been identified as change areas detected (in red tones) by the DYNAMIC products. In particular, the changes observed on the slopes, originally thought to be artifacts, reflect with a good accuracy the disappearance of forest cover on the top and on the slopes of hills and mountains. A striking example of these changes has been observed on the hills south of Tegucigalpa, where both the trees and the housing were completely destroyed, as detected in the DYNAMIC-RADAR product. 7. TRANSFER OF INFORMATION TO LOCAL END-USERS Whenever possible, and as much as possible, the cartographic products were communicated by the project partners to the concerned bodies and institutions. Transmission of the results in Nicaragua has been done quickly, already in February 1999, due to good prior knowledge of the country. In Honduras, results have been transmitted after a rather long delay. Due to our limited knowledge of the country, the difficulty was to identify the bodies and institutions who could use remote sensing products. Now, Honduran end users (mainly national development agencies) are using them for the reconstruction. The DYNAMIC cartographic products have also been used to organize reconstruction missions send from Europe to Honduras by NGO s (i.e. Association France - Amérique Latine ) in CONCLUSION The Mitch project proved that, in order to produce useful results very shortly after a natural disaster such as a huge hurricane, the building of a professionally serious team, good project partners coordination and the use of appropriate and well mastered techniques lead to rapid project implementation and execution, even if the concerned area is very wide, and the requirements in terms of spatial resolution are very strict (In this project, km 2 were covered at the resolution of 20x20 meters, and km 2 were covered at the resolution of 10x10 meters). Regarding the products themselves, the DYNAMIC products proved to be reliable photo-interpretation tools to locate and identify the changes and the damages caused by the hurricane: flooding (San Pedro Sula, Gulf of Fonseca, etc.), destruction of housing (Tegucigalpa, Chinandega, Leon, etc.) and infrastructures (bridges), forest damages and brutal deforestation (especially in Honduras). However, in future projects of the same nature, improvements must be made with regard to the dissemination of results and the procurement of appropriate technical support to the concerned end-users. This applies in particular to some developing countries where remote sensing is still a little known technology. 9. REFERENCES [1] H. Laur, P. Bally, P. Meadows, J. Sanchez, B. Schaettler, E. Lopinto and D. Esteban, 1998: "ERS SAR calibration: derivation of the backscattering coefficient in ESA ERS SAR PRI products", ESA document nr.es-tn- RS-PM-HL09, Issue 2, Rev.5b, 47 p., 7 September [2] E. Nezry and F. Yakam-Simen, 1999: "Five new distribution-entropy MAP speckle filters for polarimetric SAR data, and for Single or Multi-Channel Detected and Complex SAR Images", Proceedings of SPIE, Vol.3869, pp , September [3] A. Lopes, E. Nezry, R. Touzi and H. Laur, 1993: "Structure detection and statistical adaptive speckle filtering in SAR images", International Journal of Remote Sensing, Vol.14, nr.9, pp , June [4] E. Nezry, F. Zagolski, A. Lopes and F. Yakam-Simen, 1996: "Bayesian filtering of multi-channel SAR images for detection of thin details and SAR data fusion", Proceedings of SPIE, Vol.2958, pp , September [5] E. Nezry, F. Yakam-Simen, F. Zagolski and I. Supit, 1997: "Control systems principles applied to speckle filtering and geophysical information extraction in multichannel SAR images", Proceedings of SPIE, Vol.3217, pp.48-57, September 1997.

Copernicus Introduction Lisbon, Portugal 13 th & 14 th February 2014

Copernicus Introduction Lisbon, Portugal 13 th & 14 th February 2014 Copernicus Introduction Lisbon, Portugal 13 th & 14 th February 2014 Contents Introduction GMES Copernicus Six thematic areas Infrastructure Space data An introduction to Remote Sensing In-situ data Applications

More information

SARscape Modules for ENVI

SARscape Modules for ENVI Visual Information Solutions SARscape Modules for ENVI Read, process, analyze, and output products from SAR data. ENVI. Easy to Use Tools. Proven Functionality. Fast Results. DEM, based on TerraSAR-X-1

More information

Application of Satellite Remote Sensing for Natural Disasters Observation

Application of Satellite Remote Sensing for Natural Disasters Observation Application of Satellite Remote Sensing for Natural Disasters Observation Prof. Krištof Oštir, Ph.D. University of Ljubljana Faculty of Civil and Geodetic Engineering Outline Earth observation current

More information

Towards Global Monitoring of Soil Moisture at 1 km Spatial Resolution using Sentinel-1: Initial Results

Towards Global Monitoring of Soil Moisture at 1 km Spatial Resolution using Sentinel-1: Initial Results Towards Global Monitoring of Soil Moisture at 1 km Spatial Resolution using Sentinel-1: Initial Results W. Wagner, V. Naeimi, B. Bauer-Marschallinger, S. Cao, A. Dostalova, C. Notarnicola, F. Greifeneder,

More information

CURRENT SCENARIO AND CHALLENGES IN THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES

CURRENT SCENARIO AND CHALLENGES IN THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES Remote Sensing Laboratory Dept. of Information Engineering and Computer Science University of Trento Via Sommarive, 14, I-38123 Povo, Trento, Italy CURRENT SCENARIO AND CHALLENGES IN THE ANALYSIS OF MULTITEMPORAL

More information

An Introduction to Geomatics. Prepared by: Dr. Maher A. El-Hallaq خاص بطلبة مساق مقدمة في علم. Associate Professor of Surveying IUG

An Introduction to Geomatics. Prepared by: Dr. Maher A. El-Hallaq خاص بطلبة مساق مقدمة في علم. Associate Professor of Surveying IUG An Introduction to Geomatics خاص بطلبة مساق مقدمة في علم الجيوماتكس Prepared by: Dr. Maher A. El-Hallaq Associate Professor of Surveying IUG 1 Airborne Imagery Dr. Maher A. El-Hallaq Associate Professor

More information

Introduction to RADAR Remote Sensing for Vegetation Mapping and Monitoring. Wayne Walker, Ph.D.

Introduction to RADAR Remote Sensing for Vegetation Mapping and Monitoring. Wayne Walker, Ph.D. Introduction to RADAR Remote Sensing for Vegetation Mapping and Monitoring Wayne Walker, Ph.D. Outline What is RADAR (and what does it measure)? RADAR as an active sensor Applications of RADAR to vegetation

More information

Int n r t o r d o u d c u ti t on o n to t o Remote Sensing

Int n r t o r d o u d c u ti t on o n to t o Remote Sensing Introduction to Remote Sensing Definition of Remote Sensing Remote sensing refers to the activities of recording/observing/perceiving(sensing)objects or events at far away (remote) places. In remote sensing,

More information

Envisat and ERS missions: data and services

Envisat and ERS missions: data and services FRINGE 2005 Workshop Envisat and ERS missions: and services Henri LAUR Envisat Mission Manager Our top objective: ease access to Earth Observation Common objective for all missions handled by ESA: Envisat,

More information

SUGAR_GIS. From a user perspective. Provides spatial distribution of a wide range of sugarcane production data in an easy to use and sensitive way.

SUGAR_GIS. From a user perspective. Provides spatial distribution of a wide range of sugarcane production data in an easy to use and sensitive way. SUGAR_GIS From a user perspective What is Sugar_GIS? A web-based, decision support tool. Provides spatial distribution of a wide range of sugarcane production data in an easy to use and sensitive way.

More information

CanImage. (Landsat 7 Orthoimages at the 1: Scale) Standards and Specifications Edition 1.0

CanImage. (Landsat 7 Orthoimages at the 1: Scale) Standards and Specifications Edition 1.0 CanImage (Landsat 7 Orthoimages at the 1:50 000 Scale) Standards and Specifications Edition 1.0 Centre for Topographic Information Customer Support Group 2144 King Street West, Suite 010 Sherbrooke, QC

More information

Co-ReSyF RA lecture: Vessel detection and oil spill detection

Co-ReSyF RA lecture: Vessel detection and oil spill detection This project has received funding from the European Union s Horizon 2020 Research and Innovation Programme under grant agreement no 687289 Co-ReSyF RA lecture: Vessel detection and oil spill detection

More information

Risk management using Remote Sensing data : moving from scientific to operational applications

Risk management using Remote Sensing data : moving from scientific to operational applications Risk management using Remote Sensing data : moving from scientific to operational applications F.Sarti (1), J.Inglada (1), R.Landry (2), T. Pultz (2) (1)CNES/QTIS, 18 av. E. Belin, 31401 Toulouse, France

More information

Monitoring Natural Disasters with Small Satellites Smart Satellite Based Geospatial System for Environmental Protection

Monitoring Natural Disasters with Small Satellites Smart Satellite Based Geospatial System for Environmental Protection Monitoring Natural Disasters with Small Satellites Smart Satellite Based Geospatial System for Environmental Protection Krištof Oštir, Space-SI, Slovenia Contents Natural and technological disasters Current

More information

ACTIVE SENSORS RADAR

ACTIVE SENSORS RADAR ACTIVE SENSORS RADAR RADAR LiDAR: Light Detection And Ranging RADAR: RAdio Detection And Ranging SONAR: SOund Navigation And Ranging Used to image the ocean floor (produce bathymetic maps) and detect objects

More information

RESERVOIR MONITORING USING RADAR SATELLITES

RESERVOIR MONITORING USING RADAR SATELLITES RESERVOIR MONITORING USING RADAR SATELLITES Alain Arnaud, Johanna Granda, Geraint Cooksley ALTAMIRA INFORMATION S.L., Calle Córcega 381-387, E-08037 Barcelona, Spain. Key words: Reservoir monitoring, InSAR,

More information

REMOTE SENSING FOR FLOOD HAZARD STUDIES.

REMOTE SENSING FOR FLOOD HAZARD STUDIES. REMOTE SENSING FOR FLOOD HAZARD STUDIES. OPTICAL SENSORS. 1 DRS. NANETTE C. KINGMA 1 Optical Remote Sensing for flood hazard studies. 2 2 Floods & use of remote sensing. Floods often leaves its imprint

More information

Flood monitoring in the Senegal River valley: First results based on SAR PRI data.

Flood monitoring in the Senegal River valley: First results based on SAR PRI data. Flood monitoring in the Senegal River valley: First results based on SAR PRI data. Inge Sandholt (1), Bjarne Fog (2), Rasmus Fensholt (3) Institute of Geography, University of Copenhagen, Ostervoldgade

More information

Description of the SPOTMaps 1.5 product

Description of the SPOTMaps 1.5 product Reference: S-ST-CA8-06-ADSI Issue: 1 Revision: 0 Date: 18/12/2015 CM chronology: 6899 First issued: 18/12/2015 Intelligence Operations / Exploitation Department Description of the SPOTMaps 1.5 product

More information

Specificities of Near Nadir Ka-band Interferometric SAR Imagery

Specificities of Near Nadir Ka-band Interferometric SAR Imagery Specificities of Near Nadir Ka-band Interferometric SAR Imagery Roger Fjørtoft, Alain Mallet, Nadine Pourthie, Jean-Marc Gaudin, Christine Lion Centre National d Etudes Spatiales (CNES), France Fifamé

More information

MULTI-TEMPORAL OBSERVATIONS OF SUGARCANE BY TERRASAR-X IMAGES

MULTI-TEMPORAL OBSERVATIONS OF SUGARCANE BY TERRASAR-X IMAGES MULTI-TEMPORAL OBSERVATIONS OF SUGARCANE BY TERRASAR-X IMAGES Nicolas BAGHDADI 1, Pierre TODOROFF 2, Thierry RABAUTE 3 and Claire TINEL 4 (1) CEMAGREF, UMR TETIS, 5 rue François Breton, 3493 Montpellier

More information

COMPARISON OF INFORMATION CONTENTS OF HIGH RESOLUTION SPACE IMAGES

COMPARISON OF INFORMATION CONTENTS OF HIGH RESOLUTION SPACE IMAGES COMPARISON OF INFORMATION CONTENTS OF HIGH RESOLUTION SPACE IMAGES H. Topan*, G. Büyüksalih*, K. Jacobsen ** * Karaelmas University Zonguldak, Turkey ** University of Hannover, Germany htopan@karaelmas.edu.tr,

More information

INTEGRATION OF MULTITEMPORAL ERS SAR AND LANDSAT TM DATA FOR SOIL MOISTURE ASSESSMENT

INTEGRATION OF MULTITEMPORAL ERS SAR AND LANDSAT TM DATA FOR SOIL MOISTURE ASSESSMENT INTEGRATION OF MULTITEMPORAL ERS SAR AND LANDSAT TM DATA FOR SOIL MOISTURE ASSESSMENT Beata HEJMANOWSKA, Stanisław MULARZ University of Mining and Metallurgy, Krakow, Poland Department of Photogrammetry

More information

How to Access Imagery and Carry Out Remote Sensing Analysis Using Landsat Data in a Browser

How to Access Imagery and Carry Out Remote Sensing Analysis Using Landsat Data in a Browser How to Access Imagery and Carry Out Remote Sensing Analysis Using Landsat Data in a Browser Including Introduction to Remote Sensing Concepts Based on: igett Remote Sensing Concept Modules and GeoTech

More information

SAR Othorectification and Mosaicking

SAR Othorectification and Mosaicking White Paper SAR Othorectification and Mosaicking John Wessels: Senior Scientist PCI Geomatics SAR Othorectification and Mosaicking This study describes the high-speed orthorectification and mosaicking

More information

Radiometric and Geometric Correction Methods for Active Radar and SAR Imageries

Radiometric and Geometric Correction Methods for Active Radar and SAR Imageries Radiometric and Geometric Correction Methods for Active Radar and SAR Imageries M. Mansourpour 1, M.A. Rajabi 1, Z. Rezaee 2 1 Dept. of Geomatics Eng., University of Tehran, Tehran, Iran mansourpour@gmail.com,

More information

SARscape for ENVI. A Complete SAR Analysis Solution

SARscape for ENVI. A Complete SAR Analysis Solution SARscape for ENVI A Complete SAR Analysis Solution IDL and ENVI A Foundation for SARscape IDL The Data Analysis & Visualization Platform Data Access: IDL supports virtually every data format, type and

More information

Rapid Disaster Analysis based on SAR Techniques

Rapid Disaster Analysis based on SAR Techniques The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W2, 2015 Rapid Disaster Analysis based on SAR Techniques C.H. Yang*, U. Soergel Technische

More information

An end-user-oriented framework for RGB representation of multitemporal SAR images and visual data mining

An end-user-oriented framework for RGB representation of multitemporal SAR images and visual data mining An end-user-oriented framework for RGB representation of multitemporal SAR images and visual data mining Donato Amitrano a, Francesca Cecinati b, Gerardo Di Martino a, Antonio Iodice a, Pierre-Philippe

More information

Combined Use of SAR and Optical Time Series Data towards Near Real-Time Forest Disturbance Mapping

Combined Use of SAR and Optical Time Series Data towards Near Real-Time Forest Disturbance Mapping Background Image Source bbc.co.uk Human Planet 2011 BBC Manuela Hirschmugl, Janik Deutscher, Karl-Heinz Gutjahr, Carina Sobe, Mathias Schardt Joanneum Research Earth Observation Services for Monitoring

More information

Digital database creation of historical Remote Sensing Satellite data from Film Archives A case study

Digital database creation of historical Remote Sensing Satellite data from Film Archives A case study Digital database creation of historical Remote Sensing Satellite data from Film Archives A case study N.Ganesh Kumar +, E.Venkateswarlu # Product Quality Control, Data Processing Area, NRSA, Hyderabad.

More information

Water Body Extraction Research Based on S Band SAR Satellite of HJ-1-C

Water Body Extraction Research Based on S Band SAR Satellite of HJ-1-C Cloud Publications International Journal of Advanced Remote Sensing and GIS 2016, Volume 5, Issue 2, pp. 1514-1523 ISSN 2320-0243, Crossref: 10.23953/cloud.ijarsg.43 Research Article Open Access Water

More information

Warren Cartwright, Product Manager MDA Geospatial Services, Canada

Warren Cartwright, Product Manager MDA Geospatial Services, Canada Advanced InSAR Techniques for Urban Infrastructure Monitoring Warren Cartwright, Product Manager MDA Geospatial Services, Canada www.mdacorporation.com RESTRICTION ON USE, PUBLICATION OR DISCLOSURE OF

More information

Automated Damage Analysis from Overhead Imagery

Automated Damage Analysis from Overhead Imagery Automated Damage Analysis from Overhead Imagery EVAN JONES ANDRE COLEMAN SHARI MATZNER Pacific Northwest National Laboratory 1 PNNL FY2015 at a Glance $955 million in R&D expenditures 4,400 scientists,

More information

IMPACT OF BAQ LEVEL ON INSAR PERFORMANCE OF RADARSAT-2 EXTENDED SWATH BEAM MODES

IMPACT OF BAQ LEVEL ON INSAR PERFORMANCE OF RADARSAT-2 EXTENDED SWATH BEAM MODES IMPACT OF BAQ LEVEL ON INSAR PERFORMANCE OF RADARSAT-2 EXTENDED SWATH BEAM MODES Jayson Eppler (1), Mike Kubanski (1) (1) MDA Systems Ltd., 13800 Commerce Parkway, Richmond, British Columbia, Canada, V6V

More information

MERIS instrument. Muriel Simon, Serco c/o ESA

MERIS instrument. Muriel Simon, Serco c/o ESA MERIS instrument Muriel Simon, Serco c/o ESA Workshop on Sustainable Development in Mountain Areas of Andean Countries Mendoza, Argentina, 26-30 November 2007 ENVISAT MISSION 2 Mission Chlorophyll case

More information

Module 3 Introduction to GIS. Lecture 8 GIS data acquisition

Module 3 Introduction to GIS. Lecture 8 GIS data acquisition Module 3 Introduction to GIS Lecture 8 GIS data acquisition GIS workflow Data acquisition (geospatial data input) GPS Remote sensing (satellites, UAV s) LiDAR Digitized maps Attribute Data Management Data

More information

Performance evaluation of several adaptive speckle filters for SAR imaging. Markus Robertus de Leeuw 1 Luis Marcelo Tavares de Carvalho 2

Performance evaluation of several adaptive speckle filters for SAR imaging. Markus Robertus de Leeuw 1 Luis Marcelo Tavares de Carvalho 2 Performance evaluation of several adaptive speckle filters for SAR imaging Markus Robertus de Leeuw 1 Luis Marcelo Tavares de Carvalho 2 1 Utrecht University UU Department Physical Geography Postbus 80125

More information

FORMOSAT-2 FOR INTERNATIONAL SOCIETAL BENEFITS

FORMOSAT-2 FOR INTERNATIONAL SOCIETAL BENEFITS FORMOSAT-2 FOR INTERNATIONAL SOCIETAL BENEFITS Ming-Chih Cheng 1, Celine Zhang 2 1 Researcher, 2 Research Assistant National Space Organization ABSTRACT The Group on Earth Observations (GEO), established

More information

Planet Labs Inc 2017 Page 2

Planet Labs Inc 2017 Page 2 SKYSAT IMAGERY PRODUCT SPECIFICATION: ORTHO SCENE LAST UPDATED JUNE 2017 SALES@PLANET.COM PLANET.COM Disclaimer This document is designed as a general guideline for customers interested in acquiring Planet

More information

Nadir Margins in TerraSAR-X Timing Commanding

Nadir Margins in TerraSAR-X Timing Commanding CEOS SAR Calibration and Validation Workshop 2008 1 Nadir Margins in TerraSAR-X Timing Commanding S. Wollstadt and J. Mittermayer, Member, IEEE Abstract This paper presents an analysis and discussion of

More information

remote sensing? What are the remote sensing principles behind these Definition

remote sensing? What are the remote sensing principles behind these Definition Introduction to remote sensing: Content (1/2) Definition: photogrammetry and remote sensing (PRS) Radiation sources: solar radiation (passive optical RS) earth emission (passive microwave or thermal infrared

More information

ASSESSMENT BY ESA OF GCOS CLIMATE MONITORING PRINCIPLES FOR GMES

ASSESSMENT BY ESA OF GCOS CLIMATE MONITORING PRINCIPLES FOR GMES Prepared by ESA Agenda Item: III.5 Discussed in WG3 ASSESSMENT BY ESA OF GCOS CLIMATE MONITORING PRINCIPLES FOR GMES The ESA Sentinel missions are being designed for the GMES services, with special emphasis

More information

Drafting Committee for the Asia Pacific Plan of Action for Space Applications for Sustainable Development ( ) Republic of Korea

Drafting Committee for the Asia Pacific Plan of Action for Space Applications for Sustainable Development ( ) Republic of Korea Drafting Committee for the Asia Pacific Plan of Action for Space Applications for Sustainable Development (2018 2030) Republic of Korea Bangkok, Thailand 31 May 1 June 2018 김 1 KARI Introduction Government

More information

Remote sensing in archaeology from optical to lidar. Krištof Oštir ModeLTER Scientific Research Centre of the Slovenian Academy of Sciences and Arts

Remote sensing in archaeology from optical to lidar. Krištof Oštir ModeLTER Scientific Research Centre of the Slovenian Academy of Sciences and Arts Remote sensing in archaeology from optical to lidar Krištof Oštir ModeLTER Scientific Research Centre of the Slovenian Academy of Sciences and Arts Introduction Optical remote sensing Systems Search for

More information

Global 25 m Resolution PALSAR-2/PALSAR Mosaic. and Forest/Non-Forest Map (FNF) Dataset Description

Global 25 m Resolution PALSAR-2/PALSAR Mosaic. and Forest/Non-Forest Map (FNF) Dataset Description Global 25 m Resolution PALSAR-2/PALSAR Mosaic and Forest/Non-Forest Map (FNF) Dataset Description Japan Aerospace Exploration Agency (JAXA) Earth Observation Research Center (EORC) 1 Revision history Version

More information

Earth Watching: A Window on Special Events

Earth Watching: A Window on Special Events r bulletin 94 may 1998 Earth Watching: A Window on Special Events S. D Elia Earth Remote Sensing Exploitation Division, Directorate of Application Programmes, ESRIN, Frascati, Italy R. Biasutti EO Satellite

More information

The availability of cloud free Landsat TM and ETM+ land observations and implications for global Landsat data production

The availability of cloud free Landsat TM and ETM+ land observations and implications for global Landsat data production 14475 The availability of cloud free Landsat TM and ETM+ land observations and implications for global Landsat data production *V. Kovalskyy, D. Roy (South Dakota State University) SUMMARY The NASA funded

More information

Image interpretation I and II

Image interpretation I and II Image interpretation I and II Looking at satellite image, identifying different objects, according to scale and associated information and to communicate this information to others is what we call as IMAGE

More information

Review. Guoqing Sun Department of Geography, University of Maryland ABrief

Review. Guoqing Sun Department of Geography, University of Maryland ABrief Review Guoqing Sun Department of Geography, University of Maryland gsun@glue.umd.edu ABrief Introduction Scattering Mechanisms and Radar Image Characteristics Data Availability Example of Applications

More information

DETECTION OF BUILDING SIDE-WALL DAMAGE CAUSED BY THE 2011 TOHOKU, JAPAN EARTHQUAKE TSUNAMIS USING HIGH-RESOLUTION SAR IMAGERY

DETECTION OF BUILDING SIDE-WALL DAMAGE CAUSED BY THE 2011 TOHOKU, JAPAN EARTHQUAKE TSUNAMIS USING HIGH-RESOLUTION SAR IMAGERY 10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska DETECTION OF BUILDING SIDE-WALL DAMAGE CAUSED BY THE 2011 TOHOKU,

More information

DIGITALGLOBE ATMOSPHERIC COMPENSATION

DIGITALGLOBE ATMOSPHERIC COMPENSATION See a better world. DIGITALGLOBE BEFORE ACOMP PROCESSING AFTER ACOMP PROCESSING Summary KOBE, JAPAN High-quality imagery gives you answers and confidence when you face critical problems. Guided by our

More information

MODULE 7 LECTURE NOTES 3 SHUTTLE RADAR TOPOGRAPHIC MISSION DATA

MODULE 7 LECTURE NOTES 3 SHUTTLE RADAR TOPOGRAPHIC MISSION DATA MODULE 7 LECTURE NOTES 3 SHUTTLE RADAR TOPOGRAPHIC MISSION DATA 1. Introduction Availability of a reasonably accurate elevation information for many parts of the world was once very much limited. Dense

More information

Outline. From AGEA-JRC I (2007) to AGEA-JRC II ( ) COSMO-SkyMed constellation for Earth observation and applications

Outline. From AGEA-JRC I (2007) to AGEA-JRC II ( ) COSMO-SkyMed constellation for Earth observation and applications Outline From AGEA-JRC I (2007) to AGEA-JRC II (2008-09) COSMO-SkyMed constellation for Earth observation and applications COSMO-SkyMed GeoAccuracy assessment o Geometric o Parcels measurements performances

More information

HIGH RESOLUTION COLOR IMAGERY FOR ORTHOMAPS AND REMOTE SENSING. Author: Peter Fricker Director Product Management Image Sensors

HIGH RESOLUTION COLOR IMAGERY FOR ORTHOMAPS AND REMOTE SENSING. Author: Peter Fricker Director Product Management Image Sensors HIGH RESOLUTION COLOR IMAGERY FOR ORTHOMAPS AND REMOTE SENSING Author: Peter Fricker Director Product Management Image Sensors Co-Author: Tauno Saks Product Manager Airborne Data Acquisition Leica Geosystems

More information

Textural analysis of coca plantations using 1-meter-resolution remotely-sensed data

Textural analysis of coca plantations using 1-meter-resolution remotely-sensed data UNODC Workshop, 25-28 November, Bogota, Colombia 1 Textural analysis of coca plantations using 1-meter-resolution remotely-sensed data Workshop on Measurement of Cultivation and Production of Coca Leaves

More information

Sentinel-1 Overview. Dr. Andrea Minchella

Sentinel-1 Overview. Dr. Andrea Minchella Dr. Andrea Minchella 21-22/01/2016 ESA SNAP-Sentinel-1 Training Course Satellite Applications Catapult - Electron Building, Harwell, Oxfordshire Contents Sentinel-1 Mission Sentinel-1 SAR Modes Sentinel-1

More information

RADAR (RAdio Detection And Ranging)

RADAR (RAdio Detection And Ranging) RADAR (RAdio Detection And Ranging) CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS PASSIVE ACTIVE DIGITAL CAMERA THERMAL (e.g. TIMS) VIDEO CAMERA MULTI- SPECTRAL SCANNERS VISIBLE & NIR MICROWAVE Real

More information

The ERS contribution to Oil Spill Monitoring - From R&D towards an operational service -

The ERS contribution to Oil Spill Monitoring - From R&D towards an operational service - The ERS contribution to Oil Spill Monitoring - From R&D towards an operational service - J.P. Pedersen, T.Bauna, L.G. Seljelv, L. Steinbakk, R.T.Enoksen Tromsø Satellite Station, N-9291 Tromsø, Norway

More information

Image interpretation. Aliens create Indian Head with an ipod? Badlands Guardian (CBC) This feature can be found 300 KMs SE of Calgary.

Image interpretation. Aliens create Indian Head with an ipod? Badlands Guardian (CBC) This feature can be found 300 KMs SE of Calgary. Image interpretation Aliens create Indian Head with an ipod? Badlands Guardian (CBC) This feature can be found 300 KMs SE of Calgary. 50 1 N 110 7 W Milestones in the History of Remote Sensing 19 th century

More information

Microwave remote sensing. Rudi Gens Alaska Satellite Facility Remote Sensing Support Center

Microwave remote sensing. Rudi Gens Alaska Satellite Facility Remote Sensing Support Center Microwave remote sensing Alaska Satellite Facility Remote Sensing Support Center 1 Remote Sensing Fundamental The entire range of EM radiation constitute the EM Spectrum SAR sensors sense electromagnetic

More information

RADARSAT-2 Modes and Applications

RADARSAT-2 Modes and Applications RADARSAT-2 Modes and Applications Gordon Staples MDA Geospatial Services February 6, 2017 1 Introduction RADARSAT-2 was developed to meet operational needs via a versatile space segment and a responsive

More information

Global 25 m Resolution PALSAR-2/PALSAR Mosaic. and Forest/Non-Forest Map (FNF) Dataset Description

Global 25 m Resolution PALSAR-2/PALSAR Mosaic. and Forest/Non-Forest Map (FNF) Dataset Description Global 25 m Resolution PALSAR-2/PALSAR Mosaic and Forest/Non-Forest Map (FNF) Dataset Description Japan Aerospace Exploration Agency (JAXA) Earth Observation Research Center (EORC) 1 Revision history Version

More information

Geo/SAT 2 INTRODUCTION TO REMOTE SENSING

Geo/SAT 2 INTRODUCTION TO REMOTE SENSING Geo/SAT 2 INTRODUCTION TO REMOTE SENSING Paul R. Baumann, Professor Emeritus State University of New York College at Oneonta Oneonta, New York 13820 USA COPYRIGHT 2008 Paul R. Baumann Introduction Remote

More information

RADAR INTERFEROMETRY FOR SAFE COAL MINING IN CHINA

RADAR INTERFEROMETRY FOR SAFE COAL MINING IN CHINA RADAR INTERFEROMETRY FOR SAFE COAL MINING IN CHINA L. Ge a, H.-C. Chang a, A. H. Ng b and C. Rizos a Cooperative Research Centre for Spatial Information School of Surveying & Spatial Information Systems,

More information

SAR Multi-Temporal Applications

SAR Multi-Temporal Applications SAR Multi-Temporal Applications 83230359-DOC-TAS-EN-001 Contents 2 Advantages of SAR Remote Sensing Technology All weather any time Frequencies and polarisations Interferometry and 3D mapping Change Detection

More information

Radio Frequency Sensing from Space

Radio Frequency Sensing from Space Radio Frequency Sensing from Space Edoardo Marelli ITU-R WP 7C Chairman ITU-R Seminar Manta (Ecuador) 20 September 2012 Why observing the Earth from space? Satellites orbiting around the Earth offer an

More information

SAR IMAGE ANALYSIS FOR MICROWAVE C-BAND FINE QUAD POLARISED RADARSAT-2 USING DECOMPOSITION AND SPECKLE FILTER TECHNIQUE

SAR IMAGE ANALYSIS FOR MICROWAVE C-BAND FINE QUAD POLARISED RADARSAT-2 USING DECOMPOSITION AND SPECKLE FILTER TECHNIQUE SAR IMAGE ANALYSIS FOR MICROWAVE C-BAND FINE QUAD POLARISED RADARSAT-2 USING DECOMPOSITION AND SPECKLE FILTER TECHNIQUE ABSTRACT Mudassar Shaikh Department of Electronics Science, New Arts, Commerce &

More information

On the stability of Amazon rainforest backscattering during the ERS-2 Scatterometer mission lifetime

On the stability of Amazon rainforest backscattering during the ERS-2 Scatterometer mission lifetime On the stability of Amazon rainforest backscattering during the ERS- Scatterometer mission lifetime R. Crapolicchio (), P. Lecomte () () Serco S.p.A. c/o ESA-ESRIN Via Galileo Galilei 44 Frascati Italy

More information

DEM GENERATION WITH WORLDVIEW-2 IMAGES

DEM GENERATION WITH WORLDVIEW-2 IMAGES DEM GENERATION WITH WORLDVIEW-2 IMAGES G. Büyüksalih a, I. Baz a, M. Alkan b, K. Jacobsen c a BIMTAS, Istanbul, Turkey - (gbuyuksalih, ibaz-imp)@yahoo.com b Zonguldak Karaelmas University, Zonguldak, Turkey

More information

APPLICATION OF REMOTE SENSING DATA FOR OIL SPILL MONITORING IN THE GUANABARA BAY, RIO DE JANEIRO, BRAZIL

APPLICATION OF REMOTE SENSING DATA FOR OIL SPILL MONITORING IN THE GUANABARA BAY, RIO DE JANEIRO, BRAZIL APPLICATION OF REMOTE SENSING DATA FOR OIL SPILL MONITORING IN THE GUANABARA BAY, RIO DE JANEIRO, BRAZIL CRISTINA MARIA BENTZ 1 FERNANDO PELLON DE MIRANDA 1 1 PETROBRAS/CEGEQ (Center of Excellence in Geochemistry

More information

PEGASUS : a future tool for providing near real-time high resolution data for disaster management. Lewyckyj Nicolas

PEGASUS : a future tool for providing near real-time high resolution data for disaster management. Lewyckyj Nicolas PEGASUS : a future tool for providing near real-time high resolution data for disaster management Lewyckyj Nicolas nicolas.lewyckyj@vito.be http://www.pegasus4europe.com Overview Vito in a nutshell GI

More information

Blacksburg, VA July 24 th 30 th, 2010 Remote Sensing Page 1. A condensed overview. For our purposes

Blacksburg, VA July 24 th 30 th, 2010 Remote Sensing Page 1. A condensed overview. For our purposes A condensed overview George McLeod Prepared by: With support from: NSF DUE-0903270 in partnership with: Geospatial Technician Education Through Virginia s Community Colleges (GTEVCC) The art and science

More information

Advanced Techniques in Urban Remote Sensing

Advanced Techniques in Urban Remote Sensing Advanced Techniques in Urban Remote Sensing Manfred Ehlers Institute for Geoinformatics and Remote Sensing (IGF) University of Osnabrueck, Germany mehlers@igf.uni-osnabrueck.de Contents Urban Remote Sensing:

More information

Change Detection using SAR Data

Change Detection using SAR Data White Paper Change Detection using SAR Data John Wessels: Senior Scientist PCI Geomatics Change Detection using SAR Data The ability to identify and measure significant changes in target scattering and/or

More information

What is Remote Sensing? Contents. Image Fusion in Remote Sensing. 1. Optical imagery in remote sensing. Electromagnetic Spectrum

What is Remote Sensing? Contents. Image Fusion in Remote Sensing. 1. Optical imagery in remote sensing. Electromagnetic Spectrum Contents Image Fusion in Remote Sensing Optical imagery in remote sensing Image fusion in remote sensing New development on image fusion Linhai Jing Applications Feb. 17, 2011 2 1. Optical imagery in remote

More information

Change detection in cultural landscapes

Change detection in cultural landscapes 9-11 November 2015 ESA-ESRIN, Frascati (Rome), Italy 3 rd ESA-EARSeL Course on Remote Sensing for Archaeology Day 3 Change detection in cultural landscapes DeodatoTapete (1,2) & Francesca Cigna (1,2) (1)

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction One of the major achievements of mankind is to record the data of what we observe in the form of photography which is dated to 1826. Man has always tried to reach greater heights

More information

EE 529 Remote Sensing Techniques. Introduction

EE 529 Remote Sensing Techniques. Introduction EE 529 Remote Sensing Techniques Introduction Course Contents Radar Imaging Sensors Imaging Sensors Imaging Algorithms Imaging Algorithms Course Contents (Cont( Cont d) Simulated Raw Data y r Processing

More information

GeoBase Raw Imagery Data Product Specifications. Edition

GeoBase Raw Imagery Data Product Specifications. Edition GeoBase Raw Imagery 2005-2010 Data Product Specifications Edition 1.0 2009-10-01 Government of Canada Natural Resources Canada Centre for Topographic Information 2144 King Street West, suite 010 Sherbrooke,

More information

NOISE REMOVAL TECHNIQUES FOR MICROWAVE REMOTE SENSING RADAR DATA AND ITS EVALUATION

NOISE REMOVAL TECHNIQUES FOR MICROWAVE REMOTE SENSING RADAR DATA AND ITS EVALUATION NOISE REMOVAL TECHNIQUES FOR MICROWAVE REMOTE SENSING RADAR DATA AND ITS EVALUATION Arundhati Misra 1, Dr. B Kartikeyan 2, Prof. S Garg* Space Applications Centre, ISRO, Ahmedabad,India. *HOD of Computer

More information

Digital Image Processing

Digital Image Processing Digital Image Processing 1 Patrick Olomoshola, 2 Taiwo Samuel Afolayan 1,2 Surveying & Geoinformatic Department, Faculty of Environmental Sciences, Rufus Giwa Polytechnic, Owo. Nigeria Abstract: This paper

More information

Removing Thick Clouds in Landsat Images

Removing Thick Clouds in Landsat Images Removing Thick Clouds in Landsat Images S. Brindha, S. Archana, V. Divya, S. Manoshruthy & R. Priya Dept. of Electronics and Communication Engineering, Avinashilingam Institute for Home Science and Higher

More information

CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1

CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1 CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1 Dr. Mathias (Mat) Disney UCL Geography Office: 113, Pearson Building Tel: 7670 05921 Email: mdisney@ucl.geog.ac.uk www.geog.ucl.ac.uk/~mdisney

More information

ERS-2 SAR CYCLIC REPORT

ERS-2 SAR CYCLIC REPORT ERS-2 SAR CYCLIC REPORT C YCLE 90 24-November-2003-29-December-2003 Prepared by: PCS SAR TEAM Issue: 1.0 Reference: Date of Issue Status: Document type: Technical Note Approved by: T A B L E L E O F C

More information

Introduction to Radar

Introduction to Radar National Aeronautics and Space Administration ARSET Applied Remote Sensing Training http://arset.gsfc.nasa.gov @NASAARSET Introduction to Radar Jul. 16, 2016 www.nasa.gov Objective The objective of this

More information

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011 Training Course Remote Sensing Basic Theory & Image Processing Methods 19 23 September 2011 Popular Remote Sensing Sensors & their Selection Michiel Damen (September 2011) damen@itc.nl 1 Overview Low resolution

More information

AVHRR/3 Operational Calibration

AVHRR/3 Operational Calibration AVHRR/3 Operational Calibration Jörg Ackermann, Remote Sensing and Products Division 1 Workshop`Radiometric Calibration for European Missions, 30/31 Aug. 2017`,Frascati (EUM/RSP/VWG/17/936014) AVHRR/3

More information

Use of Synthetic Aperture Radar images for Crisis Response and Management

Use of Synthetic Aperture Radar images for Crisis Response and Management 2012 IEEE Global Humanitarian Technology Conference Use of Synthetic Aperture Radar images for Crisis Response and Management Gerardo Di Martino, Antonio Iodice, Daniele Riccio, Giuseppe Ruello Department

More information

Abstract. Keywords: landslide, Control Point Detection, Change Detection, Remote Sensing Satellite Imagery Data, Time Diversity.

Abstract. Keywords: landslide, Control Point Detection, Change Detection, Remote Sensing Satellite Imagery Data, Time Diversity. Sensor Network for Landslide Monitoring With Laser Ranging System Avoiding Rainfall Influence on Laser Ranging by Means of Time Diversity and Satellite Imagery Data Based Landslide Disaster Relief Kohei

More information

Detection of a Point Target Movement with SAR Interferometry

Detection of a Point Target Movement with SAR Interferometry Journal of the Korean Society of Remote Sensing, Vol.16, No.4, 2000, pp.355~365 Detection of a Point Target Movement with SAR Interferometry Jung-Hee Jun* and Min-Ho Ka** Agency for Defence Development*,

More information

USGS Welcome. 38 th CEOS Working Group on Calibration and Validation Plenary (WGCV-38)

USGS Welcome. 38 th CEOS Working Group on Calibration and Validation Plenary (WGCV-38) Landsat 5 USGS Welcome Prepared for 38 th CEOS Working Group on Calibration and Validation Plenary (WGCV-38) Presenter Tom Cecere International Liaison USGS Land Remote Sensing Program Elephant Butte Reservoir

More information

NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS

NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS PASSIVE ACTIVE DIGITAL

More information

Introduction of Satellite Remote Sensing

Introduction of Satellite Remote Sensing Introduction of Satellite Remote Sensing Spatial Resolution (Pixel size) Spectral Resolution (Bands) Resolutions of Remote Sensing 1. Spatial (what area and how detailed) 2. Spectral (what colors bands)

More information

Data acquisition and access for the Congo Basin

Data acquisition and access for the Congo Basin MRV Joint Workshop 22-24 June 2010, Guadalajara, Jalisco Mexico Data acquisition and access for the Congo Basin Landing Mané 1, Michael Brady 2, Chris Justice 3 and Alice Altstatt 3 1) Satellite Observatory

More information

Benefits of fusion of high spatial and spectral resolutions images for urban mapping

Benefits of fusion of high spatial and spectral resolutions images for urban mapping Benefits of fusion of high spatial and spectral resolutions s for urban mapping Thierry Ranchin, Lucien Wald To cite this version: Thierry Ranchin, Lucien Wald. Benefits of fusion of high spatial and spectral

More information

Fusion of Heterogeneous Multisensor Data

Fusion of Heterogeneous Multisensor Data Fusion of Heterogeneous Multisensor Data Karsten Schulz, Antje Thiele, Ulrich Thoennessen and Erich Cadario Research Institute for Optronics and Pattern Recognition Gutleuthausstrasse 1 D 76275 Ettlingen

More information

NRS 415 Remote Sensing of Environment

NRS 415 Remote Sensing of Environment NRS 415 Remote Sensing of Environment 1 High Oblique Perspective (Side) Low Oblique Perspective (Relief) 2 Aerial Perspective (See What s Hidden) An example of high spatial resolution true color remote

More information

Remote sensing radio applications/ systems for environmental monitoring

Remote sensing radio applications/ systems for environmental monitoring Remote sensing radio applications/ systems for environmental monitoring Alexandre VASSILIEV ITU Radiocommunication Bureau phone: +41 22 7305924 e-mail: alexandre.vassiliev@itu.int 1 Source: European Space

More information

Development of the Technology of Utilization of Airborne Synthetic Aperture Radar (SAR)

Development of the Technology of Utilization of Airborne Synthetic Aperture Radar (SAR) Development of the Technology of Utilization of Airborne Synthetic Aperture Radar (SAR) Mamoru Koarai, Kouichi Moteki, Nobuyuki Watanabe, Takaki Okatani,Youko Yamada and Kaoru Matsuo Geographical Survey

More information