VERTICAL AERIAL PHOTOGRAPHY

Size: px
Start display at page:

Download "VERTICAL AERIAL PHOTOGRAPHY"

Transcription

1 VERTICAL AERIAL PHOTOGRAPHY Mike Craig Cooperative Research Centre for Landscape Environments and Mineral Exploration, Geoscience Australia. PO Box 378, Canberra, ACT DESCRIPTION Aerial photographs (sometimes called airphotos) are often the first choice of imagery datasets available to help interpret regolith landform characteristics especially for mineral exploration. Aerial photographs are easy to use, especially for lesser-experienced interpreters. Photographs are often more widely applicable because they are based on the visible portion of the spectrum and can provide more easily identifiable ground features with which to work. The use of ordinary photographs, mostly as contact prints either black and white or often colour, is a widely practiced and well known technique for obtaining geological information otherwise not readily available. Regolith is part of that geological information, and can be interpreted from photographs. Regolith characteristics are closely related to landform characteristics and landform evolution. Regolith and landform attributes are more easily recognised by interpreters with training in geomorphology. Vertical aerial photographs are taken with the camera pointing vertically towards the ground surface. Other orientations are possible such as high angle oblique where the tilt of the camera includes the horizon or low angle oblique where the tilt of the camera is insufficient to include the horizon. The major advantage in the use of vertical aerial photographs comes from their ability to show the landscape and its features in three dimensions as a stereomodel. Stereomodels are usually seen with the aid of a stereoscopic viewer to view two photographs simultaneously. The photographs are taken usually in the visible light spectrum in an overlapping arrangement that permits scene duplication on at least two successive frames. This duplication is known as stereoscopic overlap. Often the overlap between photographs is optimised at 60% in the forward direction forward-lap and 30% as sidelap. With this arrangement, every second photo is sufficient to provide a satisfactory stereomodel. The complete suite therefore can be divided into an alternate set, a conjugate set, and either set can be used for interpretation. Regardless of whether sequential photos or alternate photos are used to establish and view a stereomodel there is an element of vertical exaggeration introduced into the vertical scale of the model. This is due to the vertical scale being greater than the horizontal scale. The degree of exaggeration present in the model is related to the separation of the photo centres (ie. principal points) and the geometry of the viewing apparatus. The exaggeration that stereoscopic viewing of photos in alternate number sets induces is double the vertical exaggeration of photos viewed in sequential number order. (As a rough rule of thumb the vertical exaggeration seen in the 3D model from stereoscopic viewing of normal sequential 60% overlap photography, is between 3-4 times the horizontal scale). Contained on each aerial photographic print is a strip of information known as the title strip. The title strip is usually located on one edge of each individual photograph and contains details relevant to that photograph. The title strip typically includes: the name of the geographic sheet, or of the local area on the ground, over which the photograph was taken, a number specific to that photo (identifying the order of acquisition within the flight line), flying altitude (above sea level) at time of photography, the identity number of the negative on which the photo occurs, the focal length of the lens on the camera used (the nominal photo scale is derived by determining the ratio of the focal length of the camera lens divided by the flying altitude all in common units), a designator of the camera type (eg. RC 9), and an arrow indicating the general direction of North. In Papp, É. (Editor), 2002, Geophysical and Remote Sensing Methods for Regolith Exploration, CRCLEME Open File Report 144, pp

2 There are possible errors introduced at the time of acquiring aerial photography. It is best to be aware of these errors because they can make using aerial photos more awkward. The error caused by plane drift during photo acquisition is characterised by the photo edges being parallel but not collinear within one flight line (also known as a run). Between successive flight lines, drift can cause the sidelap to be highly variable or sometimes non-existent. Crab error on the other hand results in twisting of the photo orientation so that the photo edges are not parallel with the flight line. Usually, crab results from an effort to correct drift without the necessary correction to aircraft heading. Aircraft induced pitch, yaw and roll errors can also be incorporated into vertical aerial photographs and may need to be removed in particular circumstances. These errors will not be discussed here. Runs of airphotographs may be arranged to form a complete coverage of a designated area. They can be assembled in ways to reduce feature mismatch, further manipulated to reduce tonal differences or just assemble without modification. Print laydowns are assemblages of sequences of aerial photos, usually every second print in their correct relative positions to provide an approximate unrectified map. This may be rephotographed and form a photoindex. The prints may be cut to eliminate the distorted portions and then these parts fitted together along fencelines, roads, rivers and ridge crests for example to form a jigsaw puzzle like map. It is still not geographically correct and is said to be an uncontrolled photomosaic. If careful correction of differences in scale, tone, tilt of each print is carried out, a controlled photomosaic can be produced. These may be sold by the various agencies. They may cost many tens of dollars, depending on the area required and scales involved. Digital photogrammetry is now more readily available through contractors and is increasingly used to produce such products. The cost is sometimes a little less and may be already produced in areas of significant exploration activity. Sometimes digital elevation models are a by-product of this work and may be available at affordable prices. They can be important additional datasets to help with interpretations. 2. FIELD PROCEDURES Preliminary interpretation may be made prior to visiting the field. Ultimately though the interpreter reaches a point where experience fails to resolve uncertainties in interpretation. Field calibration of photographic images is usually required by the interpreter to resolve uncertainties. Once the relief patterns, tones, textures, and perhaps colours in the photopatterns are understood a more reliable interpretation can result. Calibration may sometimes be possible and be based only on the interpreters prior experience. There are no hard and fast rules; each case is different. Photopatterns are calibrated by collecting attributes describing the regolith materials and landform characteristics. All attribute descriptions are usually linked to the observation point marked on the photographs. These represent the calibration points and form part of the more general site descriptions recorded during fieldwork. The points should be spatially located by way of some form of geographic coordinate for later more accurate construction of maps whether hard copy or digital. 3. DATA PROCESSING Mostly processing of aerial photographs, because they are from the visible spectrum, is done through the eyes (with the aid of optical instruments) of trained experienced interpreters. Aerial photographs can be reprocessed by computer manipulation using specialised software packages. This should only be undertaken by experienced interpreters with the required computing skills. The "black-box" approach can be a trap for the inexperienced. 4. DATA INTERPRETATION Interpretation is mostly experience-based because of the complexity of photopatterns and the variability of problems encountered. Many of the regolith landform features outlined in RTMAP (Pain, et al., 1991) can be recognised to varying degrees. Training in geomorphology makes the task of interpretation of regolith landform features from aerial photographs and in the field much easier. 2

3 Potential mappers and interpreters should at least read the RTMAP guidelines if they lack basic training in geomorphology or have little field experience. Some more basic interpretative techniques eventually may be available in the future through automated computer analysis using knowledge-based rule systems; but this is not yet routinely used. Interpreters using aerial photographs will usually have to rely on their knowledge of relief, patterns, tones, textures, and colours present in the photopatterns. Ideally, interpreter experience and reliability will be improved by repeated comparisons with numerous stereomodel characteristics and actual ground surface features. 5. APPLICATIONS Geology, regolith, land-use, soils, forestry, engineering, urban planning, natural hazards are a few examples of studies where aerial photographs may be used to help provide interpretations. 6. PROBLEMS AND LIMITATIONS Photographs may not necessarily show all the features you may hope to identify or distinguish and therefore other forms of remotely sensed imagery may be needed eg. satellite thematic mapper; radar; magnetics; EM; radiometric; to name a few. The lack of tonal contrast can be a problem with photographic prints from time to time. This can sometimes be overcome by reprocessing scanned images by computer image-manipulation software. Care must be taken to scan them at sufficiently high resolution so that their usefulness is not severely reduced. Resolution is usually not a problem with reasonable quality commercial aerial photographic prints. Sometimes the scale may not suit your purpose but you may have to adapt if other scales are not available and you cannot afford to have custom photographs generated commercially. There is often an exaggeration factor (2x to 3x) using aerial photographs and stereoscopic viewers. 7. SURVEY ORGANISATIONS Suppliers of aerial photography range from government departments to private contractors. Private contractors are sometimes used by the government departments as well. The national survey organisation is probably the best place to start inquiries for obtaining aerial photographs. In Australia, this Department is currently known as AUSLIG. AUSLIG staff can tell you who is its current outsourced supplier for aerial photographs are for much of Australia. These photos may not be at the scale you require. They may not cover the specific area of your interest and therefore you may need to direct your inquiries to the State Government Survey responsible for Lands or Mapping -they may have an outsourced supplier as well. Commonwealth Government generated photography goes back many years - as early as the 1920 s but more significantly in the late 1940 s. The first aerial photography from which a map (photomap) was made in Australia was carried out in 1922 and scattered localised coverages were acquired in the following years. In 1924, the first systematic aerial photography of a mining field was at Mt Isa. However, it was not until after World War 2 that a concerted program of systematic regional coverage was implemented utilising the RAAF aerial photographic squadron s capability. This program was subsequently expanded using commercial operators and State agencies to produce the K17 regional coverage over most of Australia. This comprised panchromatic photography at a nominal scale of 1:50,000 with a forward overlap between photographs of 60%. The photography name ie. K17 is derived from the designation of the camera used. In 1960, a program of photography at a nominal scale of 1:84,000 was developed using the RC9 super wide-angle camera that produced a flight-line coverage with an 80% forward overlap. The K17 and RC9 photography represent the only near complete nationally consistent coverages flown in Australia. Many other coverages of local and regional areas are available at different scales and photo types 3

4 (panchromatic, colour, high altitude etc.) through government and commercial agencies (Lines, 1992). Photographs at 1:50,000 scale are often obtainable from State Lands Survey Offices or their outsourced agents. Currently, no simple accurate guidelines for suppliers can be provided. The circumstances now change over time. You can currently view the flight line diagrams for Commonwealth generated photography at: From that site, you may be able to follow links to other outsourced suppliers and State Government agencies. 8. COSTS Each organisation has its own costing arrangements. Therefore it would not be instructive to quote current costs but suffice to say that the unit cost for small numbers of prints is usually much higher than for large numbers of prints. Prices in the past have been around twenty dollars for low number individual prints. There is often an access or retrieval cost if films are archived and that fee may be around thirty dollars. This access fee is usually built into the overall cost structure for large orders. Costs also vary depending on if you require positive prints or transparencies ie. diapositives. Other cost factors would depend on whether colour or black and white photos were required, the number of duplicates or even single prints you require from the same roll of film. Single prints from many different films are often a costly purchase. 9. EXAMPLE INTERPRETATION Figure 1 shows an example of an area near Higginsville, south of Kambalda, in the Eastern Goldfields of Western Australia where aerial photography has been used to assist in the generation of a regolith landform map. The regolith polygon interpretations can be seen on the black and white aerial photographic basemap. An extract of the final map now replaces the corresponding area on the basemap. This example shows the progression from aerial photographic polygon interpretation through to selected portion of the final map. REFERENCES Lines, J. D., Australia on Paper. The Story of Australian Mapping. Fortune Publications, Box Hill, Victoria, 343 pp. Lintern, M. J., Craig, M. A., Walsh, D. M., and Sheridan, N. C., The Distribution of Gold and Other Elements in Surficial Materials from the Higginsville Palaeochannel Gold Deposits, Norseman, Western Australia. CRCLEME AMIRA Project 409. CRC LEME restricted report 28R. 38 pp. and 66 pp. Pain, C. F., Chan, R. A., Craig M. A., Hazell, M., Kamprad, J. and Wilford, J., RTMAP, BMR regolith database field handbook. Minerals and Landuse Program, Series 1. Bureau of Mineral Resources Geology and Geophysics, Record 1991/ pp. 4

5 Figure 1. Higginsville regolith base map (Lintern, et al., 1996), compiled by Mike Craig on RC9 aerial photographs. The map shows regolith polygons, side localities and place names. A final regolith map extract is shown at the bottom right to indicate the relationships between the airphoto interpretation and the final map. From AMIRA Project P409 5

Photogrammetry. Lecture 4 September 7, 2005

Photogrammetry. Lecture 4 September 7, 2005 Photogrammetry Lecture 4 September 7, 2005 What is Photogrammetry Photogrammetry is the art and science of making accurate measurements by means of aerial photography: Analog photogrammetry (using films:

More information

Sample Copy. Not For Distribution.

Sample Copy. Not For Distribution. Photogrammetry, GIS & Remote Sensing Quick Reference Book i EDUCREATION PUBLISHING Shubham Vihar, Mangla, Bilaspur, Chhattisgarh - 495001 Website: www.educreation.in Copyright, 2017, S.S. Manugula, V.

More information

PHOTOGRAMMETRY STEREOSCOPY FLIGHT PLANNING PHOTOGRAMMETRIC DEFINITIONS GROUND CONTROL INTRODUCTION

PHOTOGRAMMETRY STEREOSCOPY FLIGHT PLANNING PHOTOGRAMMETRIC DEFINITIONS GROUND CONTROL INTRODUCTION PHOTOGRAMMETRY STEREOSCOPY FLIGHT PLANNING PHOTOGRAMMETRIC DEFINITIONS GROUND CONTROL INTRODUCTION Before aerial photography and photogrammetry became a reliable mapping tool, planimetric and topographic

More information

11/25/2009 CHAPTER THREE INTRODUCTION INTRODUCTION (CONT D) THE AERIAL CAMERA: LENS PHOTOGRAPHIC SENSORS

11/25/2009 CHAPTER THREE INTRODUCTION INTRODUCTION (CONT D) THE AERIAL CAMERA: LENS PHOTOGRAPHIC SENSORS INTRODUCTION CHAPTER THREE IC SENSORS Photography means to write with light Today s meaning is often expanded to include radiation just outside the visible spectrum, i. e. ultraviolet and near infrared

More information

Volume 1 - Module 6 Geometry of Aerial Photography. I. Classification of Photographs. Vertical

Volume 1 - Module 6 Geometry of Aerial Photography. I. Classification of Photographs. Vertical RSCC Volume 1 Introduction to Photo Interpretation and Photogrammetry Table of Contents Module 1 Module 2 Module 3.1 Module 3.2 Module 4 Module 5 Module 6 Module 7 Module 8 Labs Volume 1 - Module 6 Geometry

More information

Basics of Photogrammetry Note#6

Basics of Photogrammetry Note#6 Basics of Photogrammetry Note#6 Photogrammetry Art and science of making accurate measurements by means of aerial photography Analog: visual and manual analysis of aerial photographs in hard-copy format

More information

Acquisition of Aerial Photographs and/or Satellite Imagery

Acquisition of Aerial Photographs and/or Satellite Imagery Acquisition of Aerial Photographs and/or Satellite Imagery Acquisition of Aerial Photographs and/or Imagery From time to time there is considerable interest in the purchase of special-purpose photography

More information

Acquisition of Aerial Photographs and/or Imagery

Acquisition of Aerial Photographs and/or Imagery Acquisition of Aerial Photographs and/or Imagery Acquisition of Aerial Photographs and/or Imagery From time to time there is considerable interest in the purchase of special-purpose photography contracted

More information

PHOTOGRAMMETRIC RESECTION DIFFERENCES BASED ON LABORATORY vs. OPERATIONAL CALIBRATIONS

PHOTOGRAMMETRIC RESECTION DIFFERENCES BASED ON LABORATORY vs. OPERATIONAL CALIBRATIONS PHOTOGRAMMETRIC RESECTION DIFFERENCES BASED ON LABORATORY vs. OPERATIONAL CALIBRATIONS Dean C. MERCHANT Topo Photo Inc. Columbus, Ohio USA merchant.2@osu.edu KEY WORDS: Photogrammetry, Calibration, GPS,

More information

Aerial photography: Principles. Frame capture sensors: Analog film and digital cameras

Aerial photography: Principles. Frame capture sensors: Analog film and digital cameras Aerial photography: Principles Frame capture sensors: Analog film and digital cameras Overview Introduction Frame vs scanning sensors Cameras (film and digital) Photogrammetry Orthophotos Air photos are

More information

not to be republished NCERT Introduction To Aerial Photographs Chapter 6

not to be republished NCERT Introduction To Aerial Photographs Chapter 6 Chapter 6 Introduction To Aerial Photographs Figure 6.1 Terrestrial photograph of Mussorrie town of similar features, then we have to place ourselves somewhere in the air. When we do so and look down,

More information

Unmanned Aerial Vehicle Data Acquisition for Damage Assessment in. Hurricane Events

Unmanned Aerial Vehicle Data Acquisition for Damage Assessment in. Hurricane Events Unmanned Aerial Vehicle Data Acquisition for Damage Assessment in Hurricane Events Stuart M. Adams a Carol J. Friedland b and Marc L. Levitan c ABSTRACT This paper examines techniques for data collection

More information

Introduction to Photogeology

Introduction to Photogeology Geological Mapping 1 Academic Year 2016/2017 Introduction to Photogeology Igor Vlahović igor.vlahovic@rgn.hr Today we will say a little about basic photogeological analysis of terrain: about aerial photographs,

More information

Black Dot shows actual Point location

Black Dot shows actual Point location 207 Plate 1 Use of scanned archive aerial photographs, digital photogrammetry and GIS to plot river channel erosion along the Afon Trannon, Wales (part of the study by Mount et al 2000, 2003). Plate 2

More information

MSB Imagery Program FAQ v1

MSB Imagery Program FAQ v1 MSB Imagery Program FAQ v1 (F)requently (A)sked (Q)uestions 9/22/2016 This document is intended to answer commonly asked questions related to the MSB Recurring Aerial Imagery Program. Table of Contents

More information

Geo/SAT 2 INTRODUCTION TO REMOTE SENSING

Geo/SAT 2 INTRODUCTION TO REMOTE SENSING Geo/SAT 2 INTRODUCTION TO REMOTE SENSING Paul R. Baumann, Professor Emeritus State University of New York College at Oneonta Oneonta, New York 13820 USA COPYRIGHT 2008 Paul R. Baumann Introduction Remote

More information

What is Photogrammetry

What is Photogrammetry Photogrammetry What is Photogrammetry Photogrammetry is the art and science of making accurate measurements by means of aerial photography: Analog photogrammetry (using films: hard-copy photos) Digital

More information

LAB 2: AERIAL PHOTOGRAPHY AND PHOTOGRAMMETRY PART 1: INTERPRETATION OF AERIAL PHOTOGRAPHY

LAB 2: AERIAL PHOTOGRAPHY AND PHOTOGRAMMETRY PART 1: INTERPRETATION OF AERIAL PHOTOGRAPHY E&ES 328 Remote Sensing Laboratory LAB 2: AERIAL PHOTOGRAPHY AND PHOTOGRAMMETRY Due February 22, 2012 PART 1: INTERPRETATION OF AERIAL PHOTOGRAPHY Some of the first aerial photography, employed during

More information

Content Reviewer (CR) Swati Katiyar Senior Research Fellow, Birla Institute of Scientific Research, Jaipur Language Editor (LE)

Content Reviewer (CR) Swati Katiyar Senior Research Fellow, Birla Institute of Scientific Research, Jaipur Language Editor (LE) Component-I(A) - Personal Details Role Name Affiliation Principal Investigator Prof.MasoodAhsanSiddiqui Department of Geography, JamiaMilliaIslamia, New Delhi Paper Coordinator, if any Dr. M P Punia Head,

More information

2019 NYSAPLS Conf> Fundamentals of Photogrammetry for Land Surveyors

2019 NYSAPLS Conf> Fundamentals of Photogrammetry for Land Surveyors 2019 NYSAPLS Conf> Fundamentals of Photogrammetry for Land Surveyors George Southard GSKS Associates LLC Introduction George Southard: Master s Degree in Photogrammetry and Cartography 40 years working

More information

FOR 474: Forest Inventory. FOR 474: Forest Inventory. Why do we Care About Forest Sampling?

FOR 474: Forest Inventory. FOR 474: Forest Inventory. Why do we Care About Forest Sampling? FOR 474: Forest Inventory 1. Advanced Forest Inventory The Need for Forest Sampling Brief Intro to Remote Sensing and GIS Readings: FOR 474: Forest Inventory Related Courses! FOR 274: Forest Measurements

More information

HD aerial video for coastal zone ecological mapping

HD aerial video for coastal zone ecological mapping HD aerial video for coastal zone ecological mapping Albert K. Chong University of Otago, Dunedin, New Zealand Phone: +64 3 479-7587 Fax: +64 3 479-7586 Email: albert.chong@surveying.otago.ac.nz Presented

More information

Following are the geometrical elements of the aerial photographs:

Following are the geometrical elements of the aerial photographs: Geometrical elements/characteristics of aerial photograph: An aerial photograph is a central or perspective projection, where the bundles of perspective rays meet at a point of origin called perspective

More information

MONITORING RUBBLE-MOUND COASTAL STRUCTURES WITH PHOTOGRAMMETRY

MONITORING RUBBLE-MOUND COASTAL STRUCTURES WITH PHOTOGRAMMETRY ,. CETN-III-21 2/84 MONITORING RUBBLE-MOUND COASTAL STRUCTURES WITH PHOTOGRAMMETRY INTRODUCTION: Monitoring coastal projects usually involves repeated surveys of coastal structures and/or beach profiles.

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing Spatial, spectral, temporal resolutions Image display alternatives Vegetation Indices Image classifications Image change detections Accuracy assessment Satellites & Air-Photos

More information

An Introduction to Geomatics. Prepared by: Dr. Maher A. El-Hallaq خاص بطلبة مساق مقدمة في علم. Associate Professor of Surveying IUG

An Introduction to Geomatics. Prepared by: Dr. Maher A. El-Hallaq خاص بطلبة مساق مقدمة في علم. Associate Professor of Surveying IUG An Introduction to Geomatics خاص بطلبة مساق مقدمة في علم الجيوماتكس Prepared by: Dr. Maher A. El-Hallaq Associate Professor of Surveying IUG 1 Airborne Imagery Dr. Maher A. El-Hallaq Associate Professor

More information

High Resolution Multi-spectral Imagery

High Resolution Multi-spectral Imagery High Resolution Multi-spectral Imagery Jim Baily, AirAgronomics AIRAGRONOMICS Having been involved in broadacre agriculture until 2000 I perceived a need for a high resolution remote sensing service to

More information

Project Planning and Cost Estimating

Project Planning and Cost Estimating CHAPTER 17 Project Planning and Cost Estimating 17.1 INTRODUCTION Previous chapters have outlined and detailed technical aspects of photogrammetry. The basic tasks and equipment required to create various

More information

Lecture Series SGL 308: Introduction to Geological Mapping Lecture 8 LECTURE 8 REMOTE SENSING METHODS: THE USE AND INTERPRETATION OF SATELLITE IMAGES

Lecture Series SGL 308: Introduction to Geological Mapping Lecture 8 LECTURE 8 REMOTE SENSING METHODS: THE USE AND INTERPRETATION OF SATELLITE IMAGES LECTURE 8 REMOTE SENSING METHODS: THE USE AND INTERPRETATION OF SATELLITE IMAGES LECTURE OUTLINE Page 8.0 Introduction 114 8.1 Objectives 115 115 8.2 Remote Sensing: Method of Operation 8.3 Importance

More information

Module 3 Introduction to GIS. Lecture 8 GIS data acquisition

Module 3 Introduction to GIS. Lecture 8 GIS data acquisition Module 3 Introduction to GIS Lecture 8 GIS data acquisition GIS workflow Data acquisition (geospatial data input) GPS Remote sensing (satellites, UAV s) LiDAR Digitized maps Attribute Data Management Data

More information

Lesson 4: Photogrammetry

Lesson 4: Photogrammetry This work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where otherwise Development was funded by the Department of Labor (DOL) Trade Adjustment Assistance

More information

Overview. Introduction. Elements of Image Interpretation. LA502 Special Studies Remote Sensing

Overview. Introduction. Elements of Image Interpretation. LA502 Special Studies Remote Sensing LA502 Special Studies Remote Sensing Elements of Image Interpretation Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview Introduction

More information

MINNESOTA DEPARTMENT OF TRANSPORTATION OFFICE OF LAND MANAGEMENT SURVEYING AND MAPPING SECTION PHOTOGRAMMETRY UNIT

MINNESOTA DEPARTMENT OF TRANSPORTATION OFFICE OF LAND MANAGEMENT SURVEYING AND MAPPING SECTION PHOTOGRAMMETRY UNIT SEP. 2011 MINNESOTA DEPARTMENT OF TRANSPORTATION OFFICE OF LAND MANAGEMENT SURVEYING AND MAPPING SECTION PHOTOGRAMMETRY UNIT SPECIAL PROVISIONS FOR: GROUP 1: AERIAL PHOTOGRAPHY/PHOTOGRAMMETRIC LAB SERVICES

More information

OUR INDUSTRIAL LEGACY WHAT ARE WE LEAVING OUR CHILDREN REAAA Roadshow Taupo, August 2016 Young presenter s competition

OUR INDUSTRIAL LEGACY WHAT ARE WE LEAVING OUR CHILDREN REAAA Roadshow Taupo, August 2016 Young presenter s competition OUR INDUSTRIAL LEGACY WHAT ARE WE LEAVING OUR CHILDREN Preserving the country s aerial photography archive for future generations Abstract For over eighty years, aerial photography has captured the changing

More information

746A27 Remote Sensing and GIS

746A27 Remote Sensing and GIS 746A27 Remote Sensing and GIS Lecture 1 Concepts of remote sensing and Basic principle of Photogrammetry Chandan Roy Guest Lecturer Department of Computer and Information Science Linköping University What

More information

Leica ADS80 - Digital Airborne Imaging Solution NAIP, Salt Lake City 4 December 2008

Leica ADS80 - Digital Airborne Imaging Solution NAIP, Salt Lake City 4 December 2008 Luzern, Switzerland, acquired at 5 cm GSD, 2008. Leica ADS80 - Digital Airborne Imaging Solution NAIP, Salt Lake City 4 December 2008 Shawn Slade, Doug Flint and Ruedi Wagner Leica Geosystems AG, Airborne

More information

CHAPTER 8 AERIAL PHOTOGRAPHS

CHAPTER 8 AERIAL PHOTOGRAPHS CHAPTER 8 AERIAL PHOTOGRAPHS An aerial photograph is any photograph taken from an airborne vehicle (aircraft, drones, balloons, satellites, and so forth). The aerial photograph has many uses in military

More information

CSI: Rombalds Moor Photogrammetry Photography

CSI: Rombalds Moor Photogrammetry Photography Photogrammetry Photography Photogrammetry Training 26 th March 10:00 Welcome Presentation image capture Practice 12:30 13:15 Lunch More practice 16:00 (ish) Finish or earlier What is photogrammetry 'photo'

More information

CEE 6100 / CSS 6600 Remote Sensing Fundamentals 1 Topic 4: Photogrammetry

CEE 6100 / CSS 6600 Remote Sensing Fundamentals 1 Topic 4: Photogrammetry CEE 6100 / CSS 6600 Remote Sensing Fundamentals 1 PHOTOGRAMMETRY DEFINITION (adapted from Manual of Photographic Interpretation, 2 nd edition, Warren Philipson, 1997) Photogrammetry and Remote Sensing:

More information

FLIGHT SUMMARY REPORT

FLIGHT SUMMARY REPORT FLIGHT SUMMARY REPORT Flight Number: 97-011 Calendar/Julian Date: 23 October 1996 297 Sensor Package: Area(s) Covered: Wild-Heerbrugg RC-10 Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) Southern

More information

Geometry of Aerial Photographs

Geometry of Aerial Photographs Geometry of Aerial Photographs Aerial Cameras Aerial cameras must be (details in lectures): Geometrically stable Have fast and efficient shutters Have high geometric and optical quality lenses They can

More information

THE NATIONAL AERIAL PHOTOGRAPHY PROGRAM: AN AERIAL SYSTEM IN SUPPORT OF THE UNITED STATES SPATIAL DATA INFRASTRUCTURE

THE NATIONAL AERIAL PHOTOGRAPHY PROGRAM: AN AERIAL SYSTEM IN SUPPORT OF THE UNITED STATES SPATIAL DATA INFRASTRUCTURE THE NATIONAL AERIAL PHOTOGRAPHY PROGRAM: AN AERIAL SYSTEM IN SUPPORT OF THE UNITED STATES SPATIAL DATA INFRASTRUCTURE Donald L. Light U.S. Geological Survey MS 511 National Center Reston, Virginia 22092

More information

Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS

Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS Time: Max. Marks: Q1. What is remote Sensing? Explain the basic components of a Remote Sensing system. Q2. What is

More information

Remote Sensing Techniques

Remote Sensing Techniques 1 of 8 7/9/2009 12:18 PM Remote Sensing Techniques Table of Contents Remote sensing basics Aerial photography Manned-space photography Landsat satellite imagery Remote Sensing Basics Remote sensing is

More information

ACTIVE SENSORS RADAR

ACTIVE SENSORS RADAR ACTIVE SENSORS RADAR RADAR LiDAR: Light Detection And Ranging RADAR: RAdio Detection And Ranging SONAR: SOund Navigation And Ranging Used to image the ocean floor (produce bathymetic maps) and detect objects

More information

Outline Remote Sensing Defined Resolution Electromagnetic Energy (EMR) Types Interpretation Applications

Outline Remote Sensing Defined Resolution Electromagnetic Energy (EMR) Types Interpretation Applications Introduction to Remote Sensing Outline Remote Sensing Defined Resolution Electromagnetic Energy (EMR) Types Interpretation Applications Remote Sensing Defined Remote Sensing is: The art and science of

More information

NJDEP GPS Data Collection Standards for GIS Data Development

NJDEP GPS Data Collection Standards for GIS Data Development NJDEP GPS Data Collection Standards for GIS Data Development Bureau of Geographic Information Systems Office of Information Resource Management April 24 th, 2017 Table of Contents 1.0 Introduction... 3

More information

Aerial photography and Remote Sensing. Bikini Atoll, 2013 (60 years after nuclear bomb testing)

Aerial photography and Remote Sensing. Bikini Atoll, 2013 (60 years after nuclear bomb testing) Aerial photography and Remote Sensing Bikini Atoll, 2013 (60 years after nuclear bomb testing) Computers have linked mapping techniques under the umbrella term : Geomatics includes all the following spatial

More information

Photographic Interpretation Handbook, United States Forces: Section 09 Height and Depth Finding from Parallax

Photographic Interpretation Handbook, United States Forces: Section 09 Height and Depth Finding from Parallax University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln DOD Military Intelligence U.S. Department of Defense 4-1944 Photographic Interpretation Handbook, United States Forces:

More information

Technical Evaluation of Khartoum State Mapping Project

Technical Evaluation of Khartoum State Mapping Project Technical Evaluation of Khartoum State Mapping Project Nagi Zomrawi 1 and Mohammed Fator 2 1 School of Surveying Engineering, Collage of Engineering, Sudan University of Science and Technology, Khartoum,

More information

RGB colours: Display onscreen = RGB

RGB colours:  Display onscreen = RGB RGB colours: http://www.colorspire.com/rgb-color-wheel/ Display onscreen = RGB DIGITAL DATA and DISPLAY Myth: Most satellite images are not photos Photographs are also 'images', but digital images are

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing 1 Outline Remote Sensing Defined Electromagnetic Energy (EMR) Resolution Interpretation 2 Remote Sensing Defined Remote Sensing is: The art and science of obtaining information

More information

AERIAL PHOTOGRAPHS CHAPTER 8

AERIAL PHOTOGRAPHS CHAPTER 8 CHAPTER 8 AERIAL PHOTOGRAPHS An aerial photograph is any photograph taken from an airborne vehicle (aircraft, drones, balloons) satellites, and so forth). The aerial photograph has many uses in military

More information

Hi-resolution Data in a Low-resolution Landscape:

Hi-resolution Data in a Low-resolution Landscape: Hi-resolution Data in a Low-resolution Landscape: Squeezing More Value from Digital Airphotos when Ancillary Data are Lacking Andrew Balser, October 17, 2008 Airphotos versus Satellite Imagery: Trade-offs

More information

Outline Remote Sensing Defined Resolution Electromagnetic Energy (EMR) Types Interpretation Applications 2

Outline Remote Sensing Defined Resolution Electromagnetic Energy (EMR) Types Interpretation Applications 2 Introduction to Remote Sensing 1 Outline Remote Sensing Defined Resolution Electromagnetic Energy (EMR) Types Interpretation Applications 2 Remote Sensing Defined Remote Sensing is: The art and science

More information

VERIFICATION OF POTENCY OF AERIAL DIGITAL OBLIQUE CAMERAS FOR AERIAL PHOTOGRAMMETRY IN JAPAN

VERIFICATION OF POTENCY OF AERIAL DIGITAL OBLIQUE CAMERAS FOR AERIAL PHOTOGRAMMETRY IN JAPAN VERIFICATION OF POTENCY OF AERIAL DIGITAL OBLIQUE CAMERAS FOR AERIAL PHOTOGRAMMETRY IN JAPAN Ryuji. Nakada a, *, Masanori. Takigawa a, Tomowo. Ohga a, Noritsuna. Fujii a a Asia Air Survey Co. Ltd., Kawasaki

More information

SCIENCE & TECHNOLOGY

SCIENCE & TECHNOLOGY Pertanika J. Sci. & Technol. 21 (2): 387-396 (2013) SCIENCE & TECHNOLOGY Journal homepage: http://www.pertanika.upm.edu.my/ Production of Orthophoto and Volume Determination Using Low-Cost Digital Cameras

More information

High Resolution Sensor Test Comparison with SPOT, KFA1000, KVR1000, IRS-1C and DPA in Lower Saxony

High Resolution Sensor Test Comparison with SPOT, KFA1000, KVR1000, IRS-1C and DPA in Lower Saxony High Resolution Sensor Test Comparison with SPOT, KFA1000, KVR1000, IRS-1C and DPA in Lower Saxony K. Jacobsen, G. Konecny, H. Wegmann Abstract The Institute for Photogrammetry and Engineering Surveys

More information

Saturation And Value Modulation (SVM): A New Method For Integrating Color And Grayscale Imagery

Saturation And Value Modulation (SVM): A New Method For Integrating Color And Grayscale Imagery 87 Saturation And Value Modulation (SVM): A New Method For Integrating Color And Grayscale Imagery By David W. Viljoen 1 and Jeff R. Harris 2 Geological Survey of Canada 615 Booth St. Ottawa, ON, K1A 0E9

More information

A map says to you, 'Read me carefully, follow me closely, doubt me not.' It says, 'I am the Earth in the palm of your hand. Without me, you are alone

A map says to you, 'Read me carefully, follow me closely, doubt me not.' It says, 'I am the Earth in the palm of your hand. Without me, you are alone A map says to you, 'Read me carefully, follow me closely, doubt me not.' It says, 'I am the Earth in the palm of your hand. Without me, you are alone and lost. Beryl Markham (West With the Night, 1946

More information

HIGH RESOLUTION COLOR IMAGERY FOR ORTHOMAPS AND REMOTE SENSING. Author: Peter Fricker Director Product Management Image Sensors

HIGH RESOLUTION COLOR IMAGERY FOR ORTHOMAPS AND REMOTE SENSING. Author: Peter Fricker Director Product Management Image Sensors HIGH RESOLUTION COLOR IMAGERY FOR ORTHOMAPS AND REMOTE SENSING Author: Peter Fricker Director Product Management Image Sensors Co-Author: Tauno Saks Product Manager Airborne Data Acquisition Leica Geosystems

More information

Mapping Cameras. Chapter Three Introduction

Mapping Cameras. Chapter Three Introduction Chapter Three Mapping Cameras 3.1. Introduction This chapter introduces sensors used for acquiring aerial photographs. Although cameras are the oldest form of remote sensing instrument, they have changed

More information

DECISION NUMBER FOURTEEN TO THE TREATY ON OPEN SKIES

DECISION NUMBER FOURTEEN TO THE TREATY ON OPEN SKIES DECISION NUMBER FOURTEEN TO THE TREATY ON OPEN SKIES OSCC.DEC 14 12 October 1994 METHODOLOGY FOR CALCULATING THE MINIMUM HEIGHT ABOVE GROUND LEVEL AT WHICH EACH VIDEO CAMERA WITH REAL TIME DISPLAY INSTALLED

More information

SFR 406 Spring 2015 Lecture 7 Notes Film Types and Filters

SFR 406 Spring 2015 Lecture 7 Notes Film Types and Filters SFR 406 Spring 2015 Lecture 7 Notes Film Types and Filters 1. Film Resolution Introduction Resolution relates to the smallest size features that can be detected on the film. The resolving power is a related

More information

NREM 345 Week 2, Material covered this week contributes to the accomplishment of the following course goal:

NREM 345 Week 2, Material covered this week contributes to the accomplishment of the following course goal: NREM 345 Week 2, 2010 Reading assignment: Chapter. 4 and Sec. 5.1 to 5.2.4 Material covered this week contributes to the accomplishment of the following course goal: Goal 1: Develop the understanding and

More information

CHAPTER 5. Image Interpretation

CHAPTER 5. Image Interpretation CHAPTER 5 Image Interpretation Introduction To translate images into information, we must apply a specialized knowlage, image interpretation, which we can apply to derive useful information from the raw

More information

LANDSAT THEMATIC MAPPER

LANDSAT THEMATIC MAPPER LANDSAT THEMATIC MAPPER John Wilford 1 and John Creasey 2 1 Cooperative Research Centre for Landscape Environments and Mineral Exploration, Geoscience Australia. PO Box 378, Canberra, ACT 2601. E-mail:

More information

NRS 415 Remote Sensing of Environment

NRS 415 Remote Sensing of Environment NRS 415 Remote Sensing of Environment 1 High Oblique Perspective (Side) Low Oblique Perspective (Relief) 2 Aerial Perspective (See What s Hidden) An example of high spatial resolution true color remote

More information

Remote Sensing. The following figure is grey scale display of SPOT Panchromatic without stretching.

Remote Sensing. The following figure is grey scale display of SPOT Panchromatic without stretching. Remote Sensing Objectives This unit will briefly explain display of remote sensing image, geometric correction, spatial enhancement, spectral enhancement and classification of remote sensing image. At

More information

Chapter 1 Overview of imaging GIS

Chapter 1 Overview of imaging GIS Chapter 1 Overview of imaging GIS Imaging GIS, a term used in the medical imaging community (Wang 2012), is adopted here to describe a geographic information system (GIS) that displays, enhances, and facilitates

More information

EXAMPLES OF TOPOGRAPHIC MAPS PRODUCED FROM SPACE AND ACHIEVED ACCURACY CARAVAN Workshop on Mapping from Space, Phnom Penh, June 2000

EXAMPLES OF TOPOGRAPHIC MAPS PRODUCED FROM SPACE AND ACHIEVED ACCURACY CARAVAN Workshop on Mapping from Space, Phnom Penh, June 2000 EXAMPLES OF TOPOGRAPHIC MAPS PRODUCED FROM SPACE AND ACHIEVED ACCURACY CARAVAN Workshop on Mapping from Space, Phnom Penh, June 2000 Jacobsen, Karsten University of Hannover Email: karsten@ipi.uni-hannover.de

More information

MINIMISING SYSTEMATIC ERRORS IN DEMS CAUSED BY AN INACCURATE LENS MODEL

MINIMISING SYSTEMATIC ERRORS IN DEMS CAUSED BY AN INACCURATE LENS MODEL MINIMISING SYSTEMATIC ERRORS IN DEMS CAUSED BY AN INACCURATE LENS MODEL R. Wackrow a, J.H. Chandler a and T. Gardner b a Dept. Civil and Building Engineering, Loughborough University, LE11 3TU, UK (r.wackrow,

More information

Image Registration Issues for Change Detection Studies

Image Registration Issues for Change Detection Studies Image Registration Issues for Change Detection Studies Steven A. Israel Roger A. Carman University of Otago Department of Surveying PO Box 56 Dunedin New Zealand israel@spheroid.otago.ac.nz Michael R.

More information

CHARACTERISTICS OF REMOTELY SENSED IMAGERY. Spatial Resolution

CHARACTERISTICS OF REMOTELY SENSED IMAGERY. Spatial Resolution CHARACTERISTICS OF REMOTELY SENSED IMAGERY Spatial Resolution There are a number of ways in which images can differ. One set of important differences relate to the various resolutions that images express.

More information

HYPERSPECTRAL IMAGERY FOR SAFEGUARDS APPLICATIONS. International Atomic Energy Agency, Vienna, Austria

HYPERSPECTRAL IMAGERY FOR SAFEGUARDS APPLICATIONS. International Atomic Energy Agency, Vienna, Austria HYPERSPECTRAL IMAGERY FOR SAFEGUARDS APPLICATIONS G. A. Borstad 1, Leslie N. Brown 1, Q.S. Bob Truong 2, R. Kelley, 3 G. Healey, 3 J.-P. Paquette, 3 K. Staenz 4, and R. Neville 4 1 Borstad Associates Ltd.,

More information

Geocoding DoubleCheck: A Unique Location Accuracy Assessment Tool for Parcel-level Geocoding

Geocoding DoubleCheck: A Unique Location Accuracy Assessment Tool for Parcel-level Geocoding Measuring, Modelling and Mapping our Dynamic Home Planet Geocoding DoubleCheck: A Unique Location Accuracy Assessment Tool for Parcel-level Geocoding Page 1 Geocoding is a process of converting an address

More information

GEOMETRICS technical report

GEOMETRICS technical report GEOMETRICS technical report MA-TR 15 A GUIDE TO PASSIVE MAGNETIC COMPENSATION OF AIRCRAFT A fixed installation of a total field magnetometer sensor on an aircraft is much more desirable than the towed

More information

UAV PHOTOGRAMMETRY COMPARED TO TRADITIONAL RTK GPS SURVEYING

UAV PHOTOGRAMMETRY COMPARED TO TRADITIONAL RTK GPS SURVEYING UAV PHOTOGRAMMETRY COMPARED TO TRADITIONAL RTK GPS SURVEYING Brad C. Mathison and Amber Warlick March 20, 2016 Fearless Eye Inc. Kansas City, Missouri www.fearlesseye.com KEY WORDS: UAV, UAS, Accuracy

More information

Blacksburg, VA July 24 th 30 th, 2010 Remote Sensing Page 1. A condensed overview. For our purposes

Blacksburg, VA July 24 th 30 th, 2010 Remote Sensing Page 1. A condensed overview. For our purposes A condensed overview George McLeod Prepared by: With support from: NSF DUE-0903270 in partnership with: Geospatial Technician Education Through Virginia s Community Colleges (GTEVCC) The art and science

More information

Maloney, Cath. LAARC Version 05 Date 08/05/2013

Maloney, Cath. LAARC Version 05 Date 08/05/2013 Author Maloney, Cath. LAARC Version 05 Date 08/05/2013 Status Publication Change History 4.5: 2.2.1 introduction of the Primary Photographic Record 4.4: 2.2.1.2 Fieldwork, digital images 4.3: 2.2.1.2 Studios

More information

INTRODUCTORY REMOTE SENSING. Geob 373

INTRODUCTORY REMOTE SENSING. Geob 373 INTRODUCTORY REMOTE SENSING Geob 373 Landsat 7 15 m image highlighting the geology of Oman http://www.satimagingcorp.com/gallery-landsat.html ASTER 15 m SWIR image, Escondida Mine, Chile http://www.satimagingcorp.com/satellite-sensors/aster.html

More information

Photo Scale The photo scale and representative fraction may be calculated as follows: PS = f / H Variables: PS - Photo Scale, f - camera focal

Photo Scale The photo scale and representative fraction may be calculated as follows: PS = f / H Variables: PS - Photo Scale, f - camera focal Scale Scale is the ratio of a distance on an aerial photograph to that same distance on the ground in the real world. It can be expressed in unit equivalents like 1 inch = 1,000 feet (or 12,000 inches)

More information

REMOTE SENSING OF RIVERINE WATER BODIES

REMOTE SENSING OF RIVERINE WATER BODIES REMOTE SENSING OF RIVERINE WATER BODIES Bryony Livingston, Paul Frazier and John Louis Farrer Research Centre Charles Sturt University Wagga Wagga, NSW 2678 Ph 02 69332317, Fax 02 69332737 blivingston@csu.edu.au

More information

Lecture 1 Introduction to Remote Sensing

Lecture 1 Introduction to Remote Sensing Lecture 1 Introduction to Remote Sensing Dr Ian Leiper School of Environmental and Life Sciences Bldg Purple 12.2.27 1 2 Lecture Outline Introductions Unit admin Learning outcomes Unit outline Practicals

More information

POTENTIAL OF LARGE FORMAT DIGITAL AERIAL CAMERAS. Dr. Karsten Jacobsen Leibniz University Hannover, Germany

POTENTIAL OF LARGE FORMAT DIGITAL AERIAL CAMERAS. Dr. Karsten Jacobsen Leibniz University Hannover, Germany POTENTIAL OF LARGE FORMAT DIGITAL AERIAL CAMERAS Dr. Karsten Jacobsen Leibniz University Hannover, Germany jacobsen@ipi.uni-hannover.de Introduction: Digital aerial cameras are replacing traditional analogue

More information

Topographic mapping from space K. Jacobsen*, G. Büyüksalih**

Topographic mapping from space K. Jacobsen*, G. Büyüksalih** Topographic mapping from space K. Jacobsen*, G. Büyüksalih** * Institute of Photogrammetry and Geoinformation, Leibniz University Hannover ** BIMTAS, Altunizade-Istanbul, Turkey KEYWORDS: WorldView-1,

More information

APPLICATIONS AND LESSONS LEARNED WITH AIRBORNE MULTISPECTRAL IMAGING

APPLICATIONS AND LESSONS LEARNED WITH AIRBORNE MULTISPECTRAL IMAGING APPLICATIONS AND LESSONS LEARNED WITH AIRBORNE MULTISPECTRAL IMAGING James M. Ellis and Hugh S. Dodd The MapFactory and HJW Walnut Creek and Oakland, California, U.S.A. ABSTRACT Airborne digital frame

More information

Preserving the Past: The Development of a Digital Historical Aerial Photography Archive

Preserving the Past: The Development of a Digital Historical Aerial Photography Archive DONALD E. LUMAN Preserving the Past: The Development of a Digital Historical Aerial Photography Archive The University of Illinois Map and Geography Library maintains a collection of approximately 60,000

More information

Image interpretation. Aliens create Indian Head with an ipod? Badlands Guardian (CBC) This feature can be found 300 KMs SE of Calgary.

Image interpretation. Aliens create Indian Head with an ipod? Badlands Guardian (CBC) This feature can be found 300 KMs SE of Calgary. Image interpretation Aliens create Indian Head with an ipod? Badlands Guardian (CBC) This feature can be found 300 KMs SE of Calgary. 50 1 N 110 7 W Milestones in the History of Remote Sensing 19 th century

More information

Chapters 1-3. Chapter 1: Introduction and applications of photogrammetry Chapter 2: Electro-magnetic radiation. Chapter 3: Basic optics

Chapters 1-3. Chapter 1: Introduction and applications of photogrammetry Chapter 2: Electro-magnetic radiation. Chapter 3: Basic optics Chapters 1-3 Chapter 1: Introduction and applications of photogrammetry Chapter 2: Electro-magnetic radiation Radiation sources Classification of remote sensing systems (passive & active) Electromagnetic

More information

UltraCam Eagle Prime Aerial Sensor Calibration and Validation

UltraCam Eagle Prime Aerial Sensor Calibration and Validation UltraCam Eagle Prime Aerial Sensor Calibration and Validation Michael Gruber, Marc Muick Vexcel Imaging GmbH Anzengrubergasse 8/4, 8010 Graz / Austria {michael.gruber, marc.muick}@vexcel-imaging.com Key

More information

COMPARISON OF INFORMATION CONTENTS OF HIGH RESOLUTION SPACE IMAGES

COMPARISON OF INFORMATION CONTENTS OF HIGH RESOLUTION SPACE IMAGES COMPARISON OF INFORMATION CONTENTS OF HIGH RESOLUTION SPACE IMAGES H. Topan*, G. Büyüksalih*, K. Jacobsen ** * Karaelmas University Zonguldak, Turkey ** University of Hannover, Germany htopan@karaelmas.edu.tr,

More information

HISTORY OF REMOTE SENSING

HISTORY OF REMOTE SENSING HISTORY OF REMOTE SENSING IMPORTANT PERIODS The beginning: photography and flight (1858-1918) Rapid developments in photogrammetry (1918-1939) Military imperatives (1939-1945) Cold wars and environmental

More information

DIGITALGLOBE ATMOSPHERIC COMPENSATION

DIGITALGLOBE ATMOSPHERIC COMPENSATION See a better world. DIGITALGLOBE BEFORE ACOMP PROCESSING AFTER ACOMP PROCESSING Summary KOBE, JAPAN High-quality imagery gives you answers and confidence when you face critical problems. Guided by our

More information

Remote Sensing is the observation of the Earth from satellites or aircrafts.

Remote Sensing is the observation of the Earth from satellites or aircrafts. Remote Sensing? Remote Sensing is the observation of the Earth from satellites or aircrafts. Sensors mounted on these platforms capture images of the Earth that reveal features may or may not apparent

More information

Lab 4 - Photogrammetry

Lab 4 - Photogrammetry Name: GSP 216: Introduction to Remote Sensing Introduction Lab 4 - Photogrammetry Photogrammetry is process of making measurements from photographs. In this lab we will become familiar with the basic photogrammic

More information

The Program Works. Photography

The Program Works. Photography The Program Works Photography Photography: The minutes of your school year. Photos have impact. In an average size yearbook, the moments depicted total fewer than six minutes in the life of a school This

More information

Processing of stereo scanner: from stereo plotter to pixel factory

Processing of stereo scanner: from stereo plotter to pixel factory Photogrammetric Week '03 Dieter Fritsch (Ed.) Wichmann Verlag, Heidelberg, 2003 Bignone 141 Processing of stereo scanner: from stereo plotter to pixel factory FRANK BIGNONE, ISTAR, France ABSTRACT With

More information

Application of GIS for earthquake hazard and risk assessment: Kathmandu, Nepal. Part 2: Data preparation GIS CASE STUDY

Application of GIS for earthquake hazard and risk assessment: Kathmandu, Nepal. Part 2: Data preparation GIS CASE STUDY GIS CASE STUDY Application of GIS for earthquake hazard and risk assessment: Kathmandu, Nepal Part 2: Data preparation Cees van Westen (E-mail : westen@itc.nl) Siefko Slob (E-mail: Slob@itc.nl) Lorena

More information

Remote Sensing and GIS

Remote Sensing and GIS Remote Sensing and GIS Atmosphere Reflected radiation, e.g. Visible Emitted radiation, e.g. Infrared Backscattered radiation, e.g. Radar (λ) Visible TIR Radar & Microwave 11/9/2017 Geo327G/386G, U Texas,

More information