Recent years have introduced products which continue on a trend toward smaller,

Size: px
Start display at page:

Download "Recent years have introduced products which continue on a trend toward smaller,"

Transcription

1 Alexander Holiat MSE 542 I Flexible Electronics Term Paper May 11,2006 I I Laser Drilling for Electrical Interconnections in Flexible Electronics Recent years have introduced products which continue on a trend toward smaller, lighter, and more powerful. These include cell phones, PDA's, digital cameras, MP3 players, and medical electronics. These products are requiring an increased number of chips per product with an even greater number of 110 signals per chip in a smaller package. To incorporate a greater degree of electronic function into a smaller volume, circuit traces and the holes used to connect them must have smaller physical dimensions [I]. The use of flexible circuits and substrates are also becoming more important to decrease the volume and weight of the product. Industry has been on a continual struggle to keep pace and to reliably and inexpensively manufacture these products. I Since the invention of printed wiring boards (PWBs) in the 1950's, vias have been drilled with high-speed mechanical drills [2]. The process has since then become very sophisticated, fast, and accurate. The vias that are usually made with the mechanical drills are in the range of pm. As technology pushes for better performance and smaller footprints, the sizes of the vias continues to shrink. I Around 1995, the production of circuit boards with microvias started in Japan and was referred to as high density interconnect (HDI) [3]. Microvias are holes with a diameter less than 150 pm. Other advances such as the use of blind vias and the use of two HDI layers on each side helped continue the technology trends. Though holes of 150

2 p are achievable with mechanical drills, the cost effectiveness of (his process under 200 p is no longer practical 121. Mechanical drills are also inapt for the formation of blind vias. -3 Future technologies are also introducing the application of polymeric materials as >. P.? the substrate which would produce flexible substrates. Polyimides are also being used as : protective and insulating layers of the interconnect substrates which is advantageous for the cost and performance of the circuit module [4]. Current technology offers a wide range of materials for circuit boards, from polymers to ceramics. They are primarily made with a dielectric between two layers of copper. PCB substrates are either diglycidyl ether of tetrabromobisphenol (FR4)- or bismaleimide triazine(bt)-based with glass fiber reinforcement for rigid boards, polyimide for flexible circuits, or alumina for high-performance devices [5]. V urn Blind Via 100 pm Through Via Cu (18 pm) I Epoxy (60 pm) I Cu (18 pm) Slasfi-Ulxir-reinforeed mumlayei Figure 1 -Holes in various PCB materials [I] The new technology to replace mechanical drilling must be able to drill through a variety of materials and produce blind vias, not to mention to maintain the usual cost and throughput variables. Three technologies began to compete to take over microvia drilling: plasma etching, photo via formation/etching, and lasers. [l] Any of these processes must also fulfill the following requirements for vias to have reliable

3 interconnections, they include: clean vias without residue, no delamination of copper and substrate, tapered sidewalk without undercut, big land diameter for robust interconnection to the inner layer, and no perforation of the inner layer [6]. Plasma etching requires a very large capital investment. It is also limited to certain substrates which makes it not very attractive to small businesses and would only be feasible for very high volume production Photo via forming process is limited to photo imageable dielectrics and does not have a very high yield. However, these first two methods are able to form vias in each layer simultaneously while lasers drill each hole one at a time. Lasers, however, are very versatile and provide the user with many options. The wide varieties of lasers such as C02 Laser, solid state UV Lasers, and excimer lasers all have different strengths and weaknesses. Laser drilling is also the easiest and cheapest option to implement as it provides the user with the ability to implement it with established techniques and substrates, as well as providing future benefits to drill other materials [5]. Other laser advantages include: direct large amounts of energy to specific locations, localized heating, high heating and cooling rates (10"-10~' Klsec), low thermal budget useful for plasticlflexible substrates, patterning, and ability for large scale manufacturing (roll to roll). It is no surprise that they have become the most popular method of microvia formation. The term used when lasers drill holes is ablation. Ablation is the removal of material using light. It can be done either by vaporization of the material due to heat, or

4 [7]. The laser energy per unit area is called the fluence. There are many key parameters of interest when dealing with ablation in laser drilling. One must take into account several laser beam and processing parameters. The first is wavelength. Figure 2 shows the spectrum of light with the various laser types at different wavelengths. The choice of wavelength is very important depending on the absorption spectra of the copper, epoxy, polyimide, or other materials. You want the material of choice to absorb highly at the laser wavelength being used. Having a small absorption depth is also important to ensure a high energy deposition in a small volume for rapid and complete ablation. Figure 2 -Laser Type vs. Wavelength [I] The second parameter is pulse duration and energy per pulse. It is ideal to maximize peak power and to minimize heat transfer to the surrounding material. The result may induce thermal degradation of the surrounding material known as the Heat Affected Zone (HAZ) [S]. The third parameter is the pulse repetition rate. If the rate is too low, ablation will not be as efficient because the material will cool. If the rate is just right, the material will ablate more efficiently because more of the previous energy will be available with the next pulse. The fourth parameter is the beam quality. Beam quality is measured by

5 the energy, beam spot size, the focusabiity, and the homogeneity. Lenses, beam shapers and expanders, and masks are used to control the beam [4]. If the beam is not controlled, the ablation will not be as efficient and the shape of the hole will not be as expected. There is also the interaction between the laser beam and target material with the beam focus depth [S]. Each of these variables must be optimized in the processing environment in order to obtain the correct properties desired for the given application. The most common types of lasers are CO; and UV. They all have their advantages and disadvantages which are studied below. The differences between the beam properties, quality of the laser types, and the various material interactions strongly determine their applicability fields. [4] COi Lasers CO; lasers emit infrared light with a wavelength 10.6 (un and the beam is focused using lenses. This long wavelength limits the minimum focus diameter which reaches its physical limit around 75 (un. The short depth of focus associated with this laser also limits via diameter. However, the wavelength is ideal to ablate organic materials such as polyimide and epoxies. COz lasers can not effectively ablate metals due to the absorption of a few percent of the beam and the reflection of the rest [4]. However, if one treats the surface of copper typically with black oxide and has the optics optimized for the process, CO; has been able to ablate copper for 100 (un holes [9].

6

7 very clean ablation with no side thermal damage. However, they are very big, have a high cost of ownership, and are inefficient. They lose approximately 95% of the output power due to masking [12]. They have a very low repetition rate (several hundred pulses per second), and do not remove metals as well as solid state lasers. [I] The advantage of excimer lasers over solid state lasers is that they selectively remove material over large areas uniformly, as opposed to solid state lasers which rely on focusing the beam to a very small area to achieve sufficient fluences. New advances in optics and new materials are continually making excimer lasers more attractive, however solid state lasers dominate over excimer lasers for microvia applications [13]. Solid State Lasers W solid state lasers are primarily third-harmonic Nd-doped designs (YAG and Vanadate) at 355 nm, though other harmonics are available 121. The light is emitted in very short high power pulses that can be focused to very small spots. The size of the focus spot is directly proportional to the wavelength of the light. To achieve smaller diameters, smaller wavelengths must be used. Solid state lasers can create microvias that are less than 25 pn in diameter. Unlike excimer lasers, solid state lasers exhibit repetition rates ranging from 1-100,000 pulses per second without losing beam quality and are capable of ablating metals [I]. Other advantages include high reliability, minimal service downtime, lower operating costs, and greater simplicity [12].

8

9 ig There has been a steady progression of in power and pulse repetition frequency through the years. As this trend continues, UV solid state lasers will soon become dominant in the manufacturing of circuit boiads. An increase in throughput can also come from advancements in beam positio determined by the time spent drilling each vim [2]. "t technology since the processing speed is and the time required to move between CO2 vs. UV - Hybria Using C@ is essentially a thermal process in which the intense beam melts and vaporizes the material, either by conformal mask drilling or large window drilling [14]. This usually results in thermal degradation of the surrounding material known as the Heat Affected Zone, HAZ. The HAZ reduces precision and can create problems in circuits by

10 creating conductive paths between circuits that are supposed to be isolated. In contrast, UV lasers interact with materials primarily through a photochemical process in which the high energy photons actually break molecular bonds. The result is a clean cut with minimal effect on the surrounding material [15]. Figure 4 illustrates the different hole profiles by drilling at different wavelengths in the same material. Harmonics YAG CO, of YAG Figure 4 - Som 2 HAZ using higher wavelengths in polyimide material [7] The limit of CO; laser via size is 75 pn while solid state UV at 355 nrn can go to 25 pn. Another comparison is the greater absorption of many materials with UV, especially copper which is mostly reflective in the IR. UV lasers also eliminate the need of using masks or large windows on the surface since the beam defines the shape and size of the hole. There are also fewer alignment problems than CO; lasers because vias are aligned...; with respect to internal fiducials [14]. CO; lasers are known for their high average power. '2 and high drilling throughput, while UV lasers can drill through metals easily and make the smallest vias. + : In PCB manufacturing, hybrid lasers have been developed that integrate the two lasers together; using each laser's strengths to increase throughput. The copper is drilling

11 with the W laser and the dielectric with the C@ laser in parallel processing [14]. This hybrid laser provides manutkdwers with the flexibility of ddling through any variety of circuit board materials or configurations. Lasers have already become a standard in manufacturing of PCB. In 2006,0.4 mm chip scale packages on telecom products will be in volume production. This dictates design parameters of stacked microvias with 2-3 HDI layers on each side, lineslspaces below 60 urn, and three times the amount of laser vias with the diameter down to 70 pn [9]. The laser drilling technology could switch completely to UV when the next generation of 0.3 mm chip scale packages with thinner dielectrics and 50 pn diameter microvias are used [9]. This will only be possible with the continuing trend of high power UV solid state lasers that can provide higher throughputs and will provide longer lifetimes. Also, if a company invests on UV laser systems for a specific product, it will most likely be able to use the same system on different PCB materials for future products. r..

12 References 1. Egitto, Frank: Laser drilling for electrical interconnection in advanced flexible electronics applications. (Endicott Interconnect, 2006). 2. Dunsky, Corey: High-speed Microvia Formation with UV Solid-state Lasers. Proceedings of the ZEEE, 90, 1670, (2002). 3. Moser, David: Lasers tool up for via formation. Laser Focus World, 37,213, (2001). 4. P. Gordon and R. Berenyi: Laser processing of flexible substrates. (Department of Electronics Technology, Budapest University of Technology). 5. J. Paulus and M. Petti: Microvia materials: enablers for high-density interconnects. Proc. ZPC Printed Circuits Expo 1997, San Jose, CA, S Lange, B.: PCB laser technology for rigid and flex HDI -via formation, structuring, routing. LPKFLaser & Electronics AG, (2002). 7. Sun, Y.: Micro-via drilling on polymeric with laser pulses. (Electro Scientific Industries, Inc.). 8. Schmidt, H.: Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained..i Appl. Phys., 83,5458, (1998). 9. Stahr, Hannes: The laser drilling horse race. Printed Circuit Design & Manufacture, 23,28 (2006). 10. Savage, Neil: UV lasers make their mark. OE Mag., 1,46, (2001) Kincade, Kathy: Excimers take more refined approach to micrornaching. Laser Focus World, 41,69, (2005). 12. M. Keirstead and P. Somerville: UV lasers are workhorses. Laser Focus World, 37,197, (2001). 13. A. Masters and T. Geiiking: Beam-shaping optics expand excimer laser applications. Laser Focus World, 41,99 (2005). 14. Justino, Pierre: A comparative review of laser manufacturing processes. PC FAB, 25,44, (2002). 15. R. Schaeffer and T. Hannon: UV solid-state lasers exhibit precision and dependability. Laser Focus World, 37,115, (2001).

Highly Versatile Laser System for the Production of Printed Circuit Boards

Highly Versatile Laser System for the Production of Printed Circuit Boards When batch sizes go down and delivery schedules are tight, flexibility becomes more important than throughput Highly Versatile Laser System for the Production of Printed Circuit Boards By Bernd Lange and

More information

Microelectronics Packaging AS FEATURES GET SMALLER, THE ROLE FOR LASERS GETS LARGER

Microelectronics Packaging AS FEATURES GET SMALLER, THE ROLE FOR LASERS GETS LARGER MEMS ARTICLE Microelectronics Packaging AS FEATURES GET SMALLER, THE ROLE FOR LASERS GETS LARGER DIRK MÜLLER, MICROELECTRONICS AND SOLAR MARKET SEGMENT MANAGER, RALPH DELMDAHL, PRODUCT MARKETING MANAGER,

More information

Diverse Lasers Support Key Microelectronic Packaging Tasks

Diverse Lasers Support Key Microelectronic Packaging Tasks Diverse Lasers Support Key Microelectronic Packaging Tasks Written by D Muller, R Patzel, G Oulundsen, H Halou, E Rea 23 July 2018 To support more sophisticated and compact tablets, phones, watches and

More information

ESCC2006 European Supply Chain Convention

ESCC2006 European Supply Chain Convention ESCC2006 European Supply Chain Convention PCB Paper 20 Laser Technology for cutting FPC s and PCB s Mark Hüske, Innovation Manager, LPKF Laser & Electronics AG, Germany Laser Technology for cutting FPCs

More information

BLIND MICROVIA TECHNOLOGY BY LASER

BLIND MICROVIA TECHNOLOGY BY LASER BLIND MICROVIA TECHNOLOGY BY LASER Larry W. Burgess LaserVia Drilling Centers, L.L.C. Wilsonville, Oregon, USA ABSTRACT The most costly process in the fabrication of today's multilayer printed circuit

More information

Sintec Optronics Pte Ltd Blk 134 Jurong East St 13 #04-309D Singapore Tel: (65) Fax:

Sintec Optronics Pte Ltd Blk 134 Jurong East St 13 #04-309D Singapore Tel: (65) Fax: Sintec Optronics Pte Ltd Blk 134 Jurong East St 13 #04-309D Singapore 600134 Tel: (65) 6862-7224 Fax: 6793-8060 E-mail: htinfo@singnet.com.sg Excimer laser drilling of polymers Y. H. Chen a, H. Y. Zheng

More information

Midaz Micro-Slab DPSS Lasers:

Midaz Micro-Slab DPSS Lasers: Midaz Micro-Slab DPSS Lasers: Higher power & pulse rate for higher speed micromachining Professor Mike Damzen Midaz Laser Ltd 4 June 2008 AILU Meeting Industrial opportunities in laser micro and nano processing

More information

AVIA DPSS Lasers: Advanced Design for Increased Process Throughput

AVIA DPSS Lasers: Advanced Design for Increased Process Throughput White Paper AVIA DPSS Lasers: Advanced Design for Increased Process Throughput The Q-switched, diode-pumped, solid-state (DPSS) laser has become a widely employed tool in a broad range of industrial micromachining

More information

High power UV from a thin-disk laser system

High power UV from a thin-disk laser system High power UV from a thin-disk laser system S. M. Joosten 1, R. Busch 1, S. Marzenell 1, C. Ziolek 1, D. Sutter 2 1 TRUMPF Laser Marking Systems AG, Ausserfeld, CH-7214 Grüsch, Switzerland 2 TRUMPF Laser

More information

Advances in Laser Micro-machining for Wafer Probing and Trimming

Advances in Laser Micro-machining for Wafer Probing and Trimming Advances in Laser Micro-machining for Wafer Probing and Trimming M.R.H. Knowles, A.I.Bell, G. Rutterford & A. Webb Oxford Lasers June 10, 2002 Oxford Lasers June 2002 1 Introduction to Laser Micro-machining

More information

Overcoming the Challenges of HDI Design

Overcoming the Challenges of HDI Design ALTIUMLIVE 2018: Overcoming the Challenges of HDI Design Susy Webb Design Science Sr PCB Designer San Diego Oct, 2018 1 Challenges HDI Challenges Building the uvia structures The cost of HDI (types) boards

More information

Application Bulletin 240

Application Bulletin 240 Application Bulletin 240 Design Consideration CUSTOM CAPABILITIES Standard PC board fabrication flexibility allows for various component orientations, mounting features, and interconnect schemes. The starting

More information

Micromachining of packaging materials for MEMS using lasers

Micromachining of packaging materials for MEMS using lasers Micromachining of packaging materials for MEMS using lasers Vijay V. Kancharla, Kira K. Hendricks, Shaochen Chen* Industrial and Manufacturing Systems Engineering Department, Iowa State University ABSTRACT

More information

Laser Drilling and Pattern Processing for MCM-L Prototyping

Laser Drilling and Pattern Processing for MCM-L Prototyping Laser Drilling and Pattern Processing for MCM-L Prototyping Laser Drilling and Pattern Processing for MCM-L Prototyping Zsolt Illyefalvi-Vitéz, Miklós Ruszinkó, and János Pinkola Department of Electronics

More information

Polymer Optical Waveguide Fabrication Using Laser Ablation

Polymer Optical Waveguide Fabrication Using Laser Ablation Polymer Optical Waveguide Fabrication Using Laser Ablation Shefiu Zakariyah Loughborough University Shefiu S. Zakariyah, Paul P. Conway, David A. Hutt, #David R. Selviah, #Kai Wang #Hadi Baghsiahi *Jeremy

More information

Novel laser power sensor improves process control

Novel laser power sensor improves process control Novel laser power sensor improves process control A dramatic technological advancement from Coherent has yielded a completely new type of fast response power detector. The high response speed is particularly

More information

Application of EOlite Flexible Pulse Technology. Matt Rekow Yun Zhou Nicolas Falletto

Application of EOlite Flexible Pulse Technology. Matt Rekow Yun Zhou Nicolas Falletto Application of EOlite Flexible Pulse Technology Matt Rekow Yun Zhou Nicolas Falletto 1 Topics Company Background What is a Flexible Pulse Laser? Why Tailored or Flexible Pulse? Application of Flexible

More information

!"#$"%&' ()#*+,-+.&/0(

!#$%&' ()#*+,-+.&/0( !"#$"%&' ()#*+,-+.&/0( Multi Chip Modules (MCM) or Multi chip packaging Industry s first MCM from IBM. Generally MCMs are horizontal or two-dimensional modules. Defined as a single unit containing two

More information

64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array

64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array 64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array 69 64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array Roland Jäger and Christian Jung We have designed and fabricated

More information

Innovative pcb solutions used in medical and other devices Made in Switzerland

Innovative pcb solutions used in medical and other devices Made in Switzerland Innovative pcb solutions used in medical and other devices Made in Switzerland Chocolate Watches Money.PCB`s innovative pcb`s... Customer = innovation driver Need to add more parts and I/O make smaller/thinner

More information

New Lasers Improve Glass Cutting Methods

New Lasers Improve Glass Cutting Methods New Lasers Improve Glass Cutting Methods Over the past decade, glass has become an increasingly sophisticated structural and functional component in uses as varied as flat panel displays (FPDs), automobiles

More information

The Laser Processing of Diamond and Sapphire

The Laser Processing of Diamond and Sapphire The Laser Processing of Diamond and Sapphire Neil Sykes Micronanics Limited neil@micronanics.com Diamond Diamond has the highest hardness and thermal conductivity of any bulk material 10/10 on the Mohs

More information

EMERGING SUBSTRATE TECHNOLOGIES FOR PACKAGING

EMERGING SUBSTRATE TECHNOLOGIES FOR PACKAGING EMERGING SUBSTRATE TECHNOLOGIES FOR PACKAGING Henry H. Utsunomiya Interconnection Technologies, Inc. Suwa City, Nagano Prefecture, Japan henryutsunomiya@mac.com ABSTRACT This presentation will outline

More information

ECE 340 Lecture 29 : LEDs and Lasers Class Outline:

ECE 340 Lecture 29 : LEDs and Lasers Class Outline: ECE 340 Lecture 29 : LEDs and Lasers Class Outline: Light Emitting Diodes Lasers Semiconductor Lasers Things you should know when you leave Key Questions What is an LED and how does it work? How does a

More information

Key Questions. What is an LED and how does it work? How does a laser work? How does a semiconductor laser work? ECE 340 Lecture 29 : LEDs and Lasers

Key Questions. What is an LED and how does it work? How does a laser work? How does a semiconductor laser work? ECE 340 Lecture 29 : LEDs and Lasers Things you should know when you leave Key Questions ECE 340 Lecture 29 : LEDs and Class Outline: What is an LED and how does it How does a laser How does a semiconductor laser How do light emitting diodes

More information

True Three-Dimensional Interconnections

True Three-Dimensional Interconnections True Three-Dimensional Interconnections Satoshi Yamamoto, 1 Hiroyuki Wakioka, 1 Osamu Nukaga, 1 Takanao Suzuki, 2 and Tatsuo Suemasu 1 As one of the next-generation through-hole interconnection (THI) technologies,

More information

Laser Induced Damage Threshold of Optical Coatings

Laser Induced Damage Threshold of Optical Coatings White Paper Laser Induced Damage Threshold of Optical Coatings An IDEX Optics & Photonics White Paper Ronian Siew, PhD Craig Hanson Turan Erdogan, PhD INTRODUCTION Optical components are used in many applications

More information

Diffuser / Homogenizer - diffractive optics

Diffuser / Homogenizer - diffractive optics Diffuser / Homogenizer - diffractive optics Introduction Homogenizer (HM) product line can be useful in many applications requiring a well-defined beam shape with a randomly-diffused intensity profile.

More information

POWER DETECTORS. How they work POWER DETECTORS. Overview

POWER DETECTORS. How they work POWER DETECTORS. Overview G E N T E C - E O POWER DETECTORS Well established in this field for over 30 years Gentec Electro-Optics has been a leader in the field of laser power and energy measurement. The average power density

More information

The Swiss Army Knife for the Lab Micro Material Processing with the LPKF ProtoLaser U4

The Swiss Army Knife for the Lab Micro Material Processing with the LPKF ProtoLaser U4 The Swiss Army Knife for the Lab Micro Material Processing with the LPKF ProtoLaser U4 Micro Machining in the Lab LPKF ProtoLasers have been in use in leading electronics laboratories around the world

More information

Material Effects of Laser Energy When Processing Circuit Board Substrates during Depaneling

Material Effects of Laser Energy When Processing Circuit Board Substrates during Depaneling Material Effects of Laser Energy When Processing Circuit Board Substrates during Depaneling Ahne Oosterhof Eastwood Consulting Hillsboro, OR ABSTRACT Using modern laser systems for the depanelization of

More information

ICALEO 2007, October 29 November 1, Hilton in the WALT DISNEY WORLD Resort, Orlando, FL, USA

ICALEO 2007, October 29 November 1, Hilton in the WALT DISNEY WORLD Resort, Orlando, FL, USA WHAT IS THE BEST CHOICE FOR LASER MATERIAL PROCESSING ROD, DISK, SLAB OR FIBER? Paper 201 Erwin Steiger Erwin Steiger LaserService, Graf-Toerring-Strasse 68, Maisach, Bavaria, 82216, Germany Abstract Laser

More information

High power VCSEL array pumped Q-switched Nd:YAG lasers

High power VCSEL array pumped Q-switched Nd:YAG lasers High power array pumped Q-switched Nd:YAG lasers Yihan Xiong, Robert Van Leeuwen, Laurence S. Watkins, Jean-Francois Seurin, Guoyang Xu, Alexander Miglo, Qing Wang, and Chuni Ghosh Princeton Optronics,

More information

Since

Since Since 1999 www.kortherm.co.kr Advanced Laserr Technology at KORTherm Science S Since founded in 1999 we put our endeavor into building a specialized business, focusing on the application of lasers and

More information

Laser Singulation of Thin Wafers & Difficult Processed Substrates: A Niche Area over Saw Dicing

Laser Singulation of Thin Wafers & Difficult Processed Substrates: A Niche Area over Saw Dicing Laser Singulation of Thin Wafers & Difficult Processed Substrates: A Niche Area over Saw Dicing M.H. Hong *, **, Q. Xie *, K.S. Tiaw * *, ** and T.C. Chong * Data Storage Institute, DSI Building 5, Engineering

More information

Robustness and high MTBF, to guarantee availability, even in harsh industrial environments. Maintenance-free, thereby eliminating maintenance

Robustness and high MTBF, to guarantee availability, even in harsh industrial environments. Maintenance-free, thereby eliminating maintenance Efficient Industrial Application of Near-Infrared Laser Sources Fiber lasers, Nd:YAG or Nd:YVO lasers may be combined with either flatbed or galvanometer systems as well as with fixed-beam systems for

More information

PHGN/CHEN/MLGN 435/535: Interdisciplinary Silicon Processing Laboratory. Simple Si solar Cell!

PHGN/CHEN/MLGN 435/535: Interdisciplinary Silicon Processing Laboratory. Simple Si solar Cell! Where were we? Simple Si solar Cell! Two Levels of Masks - photoresist, alignment Etch and oxidation to isolate thermal oxide, deposited oxide, wet etching, dry etching, isolation schemes Doping - diffusion/ion

More information

End Capped High Power Assemblies

End Capped High Power Assemblies Fiberguide s end capped fiber optic assemblies allow the user to achieve higher coupled power into a fiber core by reducing the power density at the air/ silica interface, commonly the point of laser damage.

More information

FLASHSOLDERING UPDATE EXTENDING FINE MAGNET WIRE JOINING APPLICATIONS

FLASHSOLDERING UPDATE EXTENDING FINE MAGNET WIRE JOINING APPLICATIONS FLASHSOLDERING UPDATE EXTENDING FINE MAGNET WIRE JOINING APPLICATIONS David W. Steinmeier microjoining Solutions & Mike Becker Teka Interconnection Systems Abstract: FlashSoldering was first developed

More information

GRADE A ENGRAVING. Application-focused DPSS laser outshines industry favorite fiber laser counterpart when marking components

GRADE A ENGRAVING. Application-focused DPSS laser outshines industry favorite fiber laser counterpart when marking components GRADE A ENGRAVING by Marin Iliev, R&D manager, RMI Laser Application-focused DPSS laser outshines industry favorite fiber laser counterpart when marking components No doubt fiber lasers are the most common

More information

Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers

Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers Shun-ichi Matsushita*, * 2, Taizo Miyato*, * 2, Hiroshi Hashimoto*, * 2, Eisuke Otani* 2, Tatsuji Uchino* 2, Akira Fujisaki*,

More information

DEVELOPMENT OF CW AND Q-SWITCHED DIODE PUMPED ND: YVO 4 LASER

DEVELOPMENT OF CW AND Q-SWITCHED DIODE PUMPED ND: YVO 4 LASER DEVELOPMENT OF CW AND Q-SWITCHED DIODE PUMPED ND: YVO 4 LASER Gagan Thakkar 1, Vatsal Rustagi 2 1 Applied Physics, 2 Production and Industrial Engineering, Delhi Technological University, New Delhi (India)

More information

Drilling of Glass by Excimer Laser Mask Projection Technique Abstract Introduction Experimental details

Drilling of Glass by Excimer Laser Mask Projection Technique Abstract Introduction Experimental details Drilling of Glass by Excimer Laser Mask Projection Technique Bernd Keiper, Horst Exner, Udo Löschner, Thomas Kuntze Laserinstitut Mittelsachsen e.v., Hochschule Mittweida, University of Applied Sciences

More information

Beam Shaping in High-Power Laser Systems with Using Refractive Beam Shapers

Beam Shaping in High-Power Laser Systems with Using Refractive Beam Shapers - 1 - Beam Shaping in High-Power Laser Systems with Using Refractive Beam Shapers Alexander Laskin, Vadim Laskin AdlOptica GmbH, Rudower Chaussee 29, 12489 Berlin, Germany ABSTRACT Beam Shaping of the

More information

Manufacture and Performance of a Z-interconnect HDI Circuit Card Abstract Introduction

Manufacture and Performance of a Z-interconnect HDI Circuit Card Abstract Introduction Manufacture and Performance of a Z-interconnect HDI Circuit Card Michael Rowlands, Rabindra Das, John Lauffer, Voya Markovich EI (Endicott Interconnect Technologies) 1093 Clark Street, Endicott, NY 13760

More information

6 Things You Need to Know About Laser Wire Stripping

6 Things You Need to Know About Laser Wire Stripping Search... GO 6 Things You Need to Know About Laser Wire Stripping (#) (#) (#) (#) (#) 14 (#) (#) Posted in Lasers (/lasers) by Qmed Staff (/users/qmed staff) on August 10, 2015 Medical device wires are

More information

PROJECT. DOCUMENT IDENTIFICATION D2.2 - Report on low cost filter deposition process DISSEMINATION STATUS PUBLIC DUE DATE 30/09/2011 ISSUE 2 PAGES 16

PROJECT. DOCUMENT IDENTIFICATION D2.2 - Report on low cost filter deposition process DISSEMINATION STATUS PUBLIC DUE DATE 30/09/2011 ISSUE 2 PAGES 16 GRANT AGREEMENT NO. ACRONYM TITLE CALL FUNDING SCHEME 248898 PROJECT 2WIDE_SENSE WIDE spectral band & WIDE dynamics multifunctional imaging SENSor ENABLING SAFER CAR TRANSPORTATION FP7-ICT-2009.6.1 STREP

More information

FPGA World Conference Stockholm 08 September John Steinar Johnsen -Josse- Senior Technical Advisor

FPGA World Conference Stockholm 08 September John Steinar Johnsen -Josse- Senior Technical Advisor FPGA World Conference Stockholm 08 September 2015 John Steinar Johnsen -Josse- Senior Technical Advisor Agenda FPGA World Conference Stockholm 08 September 2015 - IPC 4101C Materials - Routing out from

More information

Lecture 7. Lithography and Pattern Transfer. Reading: Chapter 7

Lecture 7. Lithography and Pattern Transfer. Reading: Chapter 7 Lecture 7 Lithography and Pattern Transfer Reading: Chapter 7 Used for Pattern transfer into oxides, metals, semiconductors. 3 types of Photoresists (PR): Lithography and Photoresists 1.) Positive: PR

More information

Pulse control in high-power UV laser enables new micromachining options

Pulse control in high-power UV laser enables new micromachining options INDUSTRIAL LASERS Pulse control in high-power UV laser enables new micromachining options RAJESH PATEL, JAMES BOVATSEK, and ASHWINI TAMHANKAR Manufacturing mobile consumer electronics requires increasingly

More information

Excimer laser projector for microelectronics applications

Excimer laser projector for microelectronics applications Excimer laser projector for microelectronics applications P T Rumsby and M C Gower Exitech Ltd Hanborough Park, Long Hanborough, Oxford OX8 8LH, England ABSTRACT Fully integrated excimer laser mask macro

More information

MicroSpot FOCUSING OBJECTIVES

MicroSpot FOCUSING OBJECTIVES OFR P R E C I S I O N O P T I C A L P R O D U C T S MicroSpot FOCUSING OBJECTIVES APPLICATIONS Micromachining Microlithography Laser scribing Photoablation MAJOR FEATURES For UV excimer & high-power YAG

More information

Sectional Design Standard for High Density Interconnect (HDI) Printed Boards

Sectional Design Standard for High Density Interconnect (HDI) Printed Boards IPC-2226 ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES Sectional Design Standard for High Density Interconnect (HDI) Printed Boards Developed by the HDI Design Subcommittee (D-41) of the HDI Committee

More information

PROCEEDINGS OF SPIE. 193nm high power lasers for the wide bandgap material processing

PROCEEDINGS OF SPIE. 193nm high power lasers for the wide bandgap material processing PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie 193nm high power lasers for the wide bandgap material processing Junichi Fujimoto, Masakazu Kobayashi, Koji Kakizaki, Hiroaki Oizumi,

More information

Institute of Solid State Physics. Technische Universität Graz. Lithography. Peter Hadley

Institute of Solid State Physics. Technische Universität Graz. Lithography. Peter Hadley Technische Universität Graz Institute of Solid State Physics Lithography Peter Hadley http://www.cleanroom.byu.edu/virtual_cleanroom.parts/lithography.html http://www.cleanroom.byu.edu/su8.phtml Spin coater

More information

AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%.

AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%. Application Note AN004: Fiber Coupling Improvement Introduction AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%. Industrial lasers used for cutting, welding, drilling,

More information

LASER TECHNOLOGY. Key parameters. Groundbreaking in the laser processing of cutting tools. A member of the UNITED GRINDING Group

LASER TECHNOLOGY. Key parameters. Groundbreaking in the laser processing of cutting tools. A member of the UNITED GRINDING Group Creating Tool Performance A member of the UNITED GRINDING Group Groundbreaking in the laser processing of cutting tools Key parameters The machining of modern materials using laser technology knows no

More information

Please contact T E L : ~ 4.

Please contact T E L : ~ 4. Please contact T E L : +82-32-623-6320~ 4 E-MAIL : sales@kortherm.co.kr jshuh@kortherm.co.kr 1. LASER SAMPLE TEST - To serve companies and individuals who need sample tests before buying new laser micromachining

More information

Studying the Effect of Using Assist Gas with Low Power CO 2 LaserGlass Drilling

Studying the Effect of Using Assist Gas with Low Power CO 2 LaserGlass Drilling American Journal of Engineering Research (AJER) 2018 American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-7, Issue-1, pp-23-27 www.ajer.org Research Paper Open Access

More information

NON-TRADITIONAL MACHINING PROCESSES ULTRASONIC, ELECTRO-DISCHARGE MACHINING (EDM), ELECTRO-CHEMICAL MACHINING (ECM)

NON-TRADITIONAL MACHINING PROCESSES ULTRASONIC, ELECTRO-DISCHARGE MACHINING (EDM), ELECTRO-CHEMICAL MACHINING (ECM) NON-TRADITIONAL MACHINING PROCESSES ULTRASONIC, ELECTRO-DISCHARGE MACHINING (EDM), ELECTRO-CHEMICAL MACHINING (ECM) A machining process is called non-traditional if its material removal mechanism is basically

More information

Title: Laser marking with graded contrast micro crack inside transparent material using UV ns pulse

Title: Laser marking with graded contrast micro crack inside transparent material using UV ns pulse Cover Page Title: Laser marking with graded contrast micro crack inside transparent material using UV ns pulse laser Authors: Futoshi MATSUI*(1,2), Masaaki ASHIHARA(1), Mitsuyasu MATSUO (1), Sakae KAWATO(2),

More information

Void Reduction in Reflow Soldering Processes by Sweep Stimulation of PCB Substrate

Void Reduction in Reflow Soldering Processes by Sweep Stimulation of PCB Substrate Void Reduction in Reflow Soldering Processes by Sweep Stimulation of PCB Substrate Viktoria Rawinski Ersa GmbH Wertheim, Germany Abstract Due to the ongoing trend towards miniaturization of power components,

More information

Major Fabrication Steps in MOS Process Flow

Major Fabrication Steps in MOS Process Flow Major Fabrication Steps in MOS Process Flow UV light Mask oxygen Silicon dioxide photoresist exposed photoresist oxide Silicon substrate Oxidation (Field oxide) Photoresist Coating Mask-Wafer Alignment

More information

Communication Technology

Communication Technology What is communication technology? Communication technology allows people to store, transmit, receive, and manipulate information. ICT ( Information and Communication Technology) is combining telephone

More information

Beam Shaping and Simultaneous Exposure by Diffractive Optical Element in Laser Plastic Welding

Beam Shaping and Simultaneous Exposure by Diffractive Optical Element in Laser Plastic Welding Beam Shaping and Simultaneous Exposure by Diffractive Optical Element in Laser Plastic Welding AKL`12 9th May 2012 Dr. Daniel Vogler Page 1 Motivation: Quality and flexibility diffractive spot shaping

More information

Precision Cold Ablation Material Processing using High-Power Picosecond Lasers

Precision Cold Ablation Material Processing using High-Power Picosecond Lasers Annual meeting Burgdorf Precision Cold Ablation Material Processing using High-Power Picosecond Lasers Dr. Kurt Weingarten kw@time-bandwidth.com 26 November 2009 Background of Time-Bandwidth Products First

More information

Atlantic. Industrial High Power Picosecond Lasers. features

Atlantic. Industrial High Power Picosecond Lasers. features Atlantic Industrial High Power Picosecond Lasers lasers have been designed as a versatile tool for a variety of industrial material processing applications. They are compact, OEM rugged, with up to 8 W

More information

Trends in Optical Transceivers:

Trends in Optical Transceivers: Trends in Optical Transceivers: Light sources for premises networks Peter Ronco Corning Optical Fiber Asst. Product Line Manager Premises Fibers January 24, 2006 Outline: Introduction: Transceivers and

More information

Fiber Laser Chirped Pulse Amplifier

Fiber Laser Chirped Pulse Amplifier Fiber Laser Chirped Pulse Amplifier White Paper PN 200-0200-00 Revision 1.2 January 2009 Calmar Laser, Inc www.calmarlaser.com Overview Fiber lasers offer advantages in maintaining stable operation over

More information

Vertical External Cavity Surface Emitting Laser

Vertical External Cavity Surface Emitting Laser Chapter 4 Optical-pumped Vertical External Cavity Surface Emitting Laser The booming laser techniques named VECSEL combine the flexibility of semiconductor band structure and advantages of solid-state

More information

Laser Experts in Semiconductor Manufacturing

Laser Experts in Semiconductor Manufacturing Laser Experts in Semiconductor Manufacturing Backed by more than three decades of experience in laser material processing, ROFIN is one of the best established companies in this field. The company has

More information

Sealed CO 2 DIAMOND. Sealed CO 2 Laser Systems. Reliable Lasers for Precision Machining

Sealed CO 2 DIAMOND. Sealed CO 2 Laser Systems. Reliable Lasers for Precision Machining Coherent Sealed CO 2 RF-Excited DIAMOND Sealed CO 2 Laser Systems Reliable Lasers for Precision Machining Brilliance DIAMOND K-Series and G-Series lasers feature Brilliance, a combination of mode quality,

More information

Silicon Photonics Photo-Detector Announcement. Mario Paniccia Intel Fellow Director, Photonics Technology Lab

Silicon Photonics Photo-Detector Announcement. Mario Paniccia Intel Fellow Director, Photonics Technology Lab Silicon Photonics Photo-Detector Announcement Mario Paniccia Intel Fellow Director, Photonics Technology Lab Agenda Intel s Silicon Photonics Research 40G Modulator Recap 40G Photodetector Announcement

More information

Vixar High Power Array Technology

Vixar High Power Array Technology Vixar High Power Array Technology I. Introduction VCSELs arrays emitting power ranging from 50mW to 10W have emerged as an important technology for applications within the consumer, industrial, automotive

More information

Newer process technology (since 1999) includes :

Newer process technology (since 1999) includes : Newer process technology (since 1999) includes : copper metalization hi-k dielectrics for gate insulators si on insulator strained silicon lo-k dielectrics for interconnects Immersion lithography for masks

More information

Micron Laser Technology

Micron Laser Technology Micron Laser Technology AS9100C / ISO9001:2008 Certified 18,000 sq. ft. facility with 20 laser drilling systems solely dedicated to microvia drilling, laser material processing, micromachining, prototyping,

More information

Laser MicroJet Frequently Asked Questions

Laser MicroJet Frequently Asked Questions Laser MicroJet Frequently Asked Questions Who is Synova? Synova is the inventor and patent owner of a new laser cutting technology (the Laser-Microjet) and provides its systems for a broad range of micromachining

More information

Femtosecond Laser Direct Writing of Optical Waveguides in Silicone Film

Femtosecond Laser Direct Writing of Optical Waveguides in Silicone Film Femtosecond Laser Direct Writing of Optical Waveguides in Silicone Film Susumu NAKAMURA Department of Electrical and Electronic Systems Engineering Nagaoka College of Technology, 888 Nishikatakai, Nagaoka,

More information

Novel Beam Diagnostics Improve Laser Additive Manufacturing

Novel Beam Diagnostics Improve Laser Additive Manufacturing A Coherent Whitepaper November 17, 2016 Novel Beam Diagnostics Improve Laser Additive Manufacturing Laser additive manufacturing (LAM) is rapidly becoming an important method for the fabrication of both

More information

Capabilities of Flip Chip Defects Inspection Method by Using Laser Techniques

Capabilities of Flip Chip Defects Inspection Method by Using Laser Techniques Capabilities of Flip Chip Defects Inspection Method by Using Laser Techniques Sheng Liu and I. Charles Ume* School of Mechanical Engineering Georgia Institute of Technology Atlanta, Georgia 3332 (44) 894-7411(P)

More information

New techniques for laser micromachining MEMS devices

New techniques for laser micromachining MEMS devices New techniques for laser micromachining MEMS devices Charles Abbott, Ric Allott, Bob Bann, Karl Boehlen, Malcolm Gower, Phil Rumsby, Ines Stassen- Boehlen and Neil Sykes Exitech Ltd, Oxford Industrial

More information

Selective Soldering for Interconnection Technology Used in Enterprise Communication Apparatuses

Selective Soldering for Interconnection Technology Used in Enterprise Communication Apparatuses Selective Soldering for Interconnection Technology Used in Enterprise Communication Apparatuses Mark Woolley, Wesley Brown, and Dr. Jae Choi Avaya Inc. 1300 W 120 th Avenue Westminster, CO 80234 Abstract:

More information

The Design Challenge to Integrate High Performance Organic Packaging into High End ASIC Strategic Space Based Applications.

The Design Challenge to Integrate High Performance Organic Packaging into High End ASIC Strategic Space Based Applications. The Design Challenge to Integrate High Performance Organic Packaging into High End ASIC Strategic Space Based Applications May 8, 2007 Abstract: The challenge to integrate high-end, build-up organic packaging

More information

HOTBAR REFLOW SOLDERING

HOTBAR REFLOW SOLDERING HOTBAR REFLOW SOLDERING Content 1. Hotbar Reflow Soldering Introduction 2. Application Types 3. Process Descriptions > Flex to PCB > Wire to PCB 4. Design Guidelines 5. Equipment 6. Troubleshooting Guide

More information

Novel Beam Diagnostics Improve Laser Additive Manufacturing

Novel Beam Diagnostics Improve Laser Additive Manufacturing White Paper Novel Beam Diagnostics Improve Laser Additive Manufacturing Laser additive manufacturing (LAM) is rapidly becoming an important method for the fabrication of both prototype and production metal

More information

Fiberoptic Communication Systems By Dr. M H Zaidi. Optical Amplifiers

Fiberoptic Communication Systems By Dr. M H Zaidi. Optical Amplifiers Optical Amplifiers Optical Amplifiers Optical signal propagating in fiber suffers attenuation Optical power level of a signal must be periodically conditioned Optical amplifiers are a key component in

More information

1. INTRODUCTION 2. LASER ABSTRACT

1. INTRODUCTION 2. LASER ABSTRACT Compact solid-state laser to generate 5 mj at 532 nm Bhabana Pati*, James Burgess, Michael Rayno and Kenneth Stebbins Q-Peak, Inc., 135 South Road, Bedford, Massachusetts 01730 ABSTRACT A compact and simple

More information

CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs

CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs 1 CMOS Digital Integrated Circuits 3 rd Edition Categories of Materials Materials can be categorized into three main groups regarding their

More information

In their earliest form, bandpass filters

In their earliest form, bandpass filters Bandpass Filters Past and Present Bandpass filters are passive optical devices that control the flow of light. They can be used either to isolate certain wavelengths or colors, or to control the wavelengths

More information

Dicing of Thin Silicon Wafers with Ultra-Short Pulsed Lasers in the Range from 200 fs up to 10 ps

Dicing of Thin Silicon Wafers with Ultra-Short Pulsed Lasers in the Range from 200 fs up to 10 ps Technical Communication JLMN-Journal of Laser Micro/Nanoengineering Vol. 10, No. 2, 2015 Dicing of Thin Silicon Wafers with Ultra-Short Pulsed Lasers in the Range from 200 fs up to 10 ps C. Fornaroli 1,

More information

Section 2: Lithography. Jaeger Chapter 2. EE143 Ali Javey Slide 5-1

Section 2: Lithography. Jaeger Chapter 2. EE143 Ali Javey Slide 5-1 Section 2: Lithography Jaeger Chapter 2 EE143 Ali Javey Slide 5-1 The lithographic process EE143 Ali Javey Slide 5-2 Photolithographic Process (a) (b) (c) (d) (e) (f) (g) Substrate covered with silicon

More information

Effects of spherical aberrations on micro welding of glass using ultra short laser pulses

Effects of spherical aberrations on micro welding of glass using ultra short laser pulses Available online at www.sciencedirect.com Physics Procedia 39 (2012 ) 563 568 LANE 2012 Effects of spherical aberrations on micro welding of glass using ultra short laser pulses Kristian Cvecek a,b,, Isamu

More information

Laser Marking 2011 and Beyond. What is a Laser How does a Laser Work What Products are being Marked Why Laser marking is so Popular

Laser Marking 2011 and Beyond. What is a Laser How does a Laser Work What Products are being Marked Why Laser marking is so Popular Laser Marking 2011 and Beyond What is a Laser How does a Laser Work What Products are being Marked Why Laser marking is so Popular 3 Key Laser components 1. A laser source,- generates the laser beam. 2.

More information

Atlantic. Industrial High Power Picosecond Lasers. features

Atlantic. Industrial High Power Picosecond Lasers. features Industrial High Picosecond Lasers lasers have been designed as a versatile tool for a variety of industrial material processing applications. They are compact, OEM rugged, with up to 6 W output power at

More information

MICRO-ENGINEERING APPLICATIONS OF PULSED LASERS

MICRO-ENGINEERING APPLICATIONS OF PULSED LASERS MICRO-ENGINEERING APPLICATIONS OF PULSED LASERS Nadeem Rizvi Exitech Limited Hanborough Park, Long Hanborough, Oxford OX8 8LH, United Kingdom. INTRODUCTION Lasers are currently being used world-wide in

More information

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index.

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index. absorption, 69 active tuning, 234 alignment, 394 396 apodization, 164 applications, 7 automated optical probe station, 389 397 avalanche detector, 268 back reflection, 164 band structures, 30 bandwidth

More information

Thermo Scientific icap 7000 Plus Series ICP-OES: Innovative ICP-OES optical design

Thermo Scientific icap 7000 Plus Series ICP-OES: Innovative ICP-OES optical design TECHNICAL NOTE 43333 Thermo Scientific icap 7000 Plus Series ICP-OES: Innovative ICP-OES optical design Keywords Optical design, Polychromator, Spectrometer Key Benefits The Thermo Scientific icap 7000

More information

Experimental Investigation and Optimization for the Effective Parameters in the Laser Direct Structuring Process

Experimental Investigation and Optimization for the Effective Parameters in the Laser Direct Structuring Process Experimental Investigation and Optimization for the Effective Parameters in the Laser Direct Structuring Process Bassim Bachy a,1 and Jörg Franke 2 1,2 Institute for Factory Automation and Production Systems,

More information

Lecture 4 INTEGRATED PHOTONICS

Lecture 4 INTEGRATED PHOTONICS Lecture 4 INTEGRATED PHOTONICS What is photonics? Photonic applications use the photon in the same way that electronic applications use the electron. Devices that run on light have a number of advantages

More information

Practical Applications of Laser Technology for Semiconductor Electronics

Practical Applications of Laser Technology for Semiconductor Electronics Practical Applications of Laser Technology for Semiconductor Electronics MOPA Single Pass Nanosecond Laser Applications for Semiconductor / Solar / MEMS & General Manufacturing Mark Brodsky US Application

More information