Development of Double-sided Silcon microstrip Detector. D.H. Kah*, H. Park, H.J. Kim (BAERI JikLee (SNU) E. Won (Korea U)

Size: px
Start display at page:

Download "Development of Double-sided Silcon microstrip Detector. D.H. Kah*, H. Park, H.J. Kim (BAERI JikLee (SNU) E. Won (Korea U)"

Transcription

1 Development of Double-sided Silcon microstrip Detector D.H. Kah*, H. Park, H.J. Kim (BAERI JikLee (SNU) E. Won (Korea U), KNU) 2005 APPI 1

2 1. Motivation 2. Introduction Contents 1. Working principle 2. DSSD (Double-sided Silicon Strip Detector) 3. Electrical Test of DSSD 4. Source Test 5. Radiation Damage Test 6. Summary and Plan 2005 APPI 2

3 Motivation Design Philosophy Intermediate/Front Tracker (LD) Large/Huge View maximize BL 2 - relatively moderate magnetic field - large inner length of ECAL - plays as intermediate trackers - provide de/dx measurement Main/Front Tracker (SD) SiD View compensate for a smaller measurement length with - improved spatial resolution and - higher magnetic field 2005 APPI dhkah@belle.knu.ac.kr 3

4 Motivation Numbers of Silicon Sensor Based on this concept, a total of silicon area is about 56m 2 This means we need about 6000 wafers for the silicon sensor based on 4 inch wafer Wafer size: 10 x 10 cm 2 (4 inch) Number of Wafers:6000(incl.spares) Main/Front Tracker (SD) 2005 APPI dhkah@belle.knu.ac.kr 4

5 Motivation Applications of Silicon Sensor Medical Imaging Non-destructive Sensor Specialized Sensor Diffraction Sensor for Bio-Structure Space science Technology Sensor 2005 APPI 5

6 Introduction Working Principle (Carrier Generation & Transport) al al [ Carrier(e/h pair) Generation in Semiconductors ] 1.Thermal 2. EM-Radiation (Photon) 3. Charged Particles Reverse Bias [ Carrier Transport ] Carrier (e/h pair) split by E-field :Drift Current 2005 APPI dhkah@belle.knu.ac.kr 6

7 Introduction Working Principle (Why do apply Reverse bias?) [Space charge region for Bias ] Zero Bias : Thermal equilibrium Reverse Bias : depletion region is induce potential barrier lager than zero bias no current Forward Bias : depletion region is reduce flow current To increase the width of the depletion layer to make silicon bulk as sensitive detector volume, [ Glossary ] Space charge region : net charge density due to ionized donors in n-region and ionized acceptors in the p-region Depletion region : another term for space charge region 2005 APPI dhkah@belle.knu.ac.kr 7

8 Introduction Working Principle of DSSD Advantage of Double-sided microstirp Detector Two Dimensional position information Good sensitivity and High speed of response High resolution: Larger signal current than ionization chamber 2005 APPI 8

9 Introduction DSSD (Double-sided Silicon Strip Detector) Structure DSSD cross-sectional view N + P + High Resistive n-type substrate P + Initial Oxide Passivation oxide The sensor has the double metal structure for readout signal to reduce the multiple coulomb scattering due to material budget. Double Metal Structure n+ ohmic side 1 st metal 2 nd metal readout line Metal 1 and metal 2 contact (VIA) p+ junction side 2005 APPI dhkah@belle.knu.ac.kr 9

10 Introduction DSSD Parameters L I S T Sensor size Wafer thickness pitch readout trace pitch implant strip # number of readout strip length strip width D C T Y P E p+ side n+ side X (include sawing line) unit µm µm µm µm sensor sensor µm µm The pitches of the sensors are 50 um and 100um for n-side and p-side. But the readout pitches are the same for the n-side and p-side. Sensors have 511 readout channels on each side APPI dhkah@belle.knu.ac.kr 10

11 Introduction Fabrication of DSSD n+ side p+ implant (F1, B1) n+ implant (F2) p+ side via and 2nd metal (B4,B5) 1st metallization (B3) metal contact (B2) metal contact and metal (F3,F4) pad open (F5,B6) F# n+ side B# p+ side n-side : 5 Mask p-side : 6 Mask 2005 APPI dhkah@belle.knu.ac.kr 11

12 Introduction n+ implanted p-stop in atoll DSSD Prototype p+ implanted readout strip readout pad in staggering via in hourglass guard ring contact of the double metal structure has hour-glass form to reduce the capacitance N side P side 2005 APPI dhkah@belle.knu.ac.kr 12

13 Introduction P-Stop Structure Problem : electrical shortening SiO 2 has Positive Charge, so make electron accumulation layer P-Stop Solution : P-Stop structure N-Strip 2005 APPI dhkah@belle.knu.ac.kr 13

14 Electrical Test of DSSD Method for Sensor Mesurement These drawings and photo shows the way how we measure electrical properties of our fabricated sensor. This measurement will provide us information of the bulk characteristics of the sensor p+ guard-ring pad N-side Silver paste p+ strip pad n bulk pad +High voltage p-strip p-guard-ring LCZ meter Current meter 380 um High Voltage n-strip p-stop n-guard-ring n-bulk for test GND 2005 APPI dhkah@belle.knu.ac.kr 14

15 Electrical Test of DSSD Sensor Measurement Devices Picoammeter for leakage current measurement and it is also used as the high voltage power supply source Probe station sensor can be moved in um scale by this probe station LCZ meter is used for capacitance measurement The Auto Test System controls this measurement device and all of results are stored in computer Scope Wafer Posionor 2005 APPI 15

16 Electrical Test of DSSD Cleaning room All of measurement are done in a cleaning room and fabricated silicon sensor are stored In the desiccator Wedge bonder is used for the connection between sensor and hybrid board 2005 APPI dhkah@belle.knu.ac.kr 16

17 i Electrical Test of DSSD 1. 1st Run Fab Out Sensor Result I-V Test 1E-3 Guardring Current Leakage current(a) 1E-4 1E-5 1E-6 1E-7 1E-8 1E-9 1E-10 A a 1 B b 2 C c 3 D d 4 F E e f 5 6 G g 7 I H h l j R Q P O N M L K J af ag ah ai aj ak al am an k m 14 n 15 o p16 q17 r Ss Tt U 18 u V W v X 19 w x Y Z y AA AB z aa AC 20 ab AD AE ac ad AF AG AH AI AJ AK AL AM AN 21 ae Several failed strips P-strip Leakage ~ P-strip Guard Ring Reverse bias voltage(v) The leakage currents of many silicon strip are about 1nA up to 100 V but leakage current level of silicon bulk (sensor) is about 1mA due to several failed strips which draw high leakage current. This tells us how hard to make all of strips have small leakage current of about 1nA APPI dhkah@belle.knu.ac.kr 17

18 Electrical Test of DSSD 2. Test Run for Optimization of Fabrication To protect sensor, we added nitride in the fabrication process. (a) Oxide Only I-V Test (b) Oxide +Nitride I-V Test 1.E-02 1.E-03 1.E-04 Guardring Current 1.E-02 1.E-03 1.E-04 Leakage Current [A] 1.E-05 1.E-06 1.E-07 1.E-08 Fail Strip Leakage Current [A] 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-09 1.E-10 1.E-10 1.E Voltage [V] Oxide Only - Several failed strips - P-strip Leakage : 3 ~ 1.E Voltage [V] Oxide + Nitride - P-strip Fail : Nothing - P-strip Leakage Variation 2005 APPI dhkah@belle.knu.ac.kr 18

19 Electrical Test of DSSD 3. 3rd Run Fab-Out Sensor Result 1.E-03 1.E-04 1.E-05 (a). I-V Test Optimize Fabrication for DSSD Oxidation / Nitride Leakage Current [A] 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E Reverse Voltage [V] (b). C-V Test LOT3_E_CV_Guard-ring E2T1_CV_G E2T2_CV_G E2T3_CV_G E3T1_CV_G E3T2_CV_G E3T3_CV_G E4T1_CV_G E4T2_CV_G E4T3_CV_G E5T1_CV_G E5T2_CV_G E5T3_CV_G E6T1_CV_G E6T2_CV_G E6T3_CV_G IV test Result P-strip Fail : NOTHING P-strip Leakage : 8 ~ P-Guard-ring Current ~ 100V CV test Result Fully Depletion Voltage : ~100V Operating Voltage : 120V 250 Capcitance(pF) Total leakage current is about 1uA level by adding Nitride process and we are under investigation for current increases around 85V region Reverse Bias(V) 2005 APPI dhkah@belle.knu.ac.kr 19

20 Source Test of DSSD We used Sr-90 beta source for our source test. At this time we did not use any electric hybrid board for this test since we are still developing hybrid board. After we applied bias voltage to sensor, we tried to see sensor response to beta source on the oscilloscope. Schematic of Source Test HV Pre-amp Osilloscope A N P E-field Beta Source High Voltage Pre-amp Osilloscope 2005 APPI dhkah@belle.knu.ac.kr 20

21 Source Test of DSSD Dark Box No Source Noise Test 90 Sr Source?Signal Test Our result shows that peak itself is better than Hamamatsu photo diode but noise level is worse than Hamamatsu s We are planning to do signal-to-noise (S/N) test in this month APPI dhkah@belle.knu.ac.kr 21

22 Radiation Damage Test - introduction 35MeV Proton Beam Test for Radiation Hardness of DSSD 10 12,10 13,10 14,10 15 [number of proton/cm 2 ] DSSD Beam pipe DSSD Sensor holder monitor 2005 APPI dhkah@belle.knu.ac.kr 22

23 Radiation Damage Test - introduction Displacement damage function D(E) / (95 MeV mb) The de values of the proton is the almost same as that of the neutron for this beam energy range For Silicon 100 MeVmb=2.14keVcm 2 /g Particle energy [MeV] 2005 APPI dhkah@belle.knu.ac.kr 23

24 Radiation Damage Test - introduction 1.Log table Target (number of proton/cm 2 ) Sensor Average Current Number of Proton C3T na, 63sec 1.08X G5T na, 125sec 8X C3T na, 250sec 8.88X E3T na,250sec 9.02X E3T na, 42min 8.91X Test Schematic Al Window (2mm) Sensor Monitor colliminator f =1cm 35 Mev DSSD A 1 Beam current A 2 Beam current 2005 APPI dhkah@belle.knu.ac.kr 24

25 Radiation Damage Test : Result of electrical test I-V Test of irradiation DSSD BEAM TEST_C3T3_IV_Pside_10^12 BEAM TEST_G5T2_IV_Pside_10^ Leakage Current (na) Rerverse Bias (V) #of proton/cm 2 C3T3 1st_ nd_ Leakage Current (na) G5T2 1st_ nd_ Rerverse Bias (V) #of proton/cm 2 BEAM TEST_E3T2_IV_Pside_10^14 BEAM TEST_E3T3_IV_Pside_10^ Leakage Current (na) E3T2 1st_ nd_ Rerverse Bias (V) #of proton/cm 2 Leakage Current (na) Rerverse Bias (V) E3T3 1st_ nd_ #of proton/cm 2 Our results show that leakage currents do not have radiation effect up to p/cm 2 But radiation damages are clearly shown above APPI dhkah@belle.knu.ac.kr 25

26 Schematics of Readout and DAQ for DSSD DSSD Our sensor is DC-type and RC chip has to be located in the hybrid board. Sensor will be bonded to RC chips by wire bonding. VA chip will receive analog signal and this will move to ADC for signal readout. RC chip HV Wire bonding VA1(-TA) USB2 DAQ FPGA FADC Control Signal H Hybrid Board 2005 APPI dhkah@belle.knu.ac.kr 26

27 Hybrid Board Layout DSSD RC chip VA1(-TA) Hybrid Board P-side biasing line N-side biasing DSSD RC VA biasing line 2005 APPI 27

28 Hybrid Board Design DSSD RC chip VA1(-TA) Hybrid Board As both side of the sensor Biasing RC VA1TA Bias(GND) DSSD Bias(HV) mechanical design for sensor with hybrid board 2005 APPI 28

29 SUMMARY and Plan 1 st Design Sensor - 1 st,2 nd,3 rd Run done we optimize the double-sided silicon sensor and fabricated sensors New Fabrication(2 nd Design) of sensor with feedback from 1st fabricated sensor test measurements just started. one lot takes 3 months Source Test We clearly saw signal peak with the beta source and we will do signal-to-noise test soon. Radiation Damage Test Radiation damage test again with different temperatures and conditions. Extract damage parameters from these measurements Making Hybrid Board Prototype DSSD(DC-type) + RC chip + VA Chip END Thanks (ARIGATO) 2005 APPI dhkah@belle.knu.ac.kr 29

30 EXTRA PAGE 2005 APPI 30

31 Electrical Test of DSSD Sensor Mesurement Method :N side Test (Surface Character) EXTRA PAGE P Stop pad GND N side pad HV P I N HV 2005 APPI dhkah@belle.knu.ac.kr 31

32 Wire bonding EXTRA PAGE Wedge Bonder bias-ring wedge (tip) VA chip adaptor sensor 2005 APPI 32

Review of Silicon Inner Tracker

Review of Silicon Inner Tracker Review of Silicon Inner Tracker H.J.Kim (KyungPook National U.) Talk Outline Configuration optimization of BIT and FIT Silicon Sensor R&D Electronics R&D Summary and Plan Detail study will be presented

More information

Single Sided and Double Sided Silicon MicroStrip Detector R&D

Single Sided and Double Sided Silicon MicroStrip Detector R&D Single Sided and Double Sided Silicon MicroStrip Detector R&D Tariq Aziz Tata Institute, Mumbai, India SuperBelle, KEK December 10-12, 2008 Indian Effort Mask Design at TIFR, Processing at BEL Single Sided

More information

Thin Silicon R&D for LC applications

Thin Silicon R&D for LC applications Thin Silicon R&D for LC applications D. Bortoletto Purdue University Status report Hybrid Pixel Detectors for LC Next Linear Collider:Physic requirements Vertexing 10 µ mgev σ r φ,z(ip ) 5µ m 3 / 2 p sin

More information

Strip Detectors. Principal: Silicon strip detector. Ingrid--MariaGregor,SemiconductorsasParticleDetectors. metallization (Al) p +--strips

Strip Detectors. Principal: Silicon strip detector. Ingrid--MariaGregor,SemiconductorsasParticleDetectors. metallization (Al) p +--strips Strip Detectors First detector devices using the lithographic capabilities of microelectronics First Silicon detectors -- > strip detectors Can be found in all high energy physics experiments of the last

More information

The HGTD: A SOI Power Diode for Timing Detection Applications

The HGTD: A SOI Power Diode for Timing Detection Applications The HGTD: A SOI Power Diode for Timing Detection Applications Work done in the framework of RD50 Collaboration (CERN) M. Carulla, D. Flores, S. Hidalgo, D. Quirion, G. Pellegrini IMB-CNM (CSIC), Spain

More information

Silicon Sensor Developments for the CMS Tracker Upgrade

Silicon Sensor Developments for the CMS Tracker Upgrade Silicon Sensor Developments for the CMS Tracker Upgrade on behalf of the CMS tracker collaboration University of Hamburg, Germany E-mail: Joachim.Erfle@desy.de CMS started a campaign to identify the future

More information

Simulation of High Resistivity (CMOS) Pixels

Simulation of High Resistivity (CMOS) Pixels Simulation of High Resistivity (CMOS) Pixels Stefan Lauxtermann, Kadri Vural Sensor Creations Inc. AIDA-2020 CMOS Simulation Workshop May 13 th 2016 OUTLINE 1. Definition of High Resistivity Pixel Also

More information

A new Vertical JFET Technology for Harsh Radiation Applications

A new Vertical JFET Technology for Harsh Radiation Applications A New Vertical JFET Technology for Harsh Radiation Applications ISPS 2016 1 A new Vertical JFET Technology for Harsh Radiation Applications A Rad-Hard switch for the ATLAS Inner Tracker P. Fernández-Martínez,

More information

Development of a large area silicon pad detector for the identification of cosmic ions

Development of a large area silicon pad detector for the identification of cosmic ions Development of a large area silicon pad detector for the identification of cosmic ions M.Y. Kim 1,2 P.S. Marrocchesi 1, C. Avanzini 2, M.G. Bagliesi 1, G. Bigongiari 1,A. Caldarone 1,R. Cecchi 1,, P. Maestro

More information

Simulation and test of 3D silicon radiation detectors

Simulation and test of 3D silicon radiation detectors Simulation and test of 3D silicon radiation detectors C.Fleta 1, D. Pennicard 1, R. Bates 1, C. Parkes 1, G. Pellegrini 2, M. Lozano 2, V. Wright 3, M. Boscardin 4, G.-F. Dalla Betta 4, C. Piemonte 4,

More information

ATLAS Upgrade SSD. ATLAS Upgrade SSD. Specifications of Electrical Measurements on SSD. Specifications of Electrical Measurements on SSD

ATLAS Upgrade SSD. ATLAS Upgrade SSD. Specifications of Electrical Measurements on SSD. Specifications of Electrical Measurements on SSD ATLAS Upgrade SSD Specifications of Electrical Measurements on SSD ATLAS Project Document No: Institute Document No. Created: 17/11/2006 Page: 1 of 7 DRAFT 2.0 Modified: Rev. No.: 2 ATLAS Upgrade SSD Specifications

More information

Simulation of new P-type strip detectors with trench to enhance the charge multiplication effect in the n- type electrodes

Simulation of new P-type strip detectors with trench to enhance the charge multiplication effect in the n- type electrodes Simulation of new P-Type strip detectors RESMDD 10, Florence 12-15.October.2010 1/15 Simulation of new P-type strip detectors with trench to enhance the charge multiplication effect in the n- type electrodes

More information

CMS Tracker Upgrade for HL-LHC Sensors R&D. Hadi Behnamian, IPM On behalf of CMS Tracker Collaboration

CMS Tracker Upgrade for HL-LHC Sensors R&D. Hadi Behnamian, IPM On behalf of CMS Tracker Collaboration CMS Tracker Upgrade for HL-LHC Sensors R&D Hadi Behnamian, IPM On behalf of CMS Tracker Collaboration Outline HL-LHC Tracker Upgrade: Motivations and requirements Silicon strip R&D: * Materials with Multi-Geometric

More information

PoS(EPS-HEP 2009)150. Silicon Detectors for the slhc - an Overview of Recent RD50 Results. Giulio Pellegrini 1. On behalf of CERN RD50 collaboration

PoS(EPS-HEP 2009)150. Silicon Detectors for the slhc - an Overview of Recent RD50 Results. Giulio Pellegrini 1. On behalf of CERN RD50 collaboration Silicon Detectors for the slhc - an Overview of Recent RD50 Results 1 Centro Nacional de Microelectronica CNM- IMB-CSIC, Barcelona Spain E-mail: giulio.pellegrini@imb-cnm.csic.es On behalf of CERN RD50

More information

Development of Solid-State Detector for X-ray Computed Tomography

Development of Solid-State Detector for X-ray Computed Tomography Proceedings of the Korea Nuclear Society Autumn Meeting Seoul, Korea, October 2001 Development of Solid-State Detector for X-ray Computed Tomography S.W Kwak 1), H.K Kim 1), Y. S Kim 1), S.C Jeon 1), G.

More information

Monolithic Pixel Sensors in SOI technology R&D activities at LBNL

Monolithic Pixel Sensors in SOI technology R&D activities at LBNL Monolithic Pixel Sensors in SOI technology R&D activities at LBNL Lawrence Berkeley National Laboratory M. Battaglia, L. Glesener (UC Berkeley & LBNL), D. Bisello, P. Giubilato (LBNL & INFN Padova), P.

More information

Development of Pixel Detectors for the Inner Tracker Upgrade of the ATLAS Experiment

Development of Pixel Detectors for the Inner Tracker Upgrade of the ATLAS Experiment Development of Pixel Detectors for the Inner Tracker Upgrade of the ATLAS Experiment Natascha Savić L. Bergbreiter, J. Breuer, A. Macchiolo, R. Nisius, S. Terzo IMPRS, Munich # 29.5.215 Franz Dinkelacker

More information

Development of Integration-Type Silicon-On-Insulator Monolithic Pixel. Detectors by Using a Float Zone Silicon

Development of Integration-Type Silicon-On-Insulator Monolithic Pixel. Detectors by Using a Float Zone Silicon Development of Integration-Type Silicon-On-Insulator Monolithic Pixel Detectors by Using a Float Zone Silicon S. Mitsui a*, Y. Arai b, T. Miyoshi b, A. Takeda c a Venture Business Laboratory, Organization

More information

Quality Assurance for the ATLAS Pixel Sensor

Quality Assurance for the ATLAS Pixel Sensor Quality Assurance for the ATLAS Pixel Sensor 1st Workshop on Quality Assurance Issues in Silicon Detectors J. M. Klaiber-Lodewigs (Univ. Dortmund) for the ATLAS pixel collaboration Contents: - role of

More information

A new strips tracker for the upgraded ATLAS ITk detector

A new strips tracker for the upgraded ATLAS ITk detector A new strips tracker for the upgraded ATLAS ITk detector, on behalf of the ATLAS Collaboration : 11th International Conference on Position Sensitive Detectors 3-7 The Open University, Milton Keynes, UK.

More information

CMS Beam Condition Monitoring Wim de Boer, Hannes Bol, Alexander Furgeri, Steffen Muller

CMS Beam Condition Monitoring Wim de Boer, Hannes Bol, Alexander Furgeri, Steffen Muller CMS Beam Condition Monitoring Wim de Boer, Hannes Bol, Alexander Furgeri, Steffen Muller BCM2 8diamonds BCM1 8diamonds each BCM2 8diamonds Beam Condition Monitoring at LHC BCM at LHC is done by about 3700

More information

Lecture 2. Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction. Strip/pixel detectors

Lecture 2. Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction. Strip/pixel detectors Lecture 2 Part 1 (Electronics) Signal formation Readout electronics Noise Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction Strip/pixel detectors Drift detectors

More information

F. Hartmann. IEKP - Universität Karlsruhe (TH) IEKP - Universität Karlsruhe (TH)

F. Hartmann. IEKP - Universität Karlsruhe (TH) IEKP - Universität Karlsruhe (TH) Results on proton irradiation tests in Karlsruhe p do Bulk & Surface Damage Strip parameters after irrad. V FD for (300µm) and 500µm sensors after 10 years LHC Expectedpower for500 µm sensors after 10

More information

Testing Silicon Detectors in the Lab

Testing Silicon Detectors in the Lab Testing Silicon Detectors in the Lab Thomas Bergauer (HEPHY Vienna) 2 nd IPM-HEPHY detector school 15 June 2012 Schedule of my talk during 1 st detector school Semiconductor Basics (45 ) Detector concepts:

More information

1. Exceeding these limits may cause permanent damage.

1. Exceeding these limits may cause permanent damage. Silicon PIN Diode s Features Switch & Attenuator Die Extensive Selection of I-Region Lengths Hermetic Glass Passivated CERMACHIP Oxide Passivated Planar s Voltage Ratings to 3000V Faster Switching Speed

More information

Recent Technological Developments on LGAD and ilgad Detectors for Tracking and Timing Applications

Recent Technological Developments on LGAD and ilgad Detectors for Tracking and Timing Applications Recent Technological Developments on LGAD and ilgad Detectors for Tracking and Timing Applications G. Pellegrini 1, M. Baselga 1, M. Carulla 1, V. Fadeyev 2, P. Fernández-Martínez 1, M. Fernández García

More information

irst: process development, characterization and first irradiation studies

irst: process development, characterization and first irradiation studies 3D D detectors at ITC-irst irst: process development, characterization and first irradiation studies S. Ronchin a, M. Boscardin a, L. Bosisio b, V. Cindro c, G.-F. Dalla Betta d, C. Piemonte a, A. Pozza

More information

Silicon Detectors in High Energy Physics

Silicon Detectors in High Energy Physics Thomas Bergauer (HEPHY Vienna) IPM Teheran 22 May 2011 Sunday: Schedule Semiconductor Basics (45 ) Silicon Detectors in Detector concepts: Pixels and Strips (45 ) Coffee Break Strip Detector Performance

More information

EVALUATION OF RADIATION HARDNESS DESIGN TECHNIQUES TO IMPROVE RADIATION TOLERANCE FOR CMOS IMAGE SENSORS DEDICATED TO SPACE APPLICATIONS

EVALUATION OF RADIATION HARDNESS DESIGN TECHNIQUES TO IMPROVE RADIATION TOLERANCE FOR CMOS IMAGE SENSORS DEDICATED TO SPACE APPLICATIONS EVALUATION OF RADIATION HARDNESS DESIGN TECHNIQUES TO IMPROVE RADIATION TOLERANCE FOR CMOS IMAGE SENSORS DEDICATED TO SPACE APPLICATIONS P. MARTIN-GONTHIER, F. CORBIERE, N. HUGER, M. ESTRIBEAU, C. ENGEL,

More information

Monitoring of the Fabrication Process of Silicon Strip Sensors for Large Scale Productions

Monitoring of the Fabrication Process of Silicon Strip Sensors for Large Scale Productions SNIC Symposium, Stanford, California -- 3-6 April 26 Monitoring of the Fabrication Process of Silicon Strip Sensors for Large Scale Productions T. Bergauer Institute for High Energy Physics of the Austrian

More information

Role of guard rings in improving the performance of silicon detectors

Role of guard rings in improving the performance of silicon detectors PRAMANA c Indian Academy of Sciences Vol. 65, No. 2 journal of August 2005 physics pp. 259 272 Role of guard rings in improving the performance of silicon detectors VIJAY MISHRA, V D SRIVASTAVA and S K

More information

CMOS Detectors Ingeniously Simple!

CMOS Detectors Ingeniously Simple! CMOS Detectors Ingeniously Simple! A.Schöning University Heidelberg B-Workshop Neckarzimmern 18.-20.2.2015 1 Detector System on Chip? 2 ATLAS Pixel Module 3 ATLAS Pixel Module MCC sensor FE-Chip FE-Chip

More information

Preparing for the Future: Upgrades of the CMS Pixel Detector

Preparing for the Future: Upgrades of the CMS Pixel Detector : KSETA Plenary Workshop, Durbach, KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Large Hadron Collider at CERN Since 2015: proton proton collisions @ 13 TeV Four experiments:

More information

ATLAS strip detector upgrade for the HL-LHC

ATLAS strip detector upgrade for the HL-LHC ATL-INDET-PROC-2015-010 26 August 2015, On behalf of the ATLAS collaboration Santa Cruz Institute for Particle Physics, University of California, Santa Cruz E-mail: zhijun.liang@cern.ch Beginning in 2024,

More information

Department of Electrical Engineering IIT Madras

Department of Electrical Engineering IIT Madras Department of Electrical Engineering IIT Madras Sample Questions on Semiconductor Devices EE3 applicants who are interested to pursue their research in microelectronics devices area (fabrication and/or

More information

CMS Phase II Tracker Upgrade GRK-Workshop in Bad Liebenzell

CMS Phase II Tracker Upgrade GRK-Workshop in Bad Liebenzell CMS Phase II Tracker Upgrade GRK-Workshop in Bad Liebenzell Institut für Experimentelle Kernphysik KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

More information

Evaluation of the Radiation Tolerance of Several Generations of SiGe Heterojunction Bipolar Transistors Under Radiation Exposure

Evaluation of the Radiation Tolerance of Several Generations of SiGe Heterojunction Bipolar Transistors Under Radiation Exposure 1 Evaluation of the Radiation Tolerance of Several Generations of SiGe Heterojunction Bipolar Transistors Under Radiation Exposure J. Metcalfe, D. E. Dorfan, A. A. Grillo, A. Jones, F. Martinez-McKinney,

More information

Semiconductor Detector Systems

Semiconductor Detector Systems Semiconductor Detector Systems Helmuth Spieler Physics Division, Lawrence Berkeley National Laboratory OXFORD UNIVERSITY PRESS ix CONTENTS 1 Detector systems overview 1 1.1 Sensor 2 1.2 Preamplifier 3

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Metal-Semiconductor and Semiconductor Heterojunctions The Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) is one of two major types of transistors. The MOSFET is used in digital circuit, because

More information

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index.

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index. absorption, 69 active tuning, 234 alignment, 394 396 apodization, 164 applications, 7 automated optical probe station, 389 397 avalanche detector, 268 back reflection, 164 band structures, 30 bandwidth

More information

Description and Evaluation of Multi-Geometry Silicon Prototype Sensors for the LHCb Inner Tracker

Description and Evaluation of Multi-Geometry Silicon Prototype Sensors for the LHCb Inner Tracker LHCb Note 22-38 Description and Evaluation of Multi-Geometry Silicon Prototype Sensors for the LHCb Inner Tracker F. Lehner, P. Sievers, O. Steinkamp, U. Straumann, A. Vollhardt, M. Ziegler Physik-Institut

More information

First Results with the Prototype Detectors of the Si/W ECAL

First Results with the Prototype Detectors of the Si/W ECAL First Results with the Prototype Detectors of the Si/W ECAL David Strom University of Oregon Physics Design Requirements Detector Concept Silicon Detectors - Capacitance and Trace Resistance Implications

More information

Status of ITC-irst activities in RD50

Status of ITC-irst activities in RD50 Status of ITC-irst activities in RD50 M. Boscardin ITC-irst, Microsystem Division Trento, Italy Outline Materials/Pad Detctors Pre-irradiated silicon INFN Padova and Institute for Nuclear Research of NASU,

More information

Why p-type is better than n-type? or Electric field in heavily irradiated silicon detectors

Why p-type is better than n-type? or Electric field in heavily irradiated silicon detectors Why p-type is better than n-type? or Electric field in heavily irradiated silicon detectors G.Kramberger, V. Cindro, I. Mandić, M. Mikuž, M. Milovanović, M. Zavrtanik Jožef Stefan Institute Ljubljana,

More information

Design, fabrication and characterization of the first AC-coupled silicon microstrip sensors in India

Design, fabrication and characterization of the first AC-coupled silicon microstrip sensors in India arxiv:1402.2406 [physics.ins-det] Design, fabrication and characterization of the first AC-coupled silicon microstrip sensors in India T. Aziz, a S.R. Chendvankar, a G.B. Mohanty, a, M.R. Patil, a K.K.

More information

Studies of silicon strip sensors for the ATLAS ITK project. Miguel Arratia Cavendish Laboratory, University of Cambridge

Studies of silicon strip sensors for the ATLAS ITK project. Miguel Arratia Cavendish Laboratory, University of Cambridge Studies of silicon strip sensors for the ATLAS ITK project Miguel Arratia Cavendish Laboratory, University of Cambridge 1 ITK project and radiation damage Unprecedented large fluences expected for the

More information

Evaluation of the Radiation Tolerance of SiGe Heterojunction Bipolar Transistors Under 24GeV Proton Exposure

Evaluation of the Radiation Tolerance of SiGe Heterojunction Bipolar Transistors Under 24GeV Proton Exposure Santa Cruz Institute for Particle Physics Evaluation of the Radiation Tolerance of SiGe Heterojunction Bipolar Transistors Under 24GeV Proton Exposure, D.E. Dorfan, A. A. Grillo, M Rogers, H. F.-W. Sadrozinski,

More information

Fundamentals of Power Semiconductor Devices

Fundamentals of Power Semiconductor Devices В. Jayant Baliga Fundamentals of Power Semiconductor Devices 4y Spri ringer Contents Preface vii Chapter 1 Introduction 1 1.1 Ideal and Typical Power Switching Waveforms 3 1.2 Ideal and Typical Power Device

More information

Silicon Sensor and Detector Developments for the CMS Tracker Upgrade

Silicon Sensor and Detector Developments for the CMS Tracker Upgrade Silicon Sensor and Detector Developments for the CMS Tracker Upgrade Università degli Studi di Firenze and INFN Sezione di Firenze E-mail: candi@fi.infn.it CMS has started a campaign to identify the future

More information

A monolithic pixel sensor with fine space-time resolution based on silicon-on-insulator technology for the ILC vertex detector

A monolithic pixel sensor with fine space-time resolution based on silicon-on-insulator technology for the ILC vertex detector A monolithic pixel sensor with fine space-time resolution based on silicon-on-insulator technology for the ILC vertex detector, Miho Yamada, Toru Tsuboyama, Yasuo Arai, Ikuo Kurachi High Energy Accelerator

More information

First Results of 0.15µm CMOS SOI Pixel Detector

First Results of 0.15µm CMOS SOI Pixel Detector First Results of 0.15µm CMOS SOI Pixel Detector Y. Arai, M. Hazumi, Y. Ikegami, T. Kohriki, O. Tajima, S. Terada, T. Tsuboyama, Y. Unno, H. Ushiroda IPNS, High Energy Accelerator Reserach Organization

More information

Module Integration Sensor Requirements

Module Integration Sensor Requirements Module Integration Sensor Requirements Phil Allport Module Integration Working Group Sensor Geometry and Bond Pads Module Programme Issues Numbers of Sensors Required Nobu s Sensor Size Summary n.b. 98.99

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH A 1024 PAD SILICON DETECTOR TO SOLVE TRACKING AMBIGUITIES IN HIGH MULTIPLICITY EVENTS

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH A 1024 PAD SILICON DETECTOR TO SOLVE TRACKING AMBIGUITIES IN HIGH MULTIPLICITY EVENTS EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN-PPE/95-98 July 5, 1995 A 1024 PAD SILICON DETECTOR TO SOLVE TRACKING AMBIGUITIES IN HIGH MULTIPLICITY EVENTS S. Simone, M.G. Catanesi, D. Di Bari, V. Didonna,

More information

Visible Light Photon R&D in the US. A. Bross KEK ISS Meeting January 25, 2006

Visible Light Photon R&D in the US. A. Bross KEK ISS Meeting January 25, 2006 Visible Light Photon R&D in the US A. Bross KEK ISS Meeting January 25, 2006 Some History First VLPC History In 1987, a paper was published by Rockwell detailing the performance of Solid State PhotoMultipliers

More information

3084 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 60, NO. 4, AUGUST 2013

3084 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 60, NO. 4, AUGUST 2013 3084 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 60, NO. 4, AUGUST 2013 Dummy Gate-Assisted n-mosfet Layout for a Radiation-Tolerant Integrated Circuit Min Su Lee and Hee Chul Lee Abstract A dummy gate-assisted

More information

The upgrade of the ATLAS silicon strip tracker

The upgrade of the ATLAS silicon strip tracker On behalf of the ATLAS Collaboration IFIC - Instituto de Fisica Corpuscular (University of Valencia and CSIC), Edificio Institutos de Investigacion, Apartado de Correos 22085, E-46071 Valencia, Spain E-mail:

More information

Schottky Diode RF-Detector and Focused Ion Beam Post-Processing MURI Annual Review

Schottky Diode RF-Detector and Focused Ion Beam Post-Processing MURI Annual Review Schottky Diode RF-Detector and Focused Ion Beam Post-Processing MURI Annual Review Woochul Jeon, Todd Firestone, John Rodgers & John Melngailis University of Maryland. (consultations with Jake Baker Boise

More information

ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline:

ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline: ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline: Metal-Semiconductor Junctions MOSFET Basic Operation MOS Capacitor Things you should know when you leave Key Questions What is the

More information

Monolithic Pixel Detector in a 0.15µm SOI Technology

Monolithic Pixel Detector in a 0.15µm SOI Technology Monolithic Pixel Detector in a 0.15µm SOI Technology 2006 IEEE Nuclear Science Symposium, San Diego, California, Nov. 1, 2006 Yasuo Arai (KEK) KEK Detector Technology Project : [SOIPIX Group] Y. Arai Y.

More information

TCAD simulations of silicon strip and pixel sensor optimization

TCAD simulations of silicon strip and pixel sensor optimization sensor optimization a, S. Mitsui a, S. Terada a, Y. Ikegami a, Y. Takubo a, K. Hara b, Y. Takahashi b, O. Jinnouchi c, T. Kishida c, R. Nagai c, S. Kamada d, and K. Yamamura d a KEK, Tsukuba b University

More information

VELO: the LHCb Vertex Detector

VELO: the LHCb Vertex Detector LHCb note 2002-026 VELO VELO: the LHCb Vertex Detector J. Libby on behalf of the LHCb collaboration CERN, Meyrin, Geneva 23, CH-1211, Switzerland Abstract The Vertex Locator (VELO) of the LHCb experiment

More information

Application of CMOS sensors in radiation detection

Application of CMOS sensors in radiation detection Application of CMOS sensors in radiation detection S. Ashrafi Physics Faculty University of Tabriz 1 CMOS is a technology for making low power integrated circuits. CMOS Complementary Metal Oxide Semiconductor

More information

Performance and Characteristics of Silicon Avalanche Photodetectors in

Performance and Characteristics of Silicon Avalanche Photodetectors in Performance and Characteristics of Silicon Avalanche Photodetectors in the C5 Process Paper Authors: Dennis Montierth 1, Timothy Strand 2, James Leatham 2, Lloyd Linder 3, and R. Jacob Baker 1 1 Dept.

More information

High Voltage and MEMS Process Integration

High Voltage and MEMS Process Integration ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING High Voltage and MEMS Process Integration Dr. Lynn Fuller and Dr. Ivan Puchades webpage: http://people.rit.edu/lffeee Electrical and Microelectronic

More information

UV/EUV CONTINUOUS POSITION SENSOR

UV/EUV CONTINUOUS POSITION SENSOR UV/EUV CONTINUOUS POSITION SENSOR ODD-SXUV-DLPSD FEATURES Submicron position resolution Stable response after exposure to UV/EUV 5 mm x 5 mm active area TO-8 windowless package RoHS ELECTRO-OPTICAL CHARACTERISTICS

More information

Leakage Current Prediction for GLAST Silicon Detectors

Leakage Current Prediction for GLAST Silicon Detectors SCIPP 97/16 Leakage Current Prediction for GLAST Silicon Detectors T. Dubbs, H.F.-W Sadrozinski, S. Kashigan, W. Kroeger, S. Jaggar, R.Johnson, W. Rowe, A. Webster SCIPP, University of California Santa

More information

The LHCb VELO Upgrade. Stefano de Capua on behalf of the LHCb VELO group

The LHCb VELO Upgrade. Stefano de Capua on behalf of the LHCb VELO group The LHCb VELO Upgrade Stefano de Capua on behalf of the LHCb VELO group Overview [J. Instrum. 3 (2008) S08005] LHCb / Current VELO / VELO Upgrade Posters M. Artuso: The Silicon Micro-strip Upstream Tracker

More information

Measurements With Irradiated 3D Silicon Strip Detectors

Measurements With Irradiated 3D Silicon Strip Detectors Measurements With Irradiated 3D Silicon Strip Detectors Michael Köhler, Michael Breindl, Karls Jakobs, Ulrich Parzefall, Liv Wiik University of Freiburg Celeste Fleta, Manuel Lozano, Giulio Pellegrini

More information

THE SILICON SENSOR FOR THE COMPACT MUON SOLENOID CONTROL OF THE FABRICATION PROCESS

THE SILICON SENSOR FOR THE COMPACT MUON SOLENOID CONTROL OF THE FABRICATION PROCESS THE SILICON SENSOR FOR THE COMPACT MUON SOLENOID CONTROL OF THE FABRICATION PROCESS F. MANOLESCU 1, A. MACCHIOLO 2, M. BRIANZI 2, A. MIHUL 3 1 Institute of Space Sciences, Magurele, Bucharest, Romania

More information

http://clicdp.cern.ch Hybrid Pixel Detectors with Active-Edge Sensors for the CLIC Vertex Detector Simon Spannagel on behalf of the CLICdp Collaboration Experimental Conditions at CLIC CLIC beam structure

More information

Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) Silicon Detector Specification

Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) Silicon Detector Specification GLAST LAT PROCUREMENT SPECIFICATION Document # Document Title GLAST LAT Silicon Detector Specification Date Effective Page 1 of 21 GE-00011-A 1rst Draft 8/20/00 Author(s) Supersedes H. Sadrozinski T. Ohsugi

More information

Digital Integrated Circuits A Design Perspective. The Devices. Digital Integrated Circuits 2nd Devices

Digital Integrated Circuits A Design Perspective. The Devices. Digital Integrated Circuits 2nd Devices Digital Integrated Circuits A Design Perspective The Devices The Diode The diodes are rarely explicitly used in modern integrated circuits However, a MOS transistor contains at least two reverse biased

More information

Development of n-in-p Active Edge Pixel Detectors for ATLAS ITK Upgrade

Development of n-in-p Active Edge Pixel Detectors for ATLAS ITK Upgrade Development of n-in-p Active Edge Pixel Detectors for ATLAS ITK Upgrade Tasneem Rashid Supervised by: Abdenour Lounis. PHENIICS Fest 2017 30th OUTLINE Introduction: - The Large Hadron Collider (LHC). -

More information

Study of irradiated 3D detectors. University of Glasgow, Scotland. University of Glasgow, Scotland

Study of irradiated 3D detectors. University of Glasgow, Scotland. University of Glasgow, Scotland Department of Physics & Astronomy Experimental Particle Physics Group Kelvin Building, University of Glasgow Glasgow, G12 8QQ, Scotland Telephone: ++44 (0)141 339 8855 Fax: +44 (0)141 330 5881 GLAS-PPE/2002-20

More information

LAB MANUAL. CV/IV Static Characterization Methods

LAB MANUAL. CV/IV Static Characterization Methods LAB MANUAL CV/IV Static Characterization Methods Centre for Detector & Related Software Technology (CDRST) Department of Physics & Astrophysics, University of Delhi INTRODUCTION 1.1. Silicon Detector Particle

More information

Multi-Element Si Sensor with Readout ASIC for EXAFS Spectroscopy 1

Multi-Element Si Sensor with Readout ASIC for EXAFS Spectroscopy 1 Multi-Element Si Sensor with Readout ASIC for EXAFS Spectroscopy 1 Gianluigi De Geronimo a, Paul O Connor a, Rolf H. Beuttenmuller b, Zheng Li b, Antony J. Kuczewski c, D. Peter Siddons c a Microelectronics

More information

Resolution studies on silicon strip sensors with fine pitch

Resolution studies on silicon strip sensors with fine pitch Resolution studies on silicon strip sensors with fine pitch Stephan Hänsel This work is performed within the SiLC R&D collaboration. LCWS 2008 Purpose of the Study Evaluate the best strip geometry of silicon

More information

CMOS 0.18 m SPAD. TowerJazz February, 2018 Dr. Amos Fenigstein

CMOS 0.18 m SPAD. TowerJazz February, 2018 Dr. Amos Fenigstein CMOS 0.18 m SPAD TowerJazz February, 2018 Dr. Amos Fenigstein Outline CMOS SPAD motivation Two ended vs. Single Ended SPAD (bulk isolated) P+/N two ended SPAD and its optimization Application of P+/N two

More information

UNIVERSITY of CALIFORNIA SANTA CRUZ

UNIVERSITY of CALIFORNIA SANTA CRUZ UNIVERSITY of CALIFORNIA SANTA CRUZ CHARACTERIZATION OF THE IRST PROTOTYPE P-TYPE SILICON STRIP SENSOR A thesis submitted in partial satisfaction of the requirements for the degree of BACHELOR OF SCIENCE

More information

Muon detection in security applications and monolithic active pixel sensors

Muon detection in security applications and monolithic active pixel sensors Muon detection in security applications and monolithic active pixel sensors Tracking in particle physics Gaseous detectors Silicon strips Silicon pixels Monolithic active pixel sensors Cosmic Muon tomography

More information

Sensor production readiness

Sensor production readiness Sensor production readiness G. Bolla, Purdue University for the USCMS FPIX group PMG review 02/25/2005 2/23/2005 1 Outline Sensor requirements Geometry Radiation hardness Development Guard Rings P stops

More information

The LHCb Silicon Tracker

The LHCb Silicon Tracker Journal of Instrumentation OPEN ACCESS The LHCb Silicon Tracker To cite this article: C Elsasser 214 JINST 9 C9 View the article online for updates and enhancements. Related content - Heavy-flavour production

More information

Department of Physics & Astronomy

Department of Physics & Astronomy Department of Physics & Astronomy Experimental Particle Physics Group Kelvin Building, University of Glasgow, Glasgow, G12 8QQ, Scotland Telephone: +44 (0)141 339 8855 Fax: +44 (0)141 330 5881 GLAS-PPE/2005-14

More information

MASW P. SURMOUNT PIN Diode Switch Element with Thermal Terminal. Features. Description. Ordering Information 2.

MASW P. SURMOUNT PIN Diode Switch Element with Thermal Terminal. Features. Description. Ordering Information 2. Features Specified Bandwidth: 45MHz 2.5GHz Useable 30MHz to 3.0GHz Low Loss 40dB High C.W. Incident Power, 50W at 500MHz High Input IP3, +66dBm @ 500MHz Unique Thermal Terminal for

More information

The CMS Pixel Detector Upgrade and R&D Developments for the High Luminosity LHC

The CMS Pixel Detector Upgrade and R&D Developments for the High Luminosity LHC The CMS Pixel Detector Upgrade and R&D Developments for the High Luminosity LHC On behalf of the CMS Collaboration INFN Florence (Italy) 11th 15th September 2017 Las Caldas, Asturias (Spain) High Luminosity

More information

MA4PBL027. HMIC Silicon Beamlead PIN Diode. Features MA4PBLP027. Description. Applications

MA4PBL027. HMIC Silicon Beamlead PIN Diode. Features MA4PBLP027. Description. Applications Features No Wirebonds Required Rugged Silicon-Glass Construction Silicon Nitride Passivation Polymer Scratch and Impact Protection Low Parasitic Capacitance and Inductance Ultra Low Capacitance < 40 ff

More information

SSD Development for the ATLAS Upgrade Tracker

SSD Development for the ATLAS Upgrade Tracker SSD Development for the ATLAS Upgrade Tracker Meeting Mo., Feb. 26, 2007. 2-6 pm; CERN Rm. 13-3-005 ATL-P-MN-0006 v.1 Development of non-inverting Silicon strip detectors for the ATLAS ID Upgrade 1) DC

More information

Large Silicon Tracking Systems for ILC

Large Silicon Tracking Systems for ILC Large Silicon Tracking Systems for ILC Aurore Savoy Navarro LPNHE, Universite Pierre & Marie Curie/CNRS-IN2P3 Roles Designs Main Issues Current status R&D work within SiLC R&D Collaboration Tracking Session

More information

Tests of monolithic CMOS SOI pixel detector prototype INTPIX3 MOHAMMED IMRAN AHMED. Supervisors Dr. Henryk Palka (IFJ-PAN) Dr. Marek Idzik(AGH-UST)

Tests of monolithic CMOS SOI pixel detector prototype INTPIX3 MOHAMMED IMRAN AHMED. Supervisors Dr. Henryk Palka (IFJ-PAN) Dr. Marek Idzik(AGH-UST) Internal Note IFJ PAN Krakow (SOIPIX) Tests of monolithic CMOS SOI pixel detector prototype INTPIX3 by MOHAMMED IMRAN AHMED Supervisors Dr. Henryk Palka (IFJ-PAN) Dr. Marek Idzik(AGH-UST) Test and Measurement

More information

Radiation hardness and precision timing study of Silicon Detectors for the CMS High Granularity Calorimeter (HGC)

Radiation hardness and precision timing study of Silicon Detectors for the CMS High Granularity Calorimeter (HGC) Radiation hardness and precision timing study of Silicon Detectors for the CMS High Granularity Calorimeter (HGC) Esteban Currás1,2, Marcos Fernández2, Christian Gallrapp1, Marcello Mannelli1, Michael

More information

Development of a sampling ASIC for fast detector signals

Development of a sampling ASIC for fast detector signals Development of a sampling ASIC for fast detector signals Hervé Grabas Work done in collaboration with Henry Frisch, Jean-François Genat, Eric Oberla, Gary Varner, Eric Delagnes, Dominique Breton. Signal

More information

Lecture 2 p-n junction Diode characteristics. By Asst. Prof Dr. Jassim K. Hmood

Lecture 2 p-n junction Diode characteristics. By Asst. Prof Dr. Jassim K. Hmood Electronic I Lecture 2 p-n junction Diode characteristics By Asst. Prof Dr. Jassim K. Hmood THE p-n JUNCTION DIODE The pn junction diode is formed by fabrication of a p-type semiconductor region in intimate

More information

Signal Integrity Modeling and Measurement of TSV in 3D IC

Signal Integrity Modeling and Measurement of TSV in 3D IC Signal Integrity Modeling and Measurement of TSV in 3D IC Joungho Kim KAIST joungho@ee.kaist.ac.kr 1 Contents 1) Introduction 2) 2.5D/3D Architectures with TSV and Interposer 3) Signal integrity, Channel

More information

ITk silicon strips detector test beam at DESY

ITk silicon strips detector test beam at DESY ITk silicon strips detector test beam at DESY Lucrezia Stella Bruni Nikhef Nikhef ATLAS outing 29/05/2015 L. S. Bruni - Nikhef 1 / 11 Qualification task I Participation at the ITk silicon strip test beams

More information

Pixel sensors with different pitch layouts for ATLAS Phase-II upgrade

Pixel sensors with different pitch layouts for ATLAS Phase-II upgrade Pixel sensors with different pitch layouts for ATLAS Phase-II upgrade Different pitch layouts are considered for the pixel detector being designed for the ATLAS upgraded tracking system which will be operating

More information

VErtex LOcator (VELO)

VErtex LOcator (VELO) Commissioning the LHCb VErtex LOcator (VELO) Mark Tobin University of Liverpool On behalf of the LHCb VELO group 1 Overview Introduction LHCb experiment. The Vertex Locator (VELO). Description of System.

More information

Study of X-ray radiation damage in silicon sensors

Study of X-ray radiation damage in silicon sensors Journal of Instrumentation OPEN ACCESS Study of X-ray radiation damage in silicon sensors To cite this article: J Zhang et al View the article online for updates and enhancements. Recent citations - Demonstration

More information

Tracking Detectors for Belle II. Tomoko Iwashita(Kavli IPMU (WPI)) Beauty 2014

Tracking Detectors for Belle II. Tomoko Iwashita(Kavli IPMU (WPI)) Beauty 2014 Tracking Detectors for Belle II Tomoko Iwashita(Kavli IPMU (WPI)) Beauty 2014 1 Introduction Belle II experiment is upgrade from Belle Target luminosity : 8 10 35 cm -2 s -1 Target physics : New physics

More information

AVALANCHE PHOTODIODES FOR THE CMS ELECTROMAGNETIC CALORIMETER

AVALANCHE PHOTODIODES FOR THE CMS ELECTROMAGNETIC CALORIMETER AVALANCHE PHOTODIODES FOR THE CMS ELECTROMAGNETIC CALORIMETER B. Patel, R. Rusack, P. Vikas(email:Pratibha.Vikas@cern.ch) University of Minnesota, Minneapolis, U.S.A. Y. Musienko, S. Nicol, S.Reucroft,

More information

Lecture #29. Moore s Law

Lecture #29. Moore s Law Lecture #29 ANNOUNCEMENTS HW#15 will be for extra credit Quiz #6 (Thursday 5/8) will include MOSFET C-V No late Projects will be accepted after Thursday 5/8 The last Coffee Hour will be held this Thursday

More information