Visible Light Photon R&D in the US. A. Bross KEK ISS Meeting January 25, 2006

Size: px
Start display at page:

Download "Visible Light Photon R&D in the US. A. Bross KEK ISS Meeting January 25, 2006"

Transcription

1 Visible Light Photon R&D in the US A. Bross KEK ISS Meeting January 25, 2006

2 Some History First

3 VLPC History In 1987, a paper was published by Rockwell detailing the performance of Solid State PhotoMultipliers (SSPMs). These solid state devices detected both visible and infrared light. Infrared detection technology is regulated under international treaty so Fermilab proposed a device which maintained the visible light response, but reduced the infrared response. This device is called a Visible Light Photon Counter (VLPC). With the successful demonstration of VLPC technology, the High-Resolution Scintillating Fiber Tracking Experiment (HiSTE) proposal detailed using scintillating fiber technology combined with VLPCs to track particles from high energy particle collisions. There have been six models of HiSTE chips, with HiSTE-VI being used in the DØ experiment.

4 VLPC Operational Principles Photon is converted the intrinsic region, creating an electron-hole pair. Hole drifts into the drift region, where it knocks an electron out from an atom. Electron accelerates back through gain region, knocking electrons from atoms as it goes. Spacer region and substrate are for mechanical support and field shaping. Thus each photon generates a pulse of many electrons. Gains of 20,000 60,000 are achievable. Photon Intrinsic Region + e Top Contact (+) Gain Region h E field Undoped Silicon (Blocking) Layer Gain Region Drift Region Drift Region D + flow Doped Silicon Layer Substrate Spacer Region - Bottom Contact (-)

5 VLPC Timeline Initial SSPM Publication Fermilab Approaches Rockwell About HEP Applications VLPCs Differentiated From SSPMs HiSTE Proposal Submitted HiSTE IV Manufactured 3000 Channel Scintillating Fiber Test at Fermilab Large Scale Testing of HiSTE VI Begins 140,000 VLPC Pixels DØ Data Taking Commences The Hunt Is On!! Experiments By Rockwell And Fermilab/UCLA Using Scintillating Fibers and SSPMs VLPCs Successfully Demonstrated HiSTE I, HiSTE II, HiSTE III DØ Scintillating Fiber Tracker Proposed HiSTE VI Wafers Grown Final VLPC Design DØ Scintillating Fiber Tracker Installed Commissioning Begins

6 HiSTE VI Solid state photon detectors Operate at a few degrees Kelvin (~ F) Bias voltage 6-8 Volts Detects single photons Can work in a high rate environment Visible

7 DØ Scintillating Fiber Tracker: Charged particles cross a scintillating fiber, where it causes a blink of light. Operational Principles The light is transported via optical fiber over a distance of 8-11 meters to a device called a VLPC which converts light into electricity. VLPC are solid state devices which run at cryogenic temperatures. A cassette of VLPC devices contains 1024 channels and is housed in a cryostat, which carefully regulates the operating temperature. Mirror Scintillating Fiber Photodetector Cassette Cryostat Optical Connector Waveguide Fiber Electrical Signal Out

8 VLPC History The Visible light Photon Counter is an impurity band avalanche photodiode that operates in the range of 6-10K Parameters (from D0 program) QE = 85% Gain = 35k-65k Noise = khz (@1 pe threshold) Most-Importantly: COST For the D0 program (approximately 120k pixels (1mm) the per channel cost for the VLPC system (packaged, tested, delivered) was $60/Ch

9 Silicon Wafer Processing Conventional silicon processing at >µm resolution 3-inch wafers for D0 176 VLPC arrays 1408 VLPCs Future production 6-inch wafers About 5000 to VLPCs/wafer Array format(s) TBD

10 VLPC Hybrid A B A Face photo of assembled hybrid C A B A = VLPC die B = AlN substrate B Edge view of assembled hybrid C = Indium solder preform

11 Uniformity Issue

12 Hybrid Assembly Process Holes for weights Top View Bottom Boat Substrate Holder Dice Holder Top Boat Weights Top Boat Side View Dice Holder Bottom Boat Substrate Holder Vacuum Sealer

13 Improved Gain Uniformity Number of VLPCs Gain (10 3 electrons/photon) D0 VLPC gain varied by material group (~20 wafers) Smaller variations across wafers and from wafer to wafer Causes: ca 1980 growth reactors with insufficient control of gas flows/growth temperature Multi-wafer growth geometry Solution for D0: Sort Solution for next generation: Utilization of modern,

14

15

16 New R&D

17 HISTE VII Lawrence Semiconductor Research Laboratory (LSRL) won Phase I SBIR to develop new VLPC material Boeing DRS Technologies consulted Henry Hogue/Dutch Stapelbroek Reactors at Boeing/DRS decommissioned after D0 work Since then LSRL has been growing BIB epi material for all of DRS s projects EKV Star Wars Lite Phase I objectives Reproduce HISTE VI and SSPM material Scan target parameters with various splits Measure bulk properties Spreading Resistance Profile Cryo C-V 4 Point probe FTIR infrared spectroscopy Defect density Goal Better Uniformity (gain) and lower defect density

18 HISTE VII 80 5 wafers were grown Note: LSRL reactors can go up to 8 Limited to 6 by processing at DRS Used 5 followed BIB work 8 Splits of 10 wafers each Note: based on HISTE VI geometry this represents 300k potential pixels Used highly doped (As) substrates in order to go to large wafer size D0 used antimony Layer IV (undoped) L ay er III (A s an d B ) L ayer II (A s an d B ) Layer I (A s and B ) H ighly doped substrate (A s)

19 HISTE VII Spreading Resistance Profiling (SRP) Determines layer thicknesses and Ar concentration in doped layers Four point probe (4PP) and Fourier transform Infrared Spectroscopy Sheet resistance and thickness Single layer Cryogenic C-V Characterize acceptor background and boron doping levels in gain region. T L C R Samples taken from select group of wafers (8X5) for analysis B flat

20 HISTE VII FTIR and 4PP Results Uniformity 5 to 10X more uniform than D0 material Target thickness 18 µm

21 HISTE VII SRP results V L P C S p r e a d i n g R e s i s t a n c e P r o f i l e - S a m p l e J E E E E L a y e r 4 L a y e r 3 L a y e r 2 L a y e r E E Concentration (at/cc) T o p C e n t e r B o t t o m L e f t R i g h t S p e c S u b s t r a t e E E E T h i c k n e s s ( m i c r o n s ) Target As concentrations: Layers 1&2: 9X10 17 cm X10 17 cm -3 for layer 3

22 HISTE VII Cryo C-V Measures Boron doping in gain region Average: 3.0X10 13 cm -3 Target 3.5X10 13 cm -3 16% low. RMS 12% consistent with measurement precision

23 HISTE VII Epitaxial layer defects Scanned with bright light inspection and verified with microscope Average defect count less than 5 per 5 wafer Corresponds to 0.08 defects per cm 2 D0 material: 4 defects per cm 2 X50! VLPC Pulses? Since processing was not part of Phase I HH made detector from epi using In contacts Saw pulses

24 HISTE VII Phase II ($750k) Fabricate and test detectors using the epitaxial layers grown in Phase I. Refine the detector design based on the test results, and revise the epitaxial layer specifications accordingly. Grow a second round of epitaxial layers. Extend the design work to include an integrated package. Fabricate, test and package detectors in a form that will be offered for sale in sample quantities to end users. Iterate the design, growth and packaging into a successful commercial product. So we can expect Packaged devices (HISTE VI geometry) HISTE VI, VII, VIII? + SSPM High Density geometry will likely be tried also 16 X mm pixel? Potential for many pixels

25 Improvements to VLPC Wafer Processing AR Coating D0 VLPCs used quarter wave SiO 2 AR coating 5-10% reflection loss Silicon nitride and silicon monoxide are better matched coating materials now available Should improve VLPC QE from ~85% to >90% Scratch Coating D0 VLPCs had exposed AL traces Resulted in minor die losses due to handling Over coating traces will eliminate this loss

26 Process Lot split Lot started with two 5 wafers from each of 8 epitaxy groups grown by LSRL in SBIR Ph 1 Plus 2 wafers each of 7 old 3 VLPC epitaxy groups grown after DZERO product runs Plan: Process 1 wafer of each type through standard process and evaluate Dice, package (not hybrids), and performance test at DRS Based on test results, provide epitaxy parameters to LSRL for new material run on SBIR Put remaining wafers through improved AR coating process Etch oxide from detector area Apply silicon nitride AR coating thickness over entire wafer Improved AR coat plus scratch coat over aluminum leads Open coating for gold deposition on pads as before Prepare hybrids from best epitaxy groups for testing at Fermilab

27 3 X 3 (3mm X 3mm) 4X8 (.5mm) 2X4 (1 mm) [D0] 1 cm 2 single pixel 16X16 (.5mm)

28 32 Channel array (.5 mm pixel) Mask Design

29 16 X 16 (.5 mm pixel) Mask Design

30 R&D production Devices SiN AR coating Expect QE 98%

31 HISTE VII Conclusions on SBIR R&D Program Phase I and II work went very well LSRL is a very competent/professional organization Grew 80 wafers can be fabricated for about $150k! This is the epitaxial growth step: $0.1/1 mm pixel Note D0 cost was $2/pixel We estimate that the epitaxial wafers can be processed for about $2-3k/wafer About $0.3/1 mm pixel We expect yields of 90% (to be determined in upcoming tests) D0 Yield was 70% New material is 5 to 10X more uniform than the D0 material and the defect density is 50X smaller 1 mm pixel cost at wafer level <$0.5/pixel!

32 Next Steps Integration/packaging Cryo This represented about ½ the cost in D0 ($25/pixel) Going to larger array and 0.5 mm pixel improves this situation tremendously This R&D has not started, no funding in sight presently Going to 16 X mm pixel array See over a factor 10 reduction in cost in packaging Expensive for D0 Convention LHe plant MICE has made progress Developed system using commercial cryo-coolers Tested at Fermilab and KEK Has worked extremely well

33 VLPC Readout System Using 1024 channel D0 VLPC cassette design 8-1mm element array However, will use a cryocooler system to reach 9K operating temperature Sumitomo SRDK-451D

34 MICE VLPC Cryo-System The new system has been built, commissioned, and now operated for a period of 2 months at Fermilab and 3 months in Japan

35 Cryo Operation System Stability has been impressive! ± 10 mk over a period of months Just running cryo-cooler no Cassette control

36 VLPC Integration R&D can yield a device with >95% QE, gain on the order of 50K at less than $1USD per 1 mm pixel Use of Cryo-coolers has been demonstrated Allows for straightforward way to produce large distributed system Performance of latest devices we be studied in the coming months Currently assembling 1024 channel system with devices from the R&D run Verify QE, gain uniformity and noise Integration/packaging R&D at ground zero Need to readout many more channels per cryo-cooler Now 2k Need 20k ($2/ch) 2 X 4 1mm array 16 X 16 (0.5mm) array Integrated Front-end electronics (cold) $10/ch is possible But Requires dedicated and aggressive R&D

37 Segmented Magnetic Detector The optimization for a highly segmented detector is clearly critically dependent on the signal strength (light yield) from the basic cell High light yield active component implies Small WLS fibers can be used if high QE PD is available Small WLS fibers allow for small PD Small PD allow for high-level integration High-level integration reduces cost This is possible with a properly designed R&D program with appropriate funding

Semiconductor Physics and Devices

Semiconductor Physics and Devices Metal-Semiconductor and Semiconductor Heterojunctions The Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) is one of two major types of transistors. The MOSFET is used in digital circuit, because

More information

Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector)

Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector) Recent Development and Study of Silicon Solid State Photomultiplier (MRS Avalanche Photodetector) Valeri Saveliev University of Obninsk, Russia Vienna Conference on Instrumentation Vienna, 20 February

More information

Production of HPDs for the LHCb RICH Detectors

Production of HPDs for the LHCb RICH Detectors Production of HPDs for the LHCb RICH Detectors LHCb RICH Detectors Hybrid Photon Detector Production Photo Detector Test Facilities Test Results Conclusions IEEE Nuclear Science Symposium Wyndham, 24 th

More information

LEDs, Photodetectors and Solar Cells

LEDs, Photodetectors and Solar Cells LEDs, Photodetectors and Solar Cells Chapter 7 (Parker) ELEC 424 John Peeples Why the Interest in Photons? Answer: Momentum and Radiation High electrical current density destroys minute polysilicon and

More information

Monolithically integrated InGaAs nanowires on 3D. structured silicon-on-insulator as a new platform for. full optical links

Monolithically integrated InGaAs nanowires on 3D. structured silicon-on-insulator as a new platform for. full optical links Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links Hyunseok Kim 1, Alan C. Farrell 1, Pradeep Senanayake 1, Wook-Jae Lee 1,* & Diana.

More information

Fully depleted, thick, monolithic CMOS pixels with high quantum efficiency

Fully depleted, thick, monolithic CMOS pixels with high quantum efficiency Fully depleted, thick, monolithic CMOS pixels with high quantum efficiency Andrew Clarke a*, Konstantin Stefanov a, Nicholas Johnston a and Andrew Holland a a Centre for Electronic Imaging, The Open University,

More information

Soft X-Ray Silicon Photodiodes with 100% Quantum Efficiency

Soft X-Ray Silicon Photodiodes with 100% Quantum Efficiency PFC/JA-94-4 Soft X-Ray Silicon Photodiodes with 1% Quantum Efficiency K. W. Wenzel, C. K. Li, D. A. Pappas, Raj Kordel MIT Plasma Fusion Center Cambridge, Massachusetts 2139 USA March 1994 t Permanent

More information

Supplementary Figure 1 Schematic illustration of fabrication procedure of MoS2/h- BN/graphene heterostructures. a, c d Supplementary Figure 2

Supplementary Figure 1 Schematic illustration of fabrication procedure of MoS2/h- BN/graphene heterostructures. a, c d Supplementary Figure 2 Supplementary Figure 1 Schematic illustration of fabrication procedure of MoS 2 /hon a 300- BN/graphene heterostructures. a, CVD-grown b, Graphene was patterned into graphene strips by oxygen monolayer

More information

Nanofluidic Diodes based on Nanotube Heterojunctions

Nanofluidic Diodes based on Nanotube Heterojunctions Supporting Information Nanofluidic Diodes based on Nanotube Heterojunctions Ruoxue Yan, Wenjie Liang, Rong Fan, Peidong Yang 1 Department of Chemistry, University of California, Berkeley, CA 94720, USA

More information

Review of Solidstate Photomultiplier. Developments by CPTA & Photonique SA

Review of Solidstate Photomultiplier. Developments by CPTA & Photonique SA Review of Solidstate Photomultiplier Developments by CPTA & Photonique SA Victor Golovin Center for Prospective Technologies & Apparatus (CPTA) & David McNally - Photonique SA 1 Overview CPTA & Photonique

More information

End-of-line Standard Substrates For the Characterization of organic

End-of-line Standard Substrates For the Characterization of organic FRAUNHOFER INSTITUTe FoR Photonic Microsystems IPMS End-of-line Standard Substrates For the Characterization of organic semiconductor Materials Over the last few years, organic electronics have become

More information

Simulation and test of 3D silicon radiation detectors

Simulation and test of 3D silicon radiation detectors Simulation and test of 3D silicon radiation detectors C.Fleta 1, D. Pennicard 1, R. Bates 1, C. Parkes 1, G. Pellegrini 2, M. Lozano 2, V. Wright 3, M. Boscardin 4, G.-F. Dalla Betta 4, C. Piemonte 4,

More information

Development of Double-sided Silcon microstrip Detector. D.H. Kah*, H. Park, H.J. Kim (BAERI JikLee (SNU) E. Won (Korea U)

Development of Double-sided Silcon microstrip Detector. D.H. Kah*, H. Park, H.J. Kim (BAERI JikLee (SNU) E. Won (Korea U) Development of Double-sided Silcon microstrip Detector D.H. Kah*, H. Park, H.J. Kim (BAERI JikLee (SNU) E. Won (Korea U), KNU) 2005 APPI dhkah@belle.knu.ac.kr 1 1. Motivation 2. Introduction Contents 1.

More information

SCANNING ELECTRON MICROSCOPE (SEM) INSPECTION OF SEMICONDUCTOR DICE. ESCC Basic Specification No

SCANNING ELECTRON MICROSCOPE (SEM) INSPECTION OF SEMICONDUCTOR DICE. ESCC Basic Specification No Page 1 of 24 SCANNING ELECTRON MICROSCOPE (SEM) INSPECTION OF SEMICONDUCTOR DICE ESCC Basic Specification Issue 2 February 2014 Document Custodian: European Space Agency see https://escies.org PAGE 2 LEGAL

More information

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI Lecture: Integration of silicon photonics with electronics Prepared by Jean-Marc FEDELI CEA-LETI Context The goal is to give optical functionalities to electronics integrated circuit (EIC) The objectives

More information

Jan Bogaerts imec

Jan Bogaerts imec imec 2007 1 Radiometric Performance Enhancement of APS 3 rd Microelectronic Presentation Days, Estec, March 7-8, 2007 Outline Introduction Backside illuminated APS detector Approach CMOS APS (readout)

More information

Hiding In Plain Sight. How Ultrasonics Can Help You Find the Smallest Bonded Wafer and Device Defects. A Sonix White Paper

Hiding In Plain Sight. How Ultrasonics Can Help You Find the Smallest Bonded Wafer and Device Defects. A Sonix White Paper Hiding In Plain Sight How Ultrasonics Can Help You Find the Smallest Bonded Wafer and Device Defects A Sonix White Paper If You Can See It, You Can Solve It: Understanding Ultrasonic Inspection of Bonded

More information

Semiconductor Detector Systems

Semiconductor Detector Systems Semiconductor Detector Systems Helmuth Spieler Physics Division, Lawrence Berkeley National Laboratory OXFORD UNIVERSITY PRESS ix CONTENTS 1 Detector systems overview 1 1.1 Sensor 2 1.2 Preamplifier 3

More information

Simulation of High Resistivity (CMOS) Pixels

Simulation of High Resistivity (CMOS) Pixels Simulation of High Resistivity (CMOS) Pixels Stefan Lauxtermann, Kadri Vural Sensor Creations Inc. AIDA-2020 CMOS Simulation Workshop May 13 th 2016 OUTLINE 1. Definition of High Resistivity Pixel Also

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si Authors: Yi Sun 1,2, Kun Zhou 1, Qian Sun 1 *, Jianping Liu 1, Meixin Feng 1, Zengcheng Li 1, Yu Zhou 1, Liqun

More information

P ILC A. Calcaterra (Resp.), L. Daniello (Tecn.), R. de Sangro, G. Finocchiaro, P. Patteri, M. Piccolo, M. Rama

P ILC A. Calcaterra (Resp.), L. Daniello (Tecn.), R. de Sangro, G. Finocchiaro, P. Patteri, M. Piccolo, M. Rama P ILC A. Calcaterra (Resp.), L. Daniello (Tecn.), R. de Sangro, G. Finocchiaro, P. Patteri, M. Piccolo, M. Rama Introduction and motivation for this study Silicon photomultipliers ), often called SiPM

More information

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced.

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced. Unit 1 Basic MOS Technology Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced. Levels of Integration:- i) SSI:-

More information

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34 CONTENTS Preface x Prologue Semiconductors and the Integrated Circuit xvii PART I Semiconductor Material Properties CHAPTER 1 The Crystal Structure of Solids 1 1.0 Preview 1 1.1 Semiconductor Materials

More information

A Ge-on-Si photodetector array for sensitive infrared imaging A. Sammak a, M. Aminian b, L. Qi a, E. Charbon a,b and L. K.

A Ge-on-Si photodetector array for sensitive infrared imaging A. Sammak a, M. Aminian b, L. Qi a, E. Charbon a,b and L. K. A 270 1 Ge-on-Si photodetector array for sensitive infrared imaging A. Sammak a, M. Aminian b, L. Qi a, E. Charbon a,b and L. K. Nanver a a Technische Universiteit Delft (TUDelft), Delft, Netherlands;

More information

Tutors Dominik Dannheim, Thibault Frisson (CERN, Geneva, Switzerland)

Tutors Dominik Dannheim, Thibault Frisson (CERN, Geneva, Switzerland) Danube School on Instrumentation in Elementary Particle & Nuclear Physics University of Novi Sad, Serbia, September 8 th 13 th, 2014 Lab Experiment: Characterization of Silicon Photomultipliers Dominik

More information

Figure Responsivity (A/W) Figure E E-09.

Figure Responsivity (A/W) Figure E E-09. OSI Optoelectronics, is a leading manufacturer of fiber optic components for communication systems. The products offer range for Silicon, GaAs and InGaAs to full turnkey solutions. Photodiodes are semiconductor

More information

Designation: F (Reapproved 2000)

Designation: F (Reapproved 2000) Designation: F 95 89 (Reapproved 2000) Stard Test Method for Thickness of Lightly Doped Silicon Epitaxial Layers on Heavily Doped Silicon Substrates Using an Infrared Dispersive Spectrophotometer 1 This

More information

The HGTD: A SOI Power Diode for Timing Detection Applications

The HGTD: A SOI Power Diode for Timing Detection Applications The HGTD: A SOI Power Diode for Timing Detection Applications Work done in the framework of RD50 Collaboration (CERN) M. Carulla, D. Flores, S. Hidalgo, D. Quirion, G. Pellegrini IMB-CNM (CSIC), Spain

More information

Aptina MT9P111 5 Megapixel, 1/4 Inch Optical Format, System-on-Chip (SoC) CMOS Image Sensor

Aptina MT9P111 5 Megapixel, 1/4 Inch Optical Format, System-on-Chip (SoC) CMOS Image Sensor Aptina MT9P111 5 Megapixel, 1/4 Inch Optical Format, System-on-Chip (SoC) CMOS Image Sensor Imager Process Review For comments, questions, or more information about this report, or for any additional technical

More information

EVALUATION OF RADIATION HARDNESS DESIGN TECHNIQUES TO IMPROVE RADIATION TOLERANCE FOR CMOS IMAGE SENSORS DEDICATED TO SPACE APPLICATIONS

EVALUATION OF RADIATION HARDNESS DESIGN TECHNIQUES TO IMPROVE RADIATION TOLERANCE FOR CMOS IMAGE SENSORS DEDICATED TO SPACE APPLICATIONS EVALUATION OF RADIATION HARDNESS DESIGN TECHNIQUES TO IMPROVE RADIATION TOLERANCE FOR CMOS IMAGE SENSORS DEDICATED TO SPACE APPLICATIONS P. MARTIN-GONTHIER, F. CORBIERE, N. HUGER, M. ESTRIBEAU, C. ENGEL,

More information

Mercury Cadmium Telluride Detectors

Mercury Cadmium Telluride Detectors Mercury Cadmium Telluride Detectors ISO 9001 Certified J15 Mercury Cadmium Telluride Detectors (2 to 26 µm) General HgCdTe is a ternary semiconductor compound which exhibits a wavelength cutoff proportional

More information

IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Lecture-4

IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Lecture-4 2 P-n Lecture-4 20 Introduction: If a junction is formed between a p-type and a n-type semiconductor this combination is known as p-n junction diode and has the properties of a rectifier 21 Formation of

More information

High-efficiency, high-speed VCSELs with deep oxidation layers

High-efficiency, high-speed VCSELs with deep oxidation layers Manuscript for Review High-efficiency, high-speed VCSELs with deep oxidation layers Journal: Manuscript ID: Manuscript Type: Date Submitted by the Author: Complete List of Authors: Keywords: Electronics

More information

Gallium nitride (GaN)

Gallium nitride (GaN) 80 Technology focus: GaN power electronics Vertical, CMOS and dual-gate approaches to gallium nitride power electronics US research company HRL Laboratories has published a number of papers concerning

More information

Fundamentals of CMOS Image Sensors

Fundamentals of CMOS Image Sensors CHAPTER 2 Fundamentals of CMOS Image Sensors Mixed-Signal IC Design for Image Sensor 2-1 Outline Photoelectric Effect Photodetectors CMOS Image Sensor(CIS) Array Architecture CIS Peripherals Design Considerations

More information

Imaging Beyond the Visible in the Short Wave Infrared with Indium Gallium Arsenide

Imaging Beyond the Visible in the Short Wave Infrared with Indium Gallium Arsenide Imaging Beyond the Visible in the Short Wave Infrared with Indium Gallium Arsenide Martin H. Ettenberg, Ph. D., Director of Imaging Products 3490 US Rt. 1, Bldg. 12 Princeton, NJ 08540 Ph: 609-520-0610

More information

Today s Outline - January 25, C. Segre (IIT) PHYS Spring 2018 January 25, / 26

Today s Outline - January 25, C. Segre (IIT) PHYS Spring 2018 January 25, / 26 Today s Outline - January 25, 2018 C. Segre (IIT) PHYS 570 - Spring 2018 January 25, 2018 1 / 26 Today s Outline - January 25, 2018 HW #2 C. Segre (IIT) PHYS 570 - Spring 2018 January 25, 2018 1 / 26 Today

More information

This writeup is adapted from Fall 2002, final project report for by Robert Winsor.

This writeup is adapted from Fall 2002, final project report for by Robert Winsor. Optical Waveguides in Andreas G. Andreou This writeup is adapted from Fall 2002, final project report for 520.773 by Robert Winsor. September, 2003 ABSTRACT This lab course is intended to give students

More information

Silicon sensors for radiant signals. D.Sc. Mikko A. Juntunen

Silicon sensors for radiant signals. D.Sc. Mikko A. Juntunen Silicon sensors for radiant signals D.Sc. Mikko A. Juntunen 2017 01 16 Today s outline Introduction Basic physical principles PN junction revisited Applications Light Ionizing radiation X-Ray sensors in

More information

PoS(EPS-HEP 2009)150. Silicon Detectors for the slhc - an Overview of Recent RD50 Results. Giulio Pellegrini 1. On behalf of CERN RD50 collaboration

PoS(EPS-HEP 2009)150. Silicon Detectors for the slhc - an Overview of Recent RD50 Results. Giulio Pellegrini 1. On behalf of CERN RD50 collaboration Silicon Detectors for the slhc - an Overview of Recent RD50 Results 1 Centro Nacional de Microelectronica CNM- IMB-CSIC, Barcelona Spain E-mail: giulio.pellegrini@imb-cnm.csic.es On behalf of CERN RD50

More information

Strip Detectors. Principal: Silicon strip detector. Ingrid--MariaGregor,SemiconductorsasParticleDetectors. metallization (Al) p +--strips

Strip Detectors. Principal: Silicon strip detector. Ingrid--MariaGregor,SemiconductorsasParticleDetectors. metallization (Al) p +--strips Strip Detectors First detector devices using the lithographic capabilities of microelectronics First Silicon detectors -- > strip detectors Can be found in all high energy physics experiments of the last

More information

MMA RECEIVERS: HFET AMPLIFIERS

MMA RECEIVERS: HFET AMPLIFIERS MMA Project Book, Chapter 5 Section 4 MMA RECEIVERS: HFET AMPLIFIERS Marian Pospieszalski Ed Wollack John Webber Last revised 1999-04-09 Revision History: 1998-09-28: Added chapter number to section numbers.

More information

Intrinsic Semiconductor

Intrinsic Semiconductor Semiconductors Crystalline solid materials whose resistivities are values between those of conductors and insulators. Good electrical characteristics and feasible fabrication technology are some reasons

More information

Contents. The AMADEUS experiment at the DAFNE collider. The AMADEUS trigger. SiPM characterization and lab tests

Contents. The AMADEUS experiment at the DAFNE collider. The AMADEUS trigger. SiPM characterization and lab tests Contents The AMADEUS experiment at the DAFNE collider The AMADEUS trigger SiPM characterization and lab tests First trigger prototype; tests at the DAFNE beam Second prototype and tests at PSI beam Conclusions

More information

Application Note Silicon Flow Sensor SFS01

Application Note Silicon Flow Sensor SFS01 Application Note Silicon Flow Sensor SFS01 AFSFS01_E2.2.0 App Note Silicon Flow Sensor 1/11 Application Note Silicon Flow Sensor SFS01 1. SFS01 - Classification in the Product Portfolio 3 2. Applications

More information

High Speed pin Photodetector with Ultra-Wide Spectral Responses

High Speed pin Photodetector with Ultra-Wide Spectral Responses High Speed pin Photodetector with Ultra-Wide Spectral Responses C. Tam, C-J Chiang, M. Cao, M. Chen, M. Wong, A. Vazquez, J. Poon, K. Aihara, A. Chen, J. Frei, C. D. Johns, Ibrahim Kimukin, Achyut K. Dutta

More information

Week 9: Chap.13 Other Semiconductor Material

Week 9: Chap.13 Other Semiconductor Material Week 9: Chap.13 Other Semiconductor Material Exam Other Semiconductors and Geometries -- Why --- CZT properties -- Silicon Structures --- CCD s Gamma ray Backgrounds The MIT Semiconductor Subway (of links

More information

Surface-Emitting Single-Mode Quantum Cascade Lasers

Surface-Emitting Single-Mode Quantum Cascade Lasers Surface-Emitting Single-Mode Quantum Cascade Lasers M. Austerer, C. Pflügl, W. Schrenk, S. Golka, G. Strasser Zentrum für Mikro- und Nanostrukturen, Technische Universität Wien, Floragasse 7, A-1040 Wien

More information

Lecture 2. Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction. Strip/pixel detectors

Lecture 2. Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction. Strip/pixel detectors Lecture 2 Part 1 (Electronics) Signal formation Readout electronics Noise Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction Strip/pixel detectors Drift detectors

More information

Detection Beyond 100µm Photon detectors no longer work ("shallow", i.e. low excitation energy, impurities only go out to equivalent of

Detection Beyond 100µm Photon detectors no longer work (shallow, i.e. low excitation energy, impurities only go out to equivalent of Detection Beyond 100µm Photon detectors no longer work ("shallow", i.e. low excitation energy, impurities only go out to equivalent of 100µm) A few tricks let them stretch a little further (like stressing)

More information

Copyright 2000 Society of Photo Instrumentation Engineers.

Copyright 2000 Society of Photo Instrumentation Engineers. Copyright 2000 Society of Photo Instrumentation Engineers. This paper was published in SPIE Proceedings, Volume 4043 and is made available as an electronic reprint with permission of SPIE. One print or

More information

Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias

Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias Design and Performance of a Pinned Photodiode CMOS Image Sensor Using Reverse Substrate Bias 13 September 2017 Konstantin Stefanov Contents Background Goals and objectives Overview of the work carried

More information

Standard Operating Procedure of Atomic Force Microscope (Anasys afm+)

Standard Operating Procedure of Atomic Force Microscope (Anasys afm+) Standard Operating Procedure of Atomic Force Microscope (Anasys afm+) The Anasys Instruments afm+ system incorporates an Atomic Force Microscope which can scan the sample in the contact mode and generate

More information

High Reliability Power MOSFETs for Space Applications

High Reliability Power MOSFETs for Space Applications High Reliability Power MOSFETs for Space Applications Masanori Inoue Takashi Kobayashi Atsushi Maruyama A B S T R A C T We have developed highly reliable and radiation-hardened power MOSFETs for use in

More information

Silicon Sensor Developments for the CMS Tracker Upgrade

Silicon Sensor Developments for the CMS Tracker Upgrade Silicon Sensor Developments for the CMS Tracker Upgrade on behalf of the CMS tracker collaboration University of Hamburg, Germany E-mail: Joachim.Erfle@desy.de CMS started a campaign to identify the future

More information

Figure Figure E E-09. Dark Current (A) 1.

Figure Figure E E-09. Dark Current (A) 1. OSI Optoelectronics, is a leading manufacturer of fiber optic components for communication systems. The products offer range for Silicon, GaAs and InGaAs to full turnkey solutions. Photodiodes are semiconductor

More information

Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes

Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes Abstract We report the fabrication and testing of a GaAs-based high-speed resonant cavity enhanced (RCE) Schottky photodiode. The

More information

Envisioning the Future of Optoelectronic Interconnects:

Envisioning the Future of Optoelectronic Interconnects: Envisioning the Future of Optoelectronic Interconnects: The Production Economics of InP and Si Platforms for 100G Ethernet LAN Transceivers Shan Liu Dr. Erica Fuchs Prof. Randolph Kirchain MIT Microphotonics

More information

AN5046 Application note

AN5046 Application note Application note Printed circuit board assembly recommendations for STMicroelectronics PowerFLAT packages Introduction The PowerFLAT package (5x6) was created to allow a larger die to fit in a standard

More information

Measurement of Microscopic Three-dimensional Profiles with High Accuracy and Simple Operation

Measurement of Microscopic Three-dimensional Profiles with High Accuracy and Simple Operation 238 Hitachi Review Vol. 65 (2016), No. 7 Featured Articles Measurement of Microscopic Three-dimensional Profiles with High Accuracy and Simple Operation AFM5500M Scanning Probe Microscope Satoshi Hasumura

More information

ITk silicon strips detector test beam at DESY

ITk silicon strips detector test beam at DESY ITk silicon strips detector test beam at DESY Lucrezia Stella Bruni Nikhef Nikhef ATLAS outing 29/05/2015 L. S. Bruni - Nikhef 1 / 11 Qualification task I Participation at the ITk silicon strip test beams

More information

Lecture 18: Photodetectors

Lecture 18: Photodetectors Lecture 18: Photodetectors Contents 1 Introduction 1 2 Photodetector principle 2 3 Photoconductor 4 4 Photodiodes 6 4.1 Heterojunction photodiode.................... 8 4.2 Metal-semiconductor photodiode................

More information

Design and Simulation of N-Substrate Reverse Type Ingaasp/Inp Avalanche Photodiode

Design and Simulation of N-Substrate Reverse Type Ingaasp/Inp Avalanche Photodiode International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 2, Issue 8 (August 2013), PP.34-39 Design and Simulation of N-Substrate Reverse Type

More information

Single Electron per Pixel Counting with Fully Depleted Charge Coupled Devices

Single Electron per Pixel Counting with Fully Depleted Charge Coupled Devices Single Electron per Pixel Counting with Fully Depleted Charge Coupled Devices Miguel Sofo Haro 1,2,3 1 Instituto Balseiro, Universidad Nacional de Cuyo, Argentina. 2 Consejo Nacional de Investigaciones

More information

In this lecture we will begin a new topic namely the Metal-Oxide-Semiconductor Field Effect Transistor.

In this lecture we will begin a new topic namely the Metal-Oxide-Semiconductor Field Effect Transistor. Solid State Devices Dr. S. Karmalkar Department of Electronics and Communication Engineering Indian Institute of Technology, Madras Lecture - 38 MOS Field Effect Transistor In this lecture we will begin

More information

UNIT-I CIRCUIT CONFIGURATION FOR LINEAR

UNIT-I CIRCUIT CONFIGURATION FOR LINEAR UNIT-I CIRCUIT CONFIGURATION FOR LINEAR ICs 2 marks questions 1.Mention the advantages of integrated circuits. *Miniaturisation and hence increased equipment density. *Cost reduction due to batch processing.

More information

Advances in Laser Micro-machining for Wafer Probing and Trimming

Advances in Laser Micro-machining for Wafer Probing and Trimming Advances in Laser Micro-machining for Wafer Probing and Trimming M.R.H. Knowles, A.I.Bell, G. Rutterford & A. Webb Oxford Lasers June 10, 2002 Oxford Lasers June 2002 1 Introduction to Laser Micro-machining

More information

Amorphous Selenium Direct Radiography for Industrial Imaging

Amorphous Selenium Direct Radiography for Industrial Imaging DGZfP Proceedings BB 67-CD Paper 22 Computerized Tomography for Industrial Applications and Image Processing in Radiology March 15-17, 1999, Berlin, Germany Amorphous Selenium Direct Radiography for Industrial

More information

Multi-Element Si Sensor with Readout ASIC for EXAFS Spectroscopy 1

Multi-Element Si Sensor with Readout ASIC for EXAFS Spectroscopy 1 Multi-Element Si Sensor with Readout ASIC for EXAFS Spectroscopy 1 Gianluigi De Geronimo a, Paul O Connor a, Rolf H. Beuttenmuller b, Zheng Li b, Antony J. Kuczewski c, D. Peter Siddons c a Microelectronics

More information

How Does One Obtain Spectral/Imaging Information! "

How Does One Obtain Spectral/Imaging Information! How Does One Obtain Spectral/Imaging Information! How do we measure the position, energy, and arrival time of! an X-ray photon?! " What we observe depends on the instruments that one observes with!" In

More information

Tunable wideband infrared detector array for global space awareness

Tunable wideband infrared detector array for global space awareness Tunable wideband infrared detector array for global space awareness Jonathan R. Andrews 1, Sergio R. Restaino 1, Scott W. Teare 2, Sanjay Krishna 3, Mike Lenz 3, J.S. Brown 3, S.J. Lee 3, Christopher C.

More information

Dynamic Range. Can I look at bright and faint things at the same time?

Dynamic Range. Can I look at bright and faint things at the same time? Detector Basics The purpose of any detector is to record the light collected by the telescope. All detectors transform the incident radiation into a some other form to create a permanent record, such as

More information

IRST SiPM characterizations and Application Studies

IRST SiPM characterizations and Application Studies IRST SiPM characterizations and Application Studies G. Pauletta for the FACTOR collaboration Outline 1. Introduction (who and where) 2. Objectives and program (what and how) 3. characterizations 4. Applications

More information

Pixel hybrid photon detectors

Pixel hybrid photon detectors Pixel hybrid photon detectors for the LHCb-RICH system Ken Wyllie On behalf of the LHCb-RICH group CERN, Geneva, Switzerland 1 Outline of the talk Introduction The LHCb detector The RICH 2 counter Overall

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electrically pumped continuous-wave III V quantum dot lasers on silicon Siming Chen 1 *, Wei Li 2, Jiang Wu 1, Qi Jiang 1, Mingchu Tang 1, Samuel Shutts 3, Stella N. Elliott 3, Angela Sobiesierski 3, Alwyn

More information

isagers. Three aicron gate spacing was

isagers. Three aicron gate spacing was LIJEAR POLY GATE CHARGE COUPLED DEVICE IMAGING ARRAYS Lucien Randazzese Senior Microelectronic Engineering Student Rochester Institute of Technology ABSTRACT A five cask level process was used to fabricate

More information

CHAPTER 11: Testing, Assembly, and Packaging

CHAPTER 11: Testing, Assembly, and Packaging Chapter 11 1 CHAPTER 11: Testing, Assembly, and Packaging The previous chapters focus on the fabrication of devices in silicon or the frontend technology. Hundreds of chips can be built on a single wafer,

More information

Process Control Limits in a CMOS ASIC Fabrication Process K. Jayavel, K.S.R.C.Murthy

Process Control Limits in a CMOS ASIC Fabrication Process K. Jayavel, K.S.R.C.Murthy Process Control Limits in a CMOS ASIC Fabrication Process K. Jayavel, K.S.R.C.Murthy Society for Integrated circuit Technology and Applied Research Centre (SITAR), 1640, Doorvaninagar, Bangalore, Karnataka,

More information

Comparison of Different Cell Concepts for 1200V- NPT-IGBT's

Comparison of Different Cell Concepts for 1200V- NPT-IGBT's Comparison of Different Cell Concepts for 12V- NPT-IGBT's R.Siemieniec, M.Netzel, R. Herzer, D.Schipanski Abstract - IGBT's are relatively new power devices combining bipolar and unipolar properties. In

More information

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02 EE 5611 Introduction to Microelectronic Technologies Fall 2014 Thursday, September 04, 2014 Lecture 02 1 Lecture Outline Review on semiconductor materials Review on microelectronic devices Example of microelectronic

More information

Module 2: CMOS FEOL Analysis

Module 2: CMOS FEOL Analysis Module 2: CMOS FEOL Analysis Manufacturer Device # 2 About Chipworks Chipworks is the recognized leader in reverse engineering and patent infringement analysis of semiconductors and electronic systems.

More information

Total Absorption Dual Readout Calorimetry R&D

Total Absorption Dual Readout Calorimetry R&D Available online at www.sciencedirect.com Physics Procedia 37 (2012 ) 309 316 TIPP 2011 - Technology and Instrumentation for Particle Physics 2011 Total Absorption Dual Readout Calorimetry R&D B. Bilki

More information

Vixar High Power Array Technology

Vixar High Power Array Technology Vixar High Power Array Technology I. Introduction VCSELs arrays emitting power ranging from 50mW to 10W have emerged as an important technology for applications within the consumer, industrial, automotive

More information

Design and Simulation of a Silicon Photomultiplier Array for Space Experiments

Design and Simulation of a Silicon Photomultiplier Array for Space Experiments Journal of the Korean Physical Society, Vol. 52, No. 2, February 2008, pp. 487491 Design and Simulation of a Silicon Photomultiplier Array for Space Experiments H. Y. Lee, J. Lee, J. E. Kim, S. Nam, I.

More information

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A. Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica Analogue Electronics Paolo Colantonio A.A. 2015-16 Introduction: materials Conductors e.g. copper or aluminum have a cloud

More information

New fabrication and packaging technologies for CMOS pixel sensors: closing gap between hybrid and monolithic

New fabrication and packaging technologies for CMOS pixel sensors: closing gap between hybrid and monolithic New fabrication and packaging technologies for CMOS pixel sensors: closing gap between hybrid and monolithic Outline Short history of MAPS development at IPHC Results from TowerJazz CIS test sensor Ultra-thin

More information

Based on lectures by Bernhard Brandl

Based on lectures by Bernhard Brandl Astronomische Waarneemtechnieken (Astronomical Observing Techniques) Based on lectures by Bernhard Brandl Lecture 10: Detectors 2 1. CCD Operation 2. CCD Data Reduction 3. CMOS devices 4. IR Arrays 5.

More information

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Sixth Edition. 4ü Spri rineer g<

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Sixth Edition. 4ü Spri rineer g< Robert G. Hunsperger Integrated Optics Theory and Technology Sixth Edition 4ü Spri rineer g< 1 Introduction 1 1.1 Advantages of Integrated Optics 2 1.1.1 Comparison of Optical Fibers with Other Interconnectors

More information

SILICON NANOWIRE HYBRID PHOTOVOLTAICS

SILICON NANOWIRE HYBRID PHOTOVOLTAICS SILICON NANOWIRE HYBRID PHOTOVOLTAICS Erik C. Garnett, Craig Peters, Mark Brongersma, Yi Cui and Mike McGehee Stanford Univeristy, Department of Materials Science, Stanford, CA, USA ABSTRACT Silicon nanowire

More information

Functional Materials. Optoelectronic devices

Functional Materials. Optoelectronic devices Functional Materials Lecture 2: Optoelectronic materials and devices (inorganic). Photonic materials Optoelectronic devices Light-emitting diode (LED) displays Photodiode and Solar cell Photoconductive

More information

REVISION #25, 12/12/2012

REVISION #25, 12/12/2012 HYPRES NIOBIUM INTEGRATED CIRCUIT FABRICATION PROCESS #03-10-45 DESIGN RULES REVISION #25, 12/12/2012 Direct all inquiries, questions, comments and suggestions concerning these design rules and/or HYPRES

More information

WHITE PAPER MINIATURIZED HYPERSPECTRAL CAMERA FOR THE INFRARED MOLECULAR FINGERPRINT REGION

WHITE PAPER MINIATURIZED HYPERSPECTRAL CAMERA FOR THE INFRARED MOLECULAR FINGERPRINT REGION WHITE PAPER MINIATURIZED HYPERSPECTRAL CAMERA FOR THE INFRARED MOLECULAR FINGERPRINT REGION Denis Dufour, David Béland, Hélène Spisser, Loïc Le Noc, Francis Picard, Patrice Topart January 2018 Low-cost

More information

TEST RESULTS WITH 2KX2K MCT ARRAYS

TEST RESULTS WITH 2KX2K MCT ARRAYS TEST RESULTS WITH 2KX2K MCT ARRAYS Finger, G, Dorn, R.J., Mehrgan, H., Meyer, M., Moorwood A.F.M. and Stegmeier, J. European Southern Observatory Abstract: Key words: The performance of both an LPE 2Kx2K

More information

event physics experiments

event physics experiments Comparison between large area PMTs at cryogenic temperature for neutrino and rare Andrea Falcone University of Pavia INFN Pavia event physics experiments Rare event physics experiment Various detectors

More information

New Waveguide Fabrication Techniques for Next-generation PLCs

New Waveguide Fabrication Techniques for Next-generation PLCs New Waveguide Fabrication Techniques for Next-generation PLCs Masaki Kohtoku, Toshimi Kominato, Yusuke Nasu, and Tomohiro Shibata Abstract New waveguide fabrication techniques will be needed to make highly

More information

PHYSICS OF SEMICONDUCTOR DEVICES

PHYSICS OF SEMICONDUCTOR DEVICES PHYSICS OF SEMICONDUCTOR DEVICES PHYSICS OF SEMICONDUCTOR DEVICES by J. P. Colinge Department of Electrical and Computer Engineering University of California, Davis C. A. Colinge Department of Electrical

More information

3.3. Purpose. Problem Discussion. Selection of Detector Material. Recent Developments in Photoconductive Infrared Arrays

3.3. Purpose. Problem Discussion. Selection of Detector Material. Recent Developments in Photoconductive Infrared Arrays 3.3 Recent Developments in Photoconductive Infrared Arrays Elias, Brian Cal Sensors 5460 Skylane Blvd. Santa Rosa, CA, USA 95403 Purpose The infrared region from 1m to 5 is an area of interest for both

More information

PoS(PhotoDet 2012)058

PoS(PhotoDet 2012)058 Absolute Photo Detection Efficiency measurement of Silicon PhotoMultipliers Vincent CHAUMAT 1, Cyril Bazin, Nicoleta Dinu, Véronique PUILL 1, Jean-François Vagnucci Laboratoire de l accélérateur Linéaire,

More information

Damage-free failure/defect analysis in electronics and semiconductor industries using micro-atr FTIR imaging

Damage-free failure/defect analysis in electronics and semiconductor industries using micro-atr FTIR imaging Damage-free failure/defect analysis in electronics and semiconductor industries using micro-atr FTIR imaging Application note Electronics and Semiconductor Authors Dr. Mustafa Kansiz and Dr. Kevin Grant

More information

Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1. Topics

Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1. Topics Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1 Topics What is semiconductor Basic semiconductor devices Basics of IC processing CMOS technologies 2006/9/27 2 1 What is Semiconductor

More information